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Supplementary Note S1: Definition of locally low-rank biclusters
With fitting each gene’s expression by the LTMG model, we transformed the continuous gene expression into a binary matrix with 1s in each row representing one expression state of a certain gene. Then each of the identified 1-enriched submatrices corresponds to a group of genes, of which the expression of each consistently falls in one Gaussian peak in a certain subset of samples. Hence the bicluster is an approximation of the local rank-1 submatrix defined in the following way.
Suppose  is the observed data matrix with rows and columns representing genes and samples, and assume the entries of  are independent but non-identical Gaussian distributed, i.e., . There exist a significant number of hidden submatrices  such that the means and variances of each entry of these submatrices may be different from the white noise distribution: 
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Figure S1. Performance comparison of eight biclustering tools on microarray and RNA-Seq data from E. coli, respectively. Each tool was run multiple times with different parameter combinations. The performance was evaluated using f-score, the harmonic mean of precision and recall. Pathway enrichment analysis was conducted against 1,826 SEED subsystems derived from the SEED genomic database. It is noteworthy that although the performance of Plaid, QUBIC, and Runibic on RNA-Seq data is better than on microarray, there is still large room for improvement.

Supplementary Note S2: Unquantifiable errors
A log-normal error is always used for normalized gene expression, such as RPKM, CPM, and TPM, in tissue RNA-Seq data analysis. A similar assumption of the errors is also used in the mixture model of scRNA-Seq data, such as the zero-inflated Gaussian model used in MAST (Finak, et al., 2015), Gamma-Normal model used in scImpute (Li and Li, 2018) and the two states model used in SC2P (Wu, et al., 2018). However, the error of low expression part, including zero and low non-zero expression, is not fixed due to it depending on multiple factors including, experimental resolution, un-fully degraded mRNA and sequencing errors. In order to optimize the inference of multimodality of the high expression part in a gene's expression profile, we used a left-censored assumption for the “unquantifiable errors” of zero and low expression in LTMG model.

Supplementary Method S1: Simulation of co-regulated gene expression data
We utilized a single-cell RNA-Seq dataset of human melanoma (Tirosh, et al., 2016) (with 22,846 genes and 4,645 cells) to simulate bulk tissue RNA-Seq data with known co-regulated modules. Specifically, a single cell RNA-Seq pool consisting of counts data of 4,466 cells of six annotated cell types, namely B-, T-, endothelial, fibroblast, macrophage, and cancer cells, was constructed. The top 1,000 cell type-specific expressed genes of each cell type were identified by using the Z- score of the mean of each gene’s expression level in each cell type. 
For each round of the simulation, the number of bulk tissue samples and co-regulation modules to be simulated is first defined. Then the genes of each co-regulation module, denoted as , is specified by randomly selecting  genes from the top 1,000 cell type-specific expressed genes of one cell type. A co-regulation strength matrix  is then simulated from a bimodal distribution over (0,1), with  denoting the proportion of cells with the transcriptional regulatory signal of co-regulation module  in bulk sample . A bulk tissue data is simulated by randomly drawing cells from the cell pool by following a multinomial distribution with predefined parameters and the total number of cells. For co-regulation module  in bulk sample , genes  in a proportion  of the selected cells of the cell type corresponding to  are perturbed by an X-fold increase of the gene expression. Then the bulk data  with simulated co-regulations are formed by summing the perturbed gene expression profile for the selected cells and normalized to RPKM expression scale. 
The rationales of this simulation approach include (1) gene expression level and noise in the bulk data are purely simulated by sum of real single-cell data without using artificially assigned expression scale and noise; (2) co-regulation genes are modeled as a specific fold increase of a number of cell-type-specific genes in a particular subset of the cells, which characterizes the heterogeneity of transcriptional regulation among cells in a tissue; (3) multiple co-regulation modules in specific to different cell types can be simultaneously simulated. Hence, we believe the gene expression data simulated by this way can satisfactorily reflect genes co-regulated by a perturbed transcriptional regulation signal in real bulk tissue data. The pseudo-code of simulation is provided as follows:



	
		

	 


	


Note that there are many simulators to generate RNA-Seq data, yet none of them can generate co-regulated modules. A summary of existing simulators is shown in Table S1.
Table S1. A summary of existing RNA-Seq data simulators
	Simulator
	Description
	Input & Output
	Advantage

	Polyester
	R package designed to simulate RNA-seq data; 

	Input: annotated transcript nucleotide sequences
Output: RNA-seq reads
	 the ability to simulate reads indicating isoform-level differential expression across biological replicates for a variety of experimental designs.

	BEERS
	a simulation engine for generating RNA-Seq data;
 
	Input: a pool of gene models and feature quantifications file
Output: DNA and protein sequence alignment
	generates simulated sequence read pairs with characteristics similar to those observed in Illumina sequence reads.

	FUSIM
	simulates fusion transcripts
	Input: Number of fusion transcripts to generate, gene model, faidx-indexed reference genome, RNA-seq read alignments
Output: Raw fusion sequences
	assemble a dataset of fusion transcripts useful for testing and benchmarking applications in fusion gene discovery, and enables comprehensive testing in silico of fusion discovery methods in transcriptome sequencing data

	RSS
	part of USeq, a collection of tools for high-level analysis of NGS data
	Input: SAM alignment file
Output: a sequence file
	Simulates over-dispersed, multiple replica, differential, non-stranded RNA-Seq datasets

	SimSeq
	a nonparametric simulation algorithm
	Input: a large source RNA-seq dataset
Output: matrix of RNA-seq read counts
	gives a more accurate picture of the performance of a given method to detect differential expression while controlling FDR

	ART
	general simulator
	Input: DNA sequence
Output: sequencing reads that mimic the technology-specific sequencing process
	deals with all major sequencing platforms and generates sequence reads with both substitution and insertion-deletion (INDEL) errors

	pIRS
	Profile-based Illumina pair-end reads simulator
	Output: pair-end reads
	simulates Illumina reads with real error and quality distributions and coverage bias

	SimCT
	a configurable generator that simulates RNA-Seq data from a reference genome and known transcript annotations
	Input: reference genome and known transcript annotation
Output: RNA-Seq reads
	supplies data sets that cover cases such as fusion genes. It includes the alignment positions and errors of the simulated reads in their names

	TABASCO
	a single-molecule stochastic gene expression simulator
	Input: an XML file that describes and parameterizes the relevant genetic elements, initial conditions, and any other reactions that occur
Output: gene expression
	Allows genome-scale simulation of transcription and translation at the individual molecule and single base-pair resolution

	RSSS
	A software tool to simulate transcript sets, expression values, and sequence reads
	Input: transcript pool(Ensembl 66 cDNA sequences )
Output: expression value, RNA-Seq reads and transcript annotation
	

	Pinetree
	a step-wise gene expression simulator
	Input: a single copy of a genome, and a pool of free polymerases and ribosomes
Output: gene expression
	simulates dynamic transcript abundances and transcript lengths; ribosome movements are modeled explicitly on each transcript

	sgnesR
	Stochastic gene Network Expression Simulator 
	Input: gene network 
Output: gene expression matrix
	generates biologically realistic gene expression data based on an underlying gene regulatory network

	quantroSim
	An R-package to simulate gene expression and DNA methylation data
	Input: parameters indicating the number of genes, groups as well as fold
Output: gene expression
	simulates RNA transcripts counts based on Poisson distribution

	exPatGen
	an on-line simulator, to generate dynamic gene expression patterns typical of microarray experiments
	Input: Expression Model Parameters, Gene Groupings, &
Regulatory Networks
Output: gene mRNA levels
	Generating simulated expression patterns with known biological features of expression complexity, diversity, and interconnectivity; provides a more controlled means of investigating the appropriateness of different analysis methods

	PROSSTT
	probabilistic simulation of single-cell RNA-seq data for complex differentiation processes
	Input: parameters that describe the topology of the lineage tree
Output: UMI counts
	simulates scRNA-seq datasets for differentiation processes with lineage trees of any desired complexity, noise level, noise model, and size.
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Table S2. The summary of datasets used in the study
	Datasets
	#genes
	# conditions
	Download links
	Note

	Simulation 
	simu1
	22,846
	100
	http://bmbl.sdstate.edu/downloadFiles/simulation/
	Used in Figure 2

	
	simu2
	22,846
	100
	http://bmbl.sdstate.edu/downloadFiles/simulation/
	Used in Figure 2

	Microarray
	E. coli
	4,297
	466
	http://m3d.mssm.edu/norm/E_coli_v4_Build_6.tar.gz
	Used in Figure2

	
	Human_SEEK
	4,436
	2,308
	https://doi.org/10.5281/zenodo.1157938
	An aggregation of public datasets using the GPL5175 microarray platform. Used in Figure2 

	RNA-Seq
	E. coli
	4,497
	155
	http://bmbl.sdstate.edu/downloadFiles/E.coli%20RNA-seq/
	Used in Figure2

	
	Human_GTEX
	5,177
	8,555
	https://doi.org/10.5281/zenodo.1157938
	From 53 tissues of 544 donors. Used in Figure2

	scRNA-Seq
	Yan’s data
(GSE36552)
	20,214
	90
	https://scrnaSeq-public-datasets.s3.amazonaws.com/manual-data/yan/nsmb.2660-S2.csv
	Human; 
Used in Figure 2, 3

	
	10X Genomics data
	16,634
	2,700
	https://support.10xgenomics.com/single-cell-gene-expression/datasets/1.1.0/pbmc3k
	Human; Used in Figure2

	
	Regulon for simulated data
	2,240
	-
	https://github.com/qibaotu/QUBIC2_validation
	10 and 30 regulons, respectively. For the validation of simulated data (Figure 2)

	
	ComTF
	1,798
	-
	https://github.com/qibaotu/QUBIC2_validation
	457 ComTF. For the validation of E. coli RNA-Seq data (Figure 4)

	
	KEGG
	1,423
	-
	https://github.com/qibaotu/QUBIC2_validation
	123 KEGG pathways. For the validation of E. coli microarray and RNA-Seq data (Figure 2 and 4)

	
	TF
	1,800
	-
	https://github.com/qibaotu/QUBIC2_validation
	204 regulons. For the validation of E. coli RNA-Seq data (Figure 4)

	
	SEED
	1,826
	-
	https://github.com/qibaotu/QUBIC2_validation
	316 SEED pathways. For the validation of E. coli RNA-Seq data (Figure 4)

	
	ECO
	1,068
	-
	https://github.com/qibaotu/QUBIC2_validation
	425 EcoCyc pathways. For the validation of E. coli RNA-Seq data (Figure 4)

	
	Regulon for Human_SEEK
	4,017
	-
	https://zenodo.org/record/1157938
	634 regulons. For the validation of Human_SEEK data

	
	Regulon for Human_GTEX
	4,782
	-
	https://zenodo.org/record/1157938
	634 regulons. For the validation of Human_GTEX data

	
	ChIP-Seq data
	23,951
	-
	http://bmbl.sdstate.edu/chip-seq/
	655 ChIP-Seq. For the validation of Yan’s data and 10X Genomics data (Figure 2)





Supplementary Method S2: EM algorithm to fit the LTMG.
Latent variables  are introduced to estimate  by the following Q function and EM algorithm:

where are the parameters,  is the cutoff of the measured gene expression level of X to have reliable Gaussian errors, is the measured gene expression level of X, i.e., log scaled RPKM value in cell ,  is the latent variable reflecting the real expression level of X if the measured expression level is smaller than  , and  is the latent variable reflecting that  is the from the th Gaussian distribution.
The M step can be written as:
 => 
=> 
=>
, where, ,  and  are the pdf and cdf of standard normal distribution.
Hence the E step is:

Similarly,

 can be estimated by iteratively running the E and M step in the above algorithm with given .

Supplementary method S3: BIC for selection of the number of Gaussian components
Parameters   can be estimated by iteratively running the estimation (E) and maximization (M) steps. In this study,  is set for each gene as the logarithm of the minimal non-zero RPKM/FPKM/TPM value in the gene’s expression profile. The EM algorithm is conducted for  = 1, …, 9 to fit the expression profile of each gene, and the  that gives the best fit is selected according to the Bayesian Information Criterion (BIC): 

where  is the number of conditions.  that minimizes the BIC will be selected.
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Figure S2. QUBIC2 workflow. a. Discretization of gene expression data from RNA-Seq. The LTMG model will be applied to fit each gene’s expression profile. A representing row for each gene will be generated with integers denoting the most likely component distribution that each value belongs to. Then this representing row will be split into multiple rows. Finally, a binary representing matrix will be generated; b. Graph construction and seed selection. A weighted group will be constructed based on the representing matrix from a. by sorting the edges in decreasing order of their weight, and an initial seed list will be obtained. QUBIC2 will select a feasible seed from the list; c. Building an initial Core based on the selected seed. During seed expansion, QUBIC2 will search for genes with a higher weight than the seed. In the case of two genes having the same weight, the one with a higher KL score will be selected. Thus, gene k (KL=0.1914) instead of gene j (KL=0.0622) will be added to the Core first; d. Expanding core and determining the pool. QUBIC2 will expand the Core vertically and horizontally to recruit more genes and conditions under a preset consistency level, respectively. The intersected zone created by extended genes and conditions marks a Dual searching pool (brown box); e. Dual searching in the pool and outputing the bicluster with genes and conditions that come from the Core and Dual as final bicluster (red box); f. Statistical evaluation of identified biclusters based on either biological annotations or the size of the bicluster.

Supplementary Method S4: Benchmarking algorithm/software 
Eight algorithms were used as benchmarking tools in the Functional Module Detection part, i.e., Bimax, ISA, FABIA, Plaid, QUBIC, BicMix, Runibic, and EBIC. These algorithms were selected after systematic consideration of 1) popularity; 2) ease of use; 3) performance (i.e., recommended in review works) and 4) recentness. A brief description of these algorithms is provided in Table S3.
Table S3. Summary of benchmarking algorithms
	Algorithm
	Description
	Citations*
	Published Year
	Implementation

	Bimax
	a divide and conquer algorithm that seeks the rectangles of 1's in a binary matrix

	927
	2006
	R package ‘biclust’

	ISA
	a nondeterministic greedy algorithm that seeks biclusters with two symmetric requirements
	416
	2002
	R package ‘isa2’

	FABIA
	Factor analysis for bicluster acquisition (FABIA) modeling the data matrix X as the sum of p biclusters plus additive noise
	236
	2010
	R package ‘fabia’

	Plaid
	fits parameters to a generative model of the data known as the plaid model
	756
	2002
	R package ‘biclust’

	QUBIC
	a deterministic algorithm that reduces the biclustering problem to finding heavy subgraphs in a bipartite graph representation of the data
	202
	2009
	R package ‘QUBIC’

	BicMix
	a biclustering algorithm based on a Bayesian statistical model
	26
	2016
	R package ‘BicMix’

	Runibic
	parallel row-based biclustering
	8
	2018
	R package ‘runibic’

	EBIC
	a novel biclustering algorithm based on evolutionary computation; aims to detect order-preserving patterns 
	9
	2018
	C++


Note: The citations are counted as of July 2019 via Google scholar. We also tested S4VD (Sill, et al., 2011), Bi-Force (Sun, et al., 2014), GFA (Bunte, et al., 2016), COBRA (Chi, et al., 2017),  Gracob(Alzahrani, et al., 2017) and MCbiclust(Bentham, et al., 2017), yet none of them could output biclusters in a reasonable time; thus we decided not to include them in the testing. 
In the functional module section and cell classification section, each algorithm was run under different parameter combinations. The detailed information regarding parameter adjustment are listed as follows:
Table S4. Parameter ranges for each algorithm used in the functional module section
	[bookmark: _Hlk520801960]Algorithm
	Parameters
	Note

	Bimax
	minr ranges from 10~60(increment 5)
minc ranges from 10~45 (increment 5)
number set to 100
	Needs discretized data as input. For each dataset, take the discretized data from QUBIC as input.
No recommendation provided by the author or biclust manual.
Default: minr=2, minc=2

	ISA
	set.seed ranges from 10~600, increment 10

	ISA is stochastic, so/and setting different seeds may obtain different biclusters

	FABIA
	alpha ranges from 0~0.05, increament:0.01;
spl ranges from 0~2, increment 0.5;
spz ranges from 0~2, increment 0.5;
cyc=100, p=100

	default: alpha=0.1, spl =0, spz=0.5, cyc=500, p=5

	Plaid
	both row.release and col.release range from 0.5~0.7, increment be 0.05
max.layer 10~100
	for row.release and col.release, 0.5~0.7 is the recommended range

	QUBIC
	f 0.1~1.0, increment 0.05
c 0.8~1.0, increment 0.05
k 3~23, increment 5
	default: f=1.0, c=0.95, k=ncol/20

	QUBIC2
	f 0.25~1.0, increment 0.05
k 5~23, increment 5
	

	BicMix
	nf  50~250, increment 50
a 0.3~0.6, increment 0.1
b 0.6~0.6, increment 0.1

	default: nf=100, a=0.5,b=0.5

	Runibic
	t 0.6~1.0, increment 0.1
f 0.2~1.0, increment 0.1
	default: t=0.95, f=1.0

	EBIC
	n 1000~6000, increment 1000
x 0.5~0.8, increment 0.1
a 0.7~0.9, increment 0.05
	default: n=5000, x=0.75, a=0.85
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Figure S3. Averaged scores of each algorithm in terms of f, d, v, p, r on simulation, microarray, RNA-Seq, and scRNA-Seq data, respectively.
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Figure S4. An overview of pathways that BC018_Q2 genes involved.

Supplementary Method S5: Spearman correlation test
QUBIC2 was run on the RNA-Seq data from E. coli under 70 parameter settings, and a correlation test was conducted between the knowledge-based P-value and the corresponding size-based P-values. Specifically, five sets of regulatory or metabolic pathways were extracted from four databases of  E. coli (RegulonDB, KEGG, SEED (Overbeek, et al., 2005) and EcoCyc (Keseler, et al., 2017)) first. Given a group of up to 100 biclusters obtained under a parameter setting, six groups of P-values for all these biclusters were calculated, with five knowledge-based groups and one size-based group. A Spearman correlation test was conducted to investigate the rank-order correlation between size-based P-values and five groups of knowledge-based P-values. Five correlation coefficients (), which demonstrated the extent of correlation between size-based P-values and five biological knowledge-based P-values, as well as five corresponding p-values, were recorded from the test (Figure 2f). To investigate the effect of biclustering parameters on the correlation, the same steps were repeated for each group of biclusters obtained using 70 different parameter settings; thus, a total of 5  70  and  p-values were obtained.

[image: ]
Figure S5. The relationship between biclustering parameter f and correlation coefficient that indicates the association between biological knowledge-based P-value and size-based P-value. The blue line in each plot corresponds to the Loess smooth line.

Supplementary Result S1: Analysis of time series Data
We applied QUBIC2 on a time series lung scRNA-Seq data (GSE52583), which consists of 152 cells collected at E14, E16 and E18, respectively (Treutlein, et al., 2014). Five biclusters were identified, and three of them contained time-specific cells (Figure S7). Bicluster BC002 contained of cells exclusively from E14; bicluster BC003 contained cells that only from E16; and bicluster BC004 contained cells coming from E18. Functional enrichment analyses of the component genes from these three biclusters were carried out based on DAVID (Dennis, et al., 2003), and the results showed that genes in BC002 mainly related to cell cycle, cell division, and mitosis; BC003 genes were enriched with ribosome, translation, and structural constituent of ribosome; and spliceosome-related genes were grouped in BC004.

Supplementary Note S3: Time complexity of QUBIC2
[bookmark: _Hlk15547012]QUBIC2 mainly consists of two steps: discretization and biclustering. The time complexity of each major step is given as follows:
Let , , and  denote the number of genes, samples and the maximum output of biclusters.
I. Discretization 
1). LTMG fitting. The LTMG will be individually fitted for each gene with a fixed number of iterations. The math operation of each iteration is, thus for  genes and  samples, the overall time complexity is .
2). discretization. The discretization will be individually conducted for each gene, and for each gene, the discretization is conducted over all samples with running time . Thus, the overall complexity is .
II. Biclustering.
1). graph construction: 
2). edge sorting: should be at least ，since we just output the first  biclusters, then it turns to , given o is a constant, that is .
[bookmark: _Hlk14812738]3). looping step (at most  loops)
a. build core bicluster: the time complexity of initiation of a bicluster is . Then repeat the multiple expansion steps. The time complexity for expansion is 
b. core expansion step: the time complexity is 
c. search dual step: the upper bound of the complexity is 
d. the upper limit of repeating time is m, thus for each looping, the time complexity is still .
Therefore, the upper limit of time complexity for the looping step is .
In summary, the final complexity for the biclustering step is and the total complexity of QUBIC2 is 


[image: ]

Figure S6. Running time of nine biclustering tools on eight real datasets. a. Running time in regular scale. The inserted table shows the running time of QUBIC2_1 ; b. Running time in log10 scale. Note that QUBIC2_1 denotes the running time for discretization + biclustering, and QUBIC2_2 refers to the time for biclustering only. 

[image: ]
Figure S7. Visualization of three biclusters (BC002, BC003, and BC004) identified by QUBIC2 from time series scRNA-Seq dataset GSE52583.
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