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A. Proof of the unbiasedness of the inverse probability-of-censoring 

weighted estimators for the concordance and disconcordance probabilities:     
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where the conditional set ( ) ( ) ( ) ( )( , ) ( , , , )i j i jX T X X T T , and the last equality 

follows from the fact that ( ) ( ),i jC C are independent of each other and are 

independent of (X,T), and ( ) ( ) ( ) ( )( ( | ) ( )i j j C jE I C T T S T  , 

( ) ( ) ( ) ( )( ( | ) ( )j j j C jE I C T T S T  . The proof of the second equation is similar, we 

thus omit it. 
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B. Additional simulation results 

B.1 Simulations in Section 3.1 of the main text: comparing the mean 

numbers of the true predictors with positive and negative coefficients 

selected by the IPCW-tau and IPCW(S) methods 

 

We compare the mean numbers of the true predictors with positive and 
negative coefficients included by the top 15, 30, 45, 60, 75, 90, 120 and 150 
selected variables among 200 replications between the IPCW-tau and IPCW(S) 
methods. We report only the results with the cohort size being 300; the results 
for the other cohort sizes are similar and hence omitted. From Table S1 (for the 
scenario with covariates contaminated) we see that when the censoring rate is 
25%, both approaches perform similarly well in selecting the true predictors 
with positive and negative coefficients. However, when the censoring rate is 
50% or 80%, the IPCW(S) approach tends not to select the true predictors with 
negative coefficients, while the IPCW-tau approach does not have this 
drawback and selects effects in either direction equally well.   
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Table S1. Mean numbers of true predictors with the positive and negative coefficients 

included by the top 15, 30, 45, 60, 75, 90, 120 and 150 selected variables under the scenario 

with cohort size equal to 300 and contaminated covariates. 

Cen.r=25%  15 30 45 60 75 90 120 150 

IPCW-tau 

Beta>0 

 

3.460 

 

3.905 

 

4.145

 

4.295

 

4.375

 

4.48 

 

4.655 

 

4.800

Beta<0 4.480 5.035 5.290 5.455 5.585 5.680 5.885 6.040

IPCW(S) 

Beta>0 

 

3.615 

 

4.030 

 

4.300

 

4.415

 

4.565

 

4.700

 

4.855 

 

5.010

Beta<0 4.090 4.635 4.925 5.085 5.235 5.355 5.530 5.705

Cen.r=50% 15 30 45 60 75 90 120 150 

IPCW-tau 

Beta>0 

 

2.995 

 

3.350 

 

3.600

 

3.775

 

3.910

 

4.030

 

4.185 

 

4.335

Beta<0 3.715 4.350 4.650 4.815 4.990 5.100 5.355 5.515

IPCW(S) 

Beta>0 

 

3.350 

 

3.785 

 

4.040

 

4.180

 

4.320

 

4.440

 

4.610 

 

4.750

Beta<0 0.005 0.005 0.005 0.005 0.005 0.005 0.015 0.015

Cen.r=80% 15 30 45 60 75 90 120 150 

IPCW-tau  

Beta>0 

 

2.105 

 

2.460 

 

2.695

 

2.835

 

2.930

 

3.005

 

3.185 

 

3.300

Beta<0 2.350 2.735 2.950 3.140 3.285 3.420 3.630 3.810

IPCW(S) 

Beta>0 

 

2.465 

 

2.825 

 

3.020

 

3.200

 

3.315

 

3.44 

 

3.62 

 

3.84 

Beta<0 0 0 0 0 0 0 0 0 

 

   

B.2 Simulations in Section 3.1 of the main text with cohort sizes of 300 and 

500 

In Figures S1 and S2, we show the mean numbers of true predictors included 

by the top 15, 30, 45, 60, 75, 90, 120 and 150 selected variables for each 

method considered among 200 replications. The simulation setups are 

described in Section 3.1 of the main text; Figures S1 and S2 are results from 

the simulations with cohort sizes of 300 and 500.  It can be seen that the 

proposed IPCW-tau method has higher mean numbers of true predictors 

included in the selected predictor set with a given set size.  
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Fig. S1. Mean numbers of true predictors included by the top 15, 30, 45, 60, 75, 90, 120 and 

150 selected variables under the scenario with cohort size equal to 300 and contaminated 

covariates. 

 

Fig. S2. Mean numbers of true predictors included by the top 15, 30, 45, 60, 75, 90, 120 and 

150 selected variables under the scenario with cohort size equal to 500 and contaminated 

covariates. 
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B.3 Simulations in Section 3.1 of the main text with uncontaminated 

covariates 

We report in Figures S3, S4, and S5 of the Supplementary Materials the results 

of simulations with covariates uncontaminated and all other settings same as 

those in Section 3.1 of the main text. From these figures, we see that the PL 

approach performs best when the censoring rate is 50% or 80%, while the 

IPCW-tau approach performs best when the censoring rate is 25%. The 

simulation results are expectable given that the PL approach is with 

approximately correct model specification when the covariates are multivariate 

normal and uncontaminated. Results in Table S2 of the Supplementary 

Materials, under the scenario with uncontaminated covariates (all the other 

setups same as those with contaminated covariates [Table S1]), lead to the 

same conclusion for comparison between the IPCW-tau and IPCW(S) methods 

as those in Table S1 under the scenario with contaminated covariates.   

  

 
Fig. S3. Mean numbers of true predictors included by the top 15, 30, 45, 60, 75, 90, 120 and 

150 selected variables under the scenario with cohort size equal to 100 and uncontaminated 

covariates. 
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Fig. S4. Mean numbers of true predictors included by the top 15, 30, 45, 60, 75, 90, 120 and 

150 selected variables under the scenario with cohort size equal to 300 and uncontaminated 

covariates. 

 
Fig. S5. Mean numbers of true predictors included by the top 15, 30, 45, 60, 75, 90, 120 and 

150 selected variables under the scenario with cohort size equal to 500 and uncontaminated 

covariates. 
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Table S2. Mean numbers of true predictors with the positive and negative coefficients 

included by the top 15, 30, 45, 60, 75, 90, 120 and 150 selected variables under the scenario 

with cohort size equal to 300 and uncontaminated covariates. 

 size of the selected set  

 15 30 45 60 75 90 120 150 

IPCW-tau,  

Beta>0 

cen.r=25% 

3.865 

 

4.270

 

4.485

 

4.690

 

4.840

 

4.980

 

5.090 

 

5.205

Beta<0 5.110 5.665 5.935 6.100 6.235 6.345 6.505 6.570

IPCW(S), 

Beta>0 

cen.r=25% 

3.980 

 

4.420

 

4.695

 

4.925

 

5.070

 

5.125

 

5.265 

 

5.395

Beta<0 4.755 5.370 5.645 5.780 5.905 6.010 6.160 6.285

 size of the selected set  

 15 30 45 60 75 90 120 150 

IPCW-tau, 

Beta>0 

cen.r=50% 

3.455 

 

3.900

 

4.120

 

4.275

 

4.380

 

4.440

 

4.570 

 

4.685

Beta<0 4.365 5.020 5.335 5.550 5.680 5.755 5.880 6.035

IPCW(S), 

Beta>0 

cen.r=50% 

3.925 

 

4.280

 

4.450

 

4.570

 

4.690

 

4.805

 

4.975 

 

5.075

Beta<0 0.005 0.005 0.015 0.020 0.020 0.025 0.040 0.055

 size of the selected set  

 15 30 45 60 75 90 120 150 

IPCW-tau, 

Beta>0 

cen.r=80% 

2.485 

 

2.820

 

3.045

 

3.235

 

3.360

 

3.480

 

3.710 

 

3.845

Beta<0 2.980 3.460 3.705 3.920 4.050 4.150 4.355 4.525

IPCW(S), 

Beta>0 

cen.r=80% 

2.855 

 

3.230

 

3.495

 

3.705

 

3.845

 

3.960

 

4.165 

 

4.350

Beta<0 0 0 0 0 0 0 0 0 

cen.r: censoring rate 
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B.4 Simulations in Section 3.2 of the main text with small effect sizes 
We examine the performance of the PC-IPCW-tau approach under the settings 
with small effect sizes. The simulations are conducted under the same settings 
as in Section 3.2 (Fig. 2 and table 2) of the main text, except that the true 
regression coefficient vector is now given as 

   10 40 80 510 580 5485 5545 19760, , , , , , , -1.2,1.5,1.8,1.5, 1.8,1.5,-1.8,1.5 .           

The simulation results shown in Figure S6 and Table S3 reveal that, the 
PC-IPCW-tau approach still outperforms the other methods in the small effect 
settings, although small effect sizes do make interaction screening less 
efficient. 

 

Fig. S6. Mean numbers of true second-order predictors included by the top (15, 

30,…,1485,1500) selected variables under the scenario of Section 3.2 in the main text with 

cohort size equal to 300 and small effects. 

Table S3. The median of the minimum model size out of 200 replications under the 

scenario of Section 3.2 in the main text with cohort size equal to 300 and small effects. 

 PL IPCW-tau PC-IPCW-tau CQpcorr 

cen.r=30% 23675 10740 1745 76536 

cen.r=45% 36872 17304 3178 82119 

cen.r=60% 

cen.r=75% 

45939 

55440 

30090 

65387 

6120 

26321 

89073 

86313 

cen.r: censoring rate 
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B.5 Simulations with NSCLC gene expression dependence structure, and 
with log-normal gene expression distribution    
 
We perform simulations under a gene dependence structure that is more 
reasonable in real gene expression data. Specifically, we directly use the gene 
expression data in the NSCLC data set (with n=125) as the covariates (x), and 
simulate survival time data using the linear transformation model considered in 
Section 3.1 of the main text, with the “true predictors”, i.e., the genes with 
non-zero regression coefficients, randomly selected from whole genes in the 
NSCLC dataset. Please see Fig. S7 for the mean numbers of the true predictors 
included by the top 15, 30, 45, 60, 75, 90, 120 and 150 selected variables 
among 200 replications for the PL, IPCW(S), IPCW-tau and Kendall’s tau 
methods under different censoring rates. The proposed IPCW-tau method 
consistently selects more true variables over different censoring rates compared 
to the alternative methods.  
 

 

 

Fig. S7. Mean numbers of true predictors included by the top (15, 30, 45, 60, 75, 90, 120, 150) 

selected variables under the scenario of Section 3.1 in the main text with the covariates given 

by the NSCLC data (n=125, p=473). 
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Also, using the simulation setups in Section 3.2 but with the covariate data 
given by the NSCLC gene expression data (n=125, 473 primary covariates), 
Fig. S8 shows the mean numbers of the true second-order predictors included 
by the top 15, 30,…, 1485,1500 selected variables among 200 replications for 
the PL, IPCW-tau, PC-IPCW-tau, IPCW-tau and CQpcorr methods under 
different censoring rates (there are a total of 122,101 second-order predictors 
for 473 primary covariates.) The proposed PC-IPCW-tau method still performs 
best in this scenario for second-order predictor selection.   
 

 

 

Fig. S8. Mean numbers of true second-order predictors included by the top (15, 

30,…,1485,1500) selected variables under the scenario of Section 3.2 in the main text with 

the covariates given by the NSCLC data (n=125, p=473).
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We also have performed simulations with the same setups in Section 3.1 
with cohort size n=300, but with the covariate distribution changed to a 
multivariate log-normal distribution; namely we exponenciate the original 
multivariate normal covariates to obtain the new covariates in the 
simulations. Fig. S9 below shows the mean numbers of the true predictors 
included by the top 15, 30, 45, 60, 75, 90, 120 and 150 selected variables 
among 200 replications for the PL, IPCW(S), IPCW-tau and Kendall’s tau 
methods under different censoring rates. The proposed IPCW-tau method still 
has nice performances in the case with non-normal gene expression 
distribution. 

 

      

Fig. S9. Mean numbers of true predictors included by the top (15, 30, 45, 60, 75, 90, 120,150) 

selected variables under the scenario of Section 3.1 (n=300) in the main text with the 

covariate distribution given by multivariate log-normal distribution. 
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B.6 Simulations in Section 3.2 of the main text with alternative survival 
time distributions 
 
We have performed simulations under the same setting as in Section 3.2, except 
that the distribution of the residual term (ε) in the linear transformation model 

for generating the survival time data is now given by the standard normal or 
standard logistic distribution, the dimension of the main covariates is 100, and 
the censoring rates considered are 30%, 50% and 75%. Fig. S10 (for normal 
distribution) and Fig. S11 (for logistic distribution) display the mean numbers 
of the true second-order predictors included by the top 15, 30, …, 1485, 1500 
selected variables among 200 replications for different methods. We can see 
that in the settings when the survival time does not follow a Cox PH model, the 
proposed PC-IPCW-tau and IPCW-tau methods still outperform other methods, 
and the advantage is more apparent when the censoring rate is higher.   

 

 

Fig. S10. Mean numbers of true second-order predictors included by the top (15, 

30,…,1485,1500) selected variables under the scenario of Section 3.2 with cohort size equal 

to 300 and the survival time distribution in the transformation model given by standard 

normal. 
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Fig. S11. Mean numbers of true second-order predictors included by the top (15, 

30,…,1485,1500) selected variables under the scenario of Section 3.2 with cohort size equal 

to 300 and the survival time distribution in the transformation model given by standard 

logistic. 
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B.7 Comparing runtime among different methods  
Table S4 shows the runtime (in seconds) over 200 simulation replications for 
different methods in the simulation in Section 3.1 of the main text. 
 
Table S4. Runtime (in seconds) over 200 simulation replications for different methods in the 

simulation in Section 3.1 of the main text. 

 

cen.r PL IPCW(S) IPCW-tau Kendall's tau 

25% 20.92550 3.33890 6.81595 6.66965 

50% 21.11420 3.37510 6.66615 6.57300 

80% 20.89230 3.35325 6.86695 6.55040 

cen.r = censoring rate 
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C. Additional Data Applications 

C.1 Diffuse large B-cell lymphoma (DLBCL) data 
The DLBCL data (Lenz et al., 2008) can be downloaded from the R package 
“bujar” (Wang, 2015), which consist of two sets of gene expression data, the 
CHOP and R-CHOP data sets; see Wang and Chen (2018) for detailed 
descriptions about the data. The CHOP and R-CHOP data sets contain censored 
survival outcomes from 181 and 233 patients, respectively, with gene 
expression data from the same 3833 genes after the filtering process. There are 
no significant differences in clinical survival outcome between subjects in the 
two data sets, and the censoring rates in the CHOP and R-CHOP datasets are 
42% and 74%, respectively. Following Wang and Chen (2018), in the current 
analysis we randomly separate the pool of R-CHOP and CHOP patients into 
207:207 training/test data sets.  
 
As in Section 3.3 of the main text, we apply 4 screening methods (“IPCW(S)”, 
“IPCW-tau”, “PL”, “PC-IPCW-tau”) to the DLBCL data. After a grid search 
from 20 to 210 with step size 5, the number of candidate covariates, including 
both first- and second-order covariates, that yields the best overall performance 
for all methods is 190, so the top 190 predictors ranked by each method are 
selected as the candidate covariates, and the Cox’s regression model with the 
candidate covariates and the MCP penalty (Zhang, 2010) is applied to the 
training data to establish the final prediction model. In this way, we finally 
identify the main and second-order predictors by the PL, IPCW(S), IPCW-tau, 
and PC-IPCW-tau approaches, respectively, together with the MCP penalized 
regression. In addition, the Cox model with the whole 501,500 main and 
second-order predictors (formed by the top 1,000 genes selected by the 
univariate log-rank test), and the MCP penalty is applied directly to the training 
data to build the prediction model. Please see Table S10 for the lists of selected 
main and second-order predictors for different methods). 
 
The prediction accuracy performances for different methods are evaluated in 
the same way as in Section 3.3 of the main text. The results are provided in 
Table S5. We can see that the proposed PC-IPCW-tau method outperforms 
other methods in the DLBCL test sample data. Fig. S12 displays the 
Kaplan-Meier survival curves for the two prognosis groups,“poor” (red) and 

“good” (blue) prognosis groups classified according to whether the PI value, 
the linear combination of the selected covariates with the coefficients given by 
the MCP penalized Cox model, exceeds the median PI value, in the test sample 
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of the DLBCL data. 
 
 
Table S5. Results of prediction accuracies of different methods in DLBCL data (using the 

training and test sets as in Wang and Chen (2018)); all methods are applied together with the 

MCP penalized Cox regression. 

 PL IPCW(S) IPCW-tau PC-IPCW-tau Ordinary 

Cox-test 0.5149 0.7993 0.5860 0.0022 0.0760 

LR-test 0.2275 0.9561 0.4501 0.0136 0.3059 

C-index 0.5519 0.4899 0.5108 0.6165 0.5615 

 

Fig. S12. Kaplan-Meier survival curves for the two prognosis groups ("good" (blue), 

"poor"(red) groups according to the median of the PI values) in the test sample of the DLBCL 

data. 
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C.2 The Cancer Genome Atlas lung adenocarcinoma (TCGA LUAD) data 
 
The TCGA LUAD RNA-Seq expression data, together with the phenotype data 
containing the survival time and censoring status data can be downloaded from 
the R package “TCGAbiolinks” (Colaprico et al., 2016) or “UCSCXenaTools” 
(Wang et al., 2019). After excluding patients with missing survival time data, 
our analysis is focused on the subset of the TCGA LUAD data with 502 
patients and 20531 gene expression variables. The censoring rate in the data is 
64%. We randomly divide this subset into 251:251 training/test datasets.   
 
As in Section 3.3 of the main text, we apply 4 screening methods (“IPCW(S)”, 
“IPCW-tau”, “PL”, “PC-IPCW-tau”) to the TCGA LUAD data. After a grid 
search from 20 to 150 with step size 5, the number of candidate covariates, 
including both first- and second-order covariates, that yields the best overall 
performance for all methods is 130, so the top 130 predictors ranked by each 
method are selected as the candidate covariates, and the Cox’s regression 
model with the candidate covariates and the MCP penalty (Zhang, 2010) is 
applied to the training data to establish the final prediction model. In this way, 
we finally identify the main and second-order predictors by the PL, IPCW(S), 
IPCW-tau, and PC-IPCW-tau approaches, respectively, together with the MCP 
penalized regression. In addition, the Cox model with the whole 501,500 main 
and second-order predictors (formed by the top 1,000 genes selected by the 
univariate log-rank test) and the MCP penalty is applied directly to the training 
data to build the prediction model. Please see Table S11 for the lists of selected 
main and second-order predictors for different methods. 
 
The prediction accuracy performances for different methods are evaluated in 
the same way as in Section 3.3 of the main text. The results are provided in 
Table S6. We can see that the proposed PC-IPCW-tau method performs best for 
survival prediction in the TCGA LUAD test data, followed by the IPCW-tau 
method, among all the methods considered. Fig. S13 displays the Kaplan-Meier 
survival curves for the two prognosis groups,“poor” (red) and “good” (blue) 

prognosis groups classified according to whether the prognostic index (PI) 
value, the linear combination of the selected covariates with the coefficients 
given by the MCP penalized Cox model, exceeds the median PI value, in the 
test sample of the TCGA LUAD data. 
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Table S6. Results of prediction accuracies of different methods in TCGA LUAD data (using 

the randomly selected 251:251 training /test sets); all methods are applied together with the 

MCP penalized Cox regression. 

 PL  IPCW(S) IPCW-tau PC-IPCW-tau Ordinary  

Cox-test 0.1339 0.1687 0.0043 0.0047 0.4304 

LR-test 0.2418 0.1443 0.0842 0.0111 0.0435 

C-index 0.5568 0.5634 0.5764 0.6102 0.5706 

 

 

Fig. S13. Kaplan-Meier survival curves for the two prognosis groups ("good" (blue), 

"poor"(red) groups according to the median of the PI values) in the test sample of the TCGA 

LUAD data. 
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C.3 Further results on the non-small cell lung cancer (NSCLC) data: the 
prediction performance results switching the original training and test 
data sets, and the prediction performance results using the SCAD penalty 
 
We have performed an additional NSCLC analysis which switches the training 
and test data sets in the original analysis. In this additional analysis, the number 
of candidate covariates, including first and second-order covariates, is still 
chosen as 140, since it gives the best overall performances for different 
methods after the grid search from 20 to 160 with step size 5. Table S7 shows 
the prediction accuracy performances of different methods from this additional 
analysis, which still reveal that the proposed PC-IPCW-tau and IPCW-tau 
methods leads to higher prediction accuracies than the other method.    

 
Table S7. Results of prediction accuracies of different methods in NSCLC data (switching the 

training and test sets in Chen et al. (2007)); all methods are applied together with the MCP 

penalized Cox regression. 

 PL IPCW(S) IPCW-tau PC-IPCW-tau Ordinary 

Cox-test 0.8908 0.7029 0.3286 0.0015 0.4369 

LR-test 0.2026 0.0899 0.1154 0.0710 0.5925 

C-index 0.5549 0.5970 0.5993 0.6717 0.5678 
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Using the same variable selection procedures as in Section 3.3 of the main text, 
the prediction models for the NSCLC data are now established by the Cox’s 
regression model with the candidate covariates and the SCAD penalty (Fang 
and Li, 2011). The prediction performance results of the prediction models so 
constructed by different variable screening methods, including IPCW(S), 
IPCW-tau, PL, PC-IPCW-tau, and Ordinary SCAD (the ordinary Cox models 
with the whole 112,574 first- and second-order covariates from the 473 main 
covariate and the SCAD penalty), are shown in Table S8. We can see that, 
overall, the proposed PC-IPCW-tau has the best prediction accuracy 
performances. 
 
Table S8. Results of prediction accuracies of different methods in NSCLC data (using the 

training and test sets as in Chen et al. (2007)); all methods are applied together with the 

SCAD penalized Cox regression. 

 PL IPCW(S) IPCW-tau PC-IPCW-tau Ordinary 

Cox-test 0.3333 0.2342 0.5202 0.3451 0.2403 

LR-test 0.7626 0.2677 0.5410 0.0027 0.0480 

C-index 0.5515 0.5540 0.5527 0.6029 0.6023 

 

  



22 
 

C.4 Complete lists of the predictors selected by different methods in the 
NSCLC, DCBCL, and TCGA LUAD data sets 
 
Table S9. Lists of the main and second-order predictors selected by different methods in the 

NSCLC data. 
PL 

(11 interaction) 
IPCW(S)   

(11 interaction) 
IPCW‐tau

(11 interaction) 
PC‐IPCW‐tau 

  (3 interaction) 
Ordinary (1 main,
12 interaction) 

"PIK3CA" 
"ERCC3" 

"FGR" 
"TUSC3" 

"CENTB2"
"MRPL1" 

"PDCD2"
"EMP1" 

HLF.1

"ABCC2" 
"TUSC3" 

"TCF8" 
"MMP13" 

"PPT2"
"ADK" 

"IRF4"
"WDTC1" 

"PRKCA"
"COX11" 

"CSF3R" 
"DOPEY1" 

"CNOT4" 
"NR2F6" 

"SP2"
"DMPK" 

"STAT2"
"JMJD1A 

"TCF8"
"CGRRF1" 

"IRF1" 
"COX11" 

"ANXA1" 
"ERCC3" 

"NR4A1"
"ZNF250" 

"PLAU"
"LILRA2" 

"LGMN" 
"WDTC1" 

"BAZ2B" 
"TGFBR3" 

"DHPS"
"MTIF2" 

"ARMET"
"CTTN" 

"SP2" 
"DMPK" 

"MEN1" 
"DOPEY1" 

"IRF4"
"WDTC1" 

"BRCA1"
"SCP2" 

"KIF23" 
"NR2F6" 

"IRF1" 
"RNF4" 

"CREB3L1"
"CMAS" 

"CSF3R"
"PSD3" 

"FLAD1" 
"TM7SF2" 

"TM4SF18" 
"MMP11" 

"FLAD1"
"TM7SF2" 

"TNFRSF10B" 
"PRRX1" 

"MYH11" 
"ABL1" 

"FLAD1" 
"TM7SF2" 

"ME3"
"BCR" 

"TNNI2"
"ELAC1" 

"ME3" 
"BCR" 

"ME3" 
"BCR" 

"PAX2"
"F8" 

"KLHL22"
"RPL5" 

"FCGR2B" 
"RIPK1" 

"CDK4" 
"SCP2" 

"FCGR2B"
"RIPK1" 

"LOC285086"
"F8" 

    "IRF4"
"WDTC1" 

    "FLAD1"
"TM7SF2" 
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Table S10. Lists of the main and second-order predictors selected by different methods in the 

DLBCL data 
PL (3 main,   
1 quadratic,   

45 interaction) 

IPCW(S) (62 
interaction) 

IPCW‐tau
(4 main, 

50 interaction) 

PC‐IPCW‐tau
(2 main, 
  1 quadratic,   
51 interaction)

Ordinary 
(1 main, 

16 interaction) 

EEA1  "SCIN" 
"WT1" 

ADAMTS5 LOC10192706
9 

PDPN 

PPP4R4  "LINC00161" 
"SDC1" 

EDNRA PDPN "TMEM67"
"FCRL4" 

C3orf80  "PTPRC" 
"LOXL2" 

POSTN "PDPN"
"PDPN" 

"M1AP" 
"PTPN22" 

"GLIS3" 
"GLIS3" 

"SPEF2" 
"LOXL2" 

C3orf80 "GABRG1"
"SSMEM1" 

"CNOT6L"
"TET2" 

"NLRP11 
"BHLHE41" 

"CADM2" 
"GLRB" 

"PTPRC"
"LOXL2" 

"CCDC7"
"GAD1" 

"ABCA13.1"
"NME8" 

"LINC02551" 
"UPB1" 

"HDAC9" 
"RNF128" 

"LINC02551"
"UPB1" 

"C17orf77"
"ZNF876P" 

"TTBK2.1"
"PLEKHS1.1" 

"CNOT6L" 
"COBLL1" 

"C17orf77" 
"ZNF876P" 

"EFCAB13"
"CFTR" 

"DUSP5P1"
"CACTIN" 

"LINC02363"
"STYK1" 

"C17orf77" 
"ZNF876P" 

"DUSP5P1" 
"CACTIN" 

"C18orf54"
"CNTN3" 

"LINC00314"
"CXorf57" 

"ZNF678"
"OFCC1.1" 

"GPR82" 
"SNX20" 

"LINC00314" 
"CXorf57" 

"TTBK2"
"DPY19L1P1" 

"KIAA0825"
"CTNNA3" 

"FBXO28"
"KLHDC1" 

"SSMEM1" 
"WDR41" 

"WDR78" 
"LOC285889" 

"TTBK2.1"
"PLEKHS1.1" 

"TTBK2.1"
"PLEKHS1.1" 

"GEN1" 
"LINC02099.1" 

"ARHGAP42" 
"LINC01725" 

"TTBK2.1" 
"PLEKHS1.1" 

"RPS6KA5"
"GABPB1.IT1" 

"RPS6KA5"
"GABPB1.IT1"

"GBP6" 
"UBASH3A" 

"LINC00314" 
"CXorf57" 

"NT5C1B" 
"PCK1" 

"RPS6KA5"
"GAREM1" 

"NT5C1B"
"PCK1" 

"FBXO9" 
"TMEM259" 

"C18orf54" 
"FBXO9" 

"NT5C1B" 
"ROBO2" 

"LINC02363"
"NFIB" 

"LINC02363"
"NFIB" 

"RGS13" 
"SSX4" 

"TTBK2.1" 
"PLEKHS1.1" 

"KIAA1217" 
"LOC100507387"

"FGF7"
"LOC105375172" 

"PRKCA.AS1"
"ANGPTL1" 

"LOC105375172"
"WT1" 

"CYP19A1" 
"ZNF407" 

"MYT1L" 
"IGK" 

"ZNF396"
"LIMA1" 

"TTC6"
"ONECUT2" 

"INHBA" 
"ATP11C" 

"RPS6KA5" 
"GAREM1" 

"FGF7" 
"LOC105375172"

"GABRG3"
"LOC283922" 

"LRRC77P"
"LRRC77P.1" 

"NPY1R" 
"PDCL2" 

"NT5C1B" 
"ROBO2" 

"CA6" 
"ADGRF1" 

"PRKCA.AS1"
"SLC4A7" 

"FAM201A"
"STYK1" 

"ANKRD7"
"LINC01808" 

"NT5C1B" 
"WDR41" 

"UNC13C" 
"DAZ1" 

"FBXO28"
"LGR5" 

"C7orf57"
"LINC01220" 

 

"SNX29P1" 
"CHIT1" 

"TTC6" 
"ONECUT2" 

"TTC6"
"ONECUT2" 

"TMED5"
"LOC1019289

09" 

 

"ZNF85" 
"LINC00323" 

"FAM201A" 
"STYK1" 

"FAM216B"
"MIR124.2HG" 

"MCCC2"
"F2RL1" 

 

"LINC02363" 
"PNMA8A" 

"SPATA22" 
"LOC101927069"

"FAM201A" 
"STYK1" 

"SYDE2"
"NRG4" 

 

"EPB41L4A" 
"PODXL2" 

"GRTP1.AS1" 
"RBM46" 

"ADAMTS5"
"LOXL2" 

"LOC645485"
"HECTD2" 

 

"LOC101927870.1" 
"ZNF226" 

"SYDE2" 
"NRG4" 

"LOC101928307.1
"B3GALT2.1" 

 

"GRK4"
"SLC4A4" 
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"TMED5" 
"PDGFRL" 

"DPH6" 
"ANKRD36BP2" 

"LOC101929622"
"RAB5A" 

"CGAS"
"F2RL1" 

 

"C9orf3" 
"LRCH3" 

"CDKAL1" 
"LINC02099.1" 

"GRTP1.AS1"
"RBM46" 

"C8orf34"
"MEGF6" 

 

"CGAS" 
"ETV1" 

"CDKAL1" 
"PCSK5" 

"SYDE2"
"NRG4" 

"PHF21B"
] "CTXN3" 

 

"PHF21B" 
"CTXN3" 

"CDKAL1" 
"POU2F1" 

"DPH6"
"ANKRD36BP2" 

"LOC285889"
"DDX43" 

 

"LINC00514" 
"HERC1.1" 

"S100B" 
"SAMD5" 

"GRK4"
"SLC4A4" 

"TOP1P2"
"ZBTB20" 

 

"KLHDC1" 
"RNF144A" 

"SLC5A12" 
"MAF.1" 

"CDKAL1"
"POU2F1" 

"EAF2"
"RAVER2" 

 

"LMOD3" 
"ADRB1" 

"LOC101927359"
"SCARA5" 

"TRIM64EP"
"TEX14" 

"RGS13.1"
"PCNP" 

 

"C15orf62" 
"G6PC" 

"LOC101927790"
"HEMGN" 

"PHF21B"
"CTXN3" 

"LOC728613"
"CCDC169.2"

 

"LINC02099.1" 
"CEP290" 

"GLS2" 
"CCDC83" 

"LOC101927790"
"HEMGN" 

"MYLK3"
"ARFGEF3" 

 

"LINC02099.1" 
"PKHD1L1" 

"RAB3IP" 
"DAZ1" 

"KLHDC1"
"RNF144A" 

"SAMD5"
"RASAL2" 

 

"SAMD5" 
"CLDN3" 

"MAF" 
"RETREG1" 

"METAP1D"
"IGK" 

"F11.1"
"ATRNL1" 

 

"F11.1" 
"ATRNL1" 

"OR5H1" 
"DNM1L" 

"F11"
"TMEM51.AS1" 

"PDPN"
"INHBA.1" 

 

"UGT2B4" 
"ARHGAP27" 

"LOC728613" 
"CCDC169.2" 

"NPAS3"
"LINC01255" 

"INHBA"
"HSF5" 

 

"KLRC2" 
"CACTIN" 

"SAMD5" 
"DAZ1" 

"FRRS1"
"ZNF674" 

"PLN"
"POU2F1" 

 

"PTGIS" 
"GABPB1.IT1" 

"F11" 
"GNG8" 

"GAD1"
"TH" 

"MYBPC2"
"IGHA1" 

 

"CES1" 
"MAGEA9" 

"LINC00630" 
"RAVER2" 

"MOG"
"SFTA3" 

"UGT2B4"
"PARVB" 

 

"CES1" 
"TC2N" 

"INHBA" 
"HSF5" 

"MYBPC2"
"IGHA1" 

"KLRC2"
"BTF3" 

 

"INHBA.1" 
"ALKAL2" 

"PLN" 
"GLRB" 

"KLRC2"
"BTF3" 

"TH"
"SPAG16.1" 

 

"COBLL1" 
"LIFR" 

"PLN.1" 
"ADGRL3" 

"CES1"
"TC2N" 

"CES1"
"TC2N" 

 

"RFPL1S" 
"FAF1" 

"COMP" 
"CLCA3P" 

"MAGEA9"
"HMGN2P46" 

"INHBA.1"
"ABCC4" 

 

"UBE2D1" 
"F2RL2" 

"FABP1" 
"MATN3" 

"INHBA.1"
"ALKAL2" 

"PHLPP1"
"ABCG5" 

 

"UBE2D1" 
"ZBTB20.1" 

"NOL4" 
"SFRP2" 

"MAG"
"MEGF6" 

"FRRS1L"
"NRG4" 

 

"HBA1" 
"CALM1" 

"PLA2R1" 
"PAK6" 

"MYO7B"
"TMEM234" 

"SPON1"
"SOST" 

 

"SHROOM3" 
"CALM1" 

"CES1" 
"TC2N" 

"IRF4"
"GKN1" 

"UBE2D1"
"F2RL2" 

 

"SCARA5" 
"CTTNBP2" 

"INHBA.1" 
"ABCC4" 

"MT1M"
"SFTA3" 

"MAG"
"MEGF6" 

 

"ZBTB20.1" 
"CCDC169.2" 

"RETREG1" 
"IL1RN" 

"DPPA4"
"TRDN" 

"ZNF407"
"HEMGN" 

 

  "HIST1H1B" 
"MEGF6" 

"FEZF2"
"CADM1" 

 

"SCARA5"
"WDR41" 
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  "IRF4" 
"GKN1" 

"GABPB1.IT1"
"HBS1L" 

"TUBE1"
"EPPK1" 

 

  "MUC7" 
"SOST" 

"GLIS3"
"CSRNP3.1" 

"KCNJ6"
"GHSR" 

 

  "DPPA4" 
"FAF1" 

"BEND6"
"MKX" 

"ANGPTL1.1"
"CACTIN" 

 

  "CLCA3P" 
"MEGF6" 

"KCNJ6"
"GHSR" 

"HMGN2P46"
"TC2N" 

 

  "IL22" 
"CRNDE.1" 

 

  "SOST" 
"PDCL2" 

 

  "ZNF883" 
"ARFGEF3" 

 

  "CCDC110" 
"GPR158" 

 

  "BEND6" 
"MKX" 

 

  "RUNX2" 
"NOL4.1" 

 

  "FGF14.IT1" 
"RGS8" 

 

  "HMGN2P46"
"TC2N" 
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Table S11. Lists of the main and second-order predictors selected by different methods in the 

TCGA LUAD data 
IPCW‐tau (1 main, 
9 interaction) 

PL (1 main, 
9 interaction) 

PC‐IPCW‐tau
(1 main, 

9 interaction) 

IPCW(S) (1 main, 
10 interaction) 

Ordinary (3 main,
32 interaction) 

C1QTNF6  C6orf218  C1QTNF6 SLC22A8 C6orf218

"CD83" 
"NNT" 

"ATP8B3" 
"PGPEP1" 

"CD83"
"NNT" 

SNORA71A CEACAM22P

"CUL4B" 
"PRRG1" 

"CACNA1D" 
"ERLIN1" 

"CDCP1"
"GNMT" 

"C20orf141"
"C20orf141" 

FKBP5 

"DARS2" 
"TRIM7" 

"CHST5" 
"FLNC" 

"DARS2"
"DNAJB4" 

"SPANXE"
"SPANXE" 

"ABCA3"
"MYO6" 

"EFNB2" 
"FAM47E" 

"EML4" 
"PDE9A" 

"EFNB2"
"FAM47E" 

"SYT10"
"SYT10" 

"ABCC6P2"
"STAM" 

"FLNC" 
"TMEM178" 

"JMJD7.PLA2G4B
" "PCP4" 

"FLNC"
"TMEM178" 

"ACCSL"
"LOC650293" 

"AKD1" 
"CPS1" 

"GPC4" 
"SNORA71A" 

"KYNU" 
"UCHL5" 

"IFNA8"
"PARM1" 

"ACCSL" "OR1L4"  "BCAN"
"MYOZ1" 

"GUSBP1" 
"UNC13C" 

"LRRC36" 
"ZNF502" 

"LOC554202"
"SSBP3" 

"C8orf71"
"SNORA1" 

"BCL2L10"
"LAMP3" 

"MFSD2A" 
"SSBP3" 

"MFSD2A" 
"ZNF737" 

"MFSD2A"
"SNORA1" 

"DEFB103B"
"SNORA71A" 

"BIRC3"
"KRT14" 

"MTMR12" 
"TRIP10" 

"NT5E" 
"ZNF552" 

"SRCIN1"
"SSBP3" 

"DEFB103B"
"TTTY10" 

"BNC1" 
"SYNGR4" 

    "GYPB"
"OR52B4" 

"BTG2" 
"EIF6" 

    "C1orf114"
"MYH16" 

    "C1orf88"
"CHRNA6" 

    "C6orf218"
"ZNF77" 

    "CEACAM22P"
"FLNC" 

    "DKK1" 
"DPY19L1" 

    "DSG2" 
"LOC202781" 

    "E2F7" 
"SLC6A13" 

    "EIF4E3"
"TMEM168" 

    "EML4"
"PDE9A" 

    "FUT1" 
"YWHAG" 

    "GUSBL2"
"GTF2E2" 

    "HCN2"
"LOC728989" 

    "IL20RB"
"TK1" 

    "IRX3" 
"TLE1" 
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    "KIAA0562"
"SLC16A3" 

    "LZTFL1"
"ZNF708" 

    "MYH13"
"OLFM1" 

    "MYH16"
"PATE4" 

    "PNRC2"
"SYT10" 

    "SLC22A8"
"SYT10" 

    "TMEM168"
"TOE1" 

    "TP53I3"
"ZNF345" 

    "TRIP10"
"ZNF185" 

    "VANGL1"
"VAX1" 
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