
Supplementary text  
Permutation tests 

Since multiple testing takes place while constructing the biclusters (we look through multiple             
node pairs to decide which of them are to be added to the bicluster), there could be some                  
false positives. To address this issue and demonstrate that biclusters produced by            
DESMOND outperform null models, we calculated permutation-based empirical p-values to          
test two null hypotheses. 

● To test the null hypothesis that DESMOND reports completely random biclusters, we            
shuffled TCGA-micro expression data 200 times in two modes and ran DESMOND            
on each of the shuffled datasets. The shuffling modes were the following: shuffling of              
the expression values in each sample across genes or shuffling the expression            
values for each gene across samples. The p-value for each particular bicluster from             
the original dataset was calculated as a rate of biclusters with the same or higher               
value among all the biclusters in the shuffled data. For each bicluster of a particular               
size, we considered only those biclusters in randomized data which were not smaller             
in terms of genes and samples than the original one, because smaller biclusters have              
more chances to demonstrate higher average SNR.  

No biclusters comprising four or more genes were found by DESMOND in shuffled             
data. However, when expressions were shuffled across samples within each gene,           
DESMOND detected a certain amount of 3-gene biclusters. Of 226 three-gene           
biclusters found in TCGA-micro dataset, 62 had empirical p-values of 0.05 and            
above. 

● We demonstrated that DESMOND is able to identify biclusters with more pronounced            
differential expression than biclusters built on randomly selected subnetworks. For          
that, for every bicluster of genes size, 1000 randomly chosen connected            
subnetworks of genes were considered. Then, for each random subnetwork, two           
groups of samples were identified by -means in a subspace of its genes. The              

of the original bicluster was compared to the resulting empirical           
distribution of computed for biclusters induced by random subnetworks.          
Same as above, we considered only non-smaller biclusters when computed empirical           
p-values for . All biclusters found in TCGA-micro, TCGA-RNAseq, and          
METABRIC had permutation p-values less than 0.05. 

 

Evaluation on yeast datasets 
To show that DESMOND is applicable to datasets other than human cancer, we run it and                
the baselines on two yeast datasets: DREAM5 and on the dataset from Hughes et al.               
DREAM5 datasets included 5667 genes profiled in 536 samples by Affymetrix Yeast            
Genome S98 Array. Preprocessed expression values were downloaded from supplementary          
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files of Marbach et al., 2012. Hughes et al. dataset comprised 300 samples subjected to               
different mutations and chemical perturbations and 5346 genes measured by a two-color            
microarray. This dataset was used for evaluation of DeBi method and therefore we took              
gene expressions preprocessed by Serin et al. deposited at         
https://github.com/esebesty/debi/blob/master/samples/yeast/hugues.txt. 
All gene expressions were normalized and standardized prior to biclustering. Yeast PPI            
network obtained from BioGRID and included 4177 nodes and 74022 edges representing            
physical interactions validated in multiple experiments. Gene names were mapped using           
YeastMine (https://yeastmine.yeastgenome.org/)  (Balakrishnan et al., 2012). 
 
Again, all methods found biclusters of different shapes and SNR (Supplementary Figure            
S11). Same as on breast cancer data, QUBIC and DESMOND found biclusters with stronger              
differential expression and DESMOND produced more connected gene sets compared to           
other methods.   
 
The functional coherence of the identified biclusters was evaluated in the same way as on               
breast cancer data (Supplementary Figure 12, left panels). Gene sets for GO and KEGG              
overrepresentation tests were obtained from YeastEnrichr      
(https://amp.pharm.mssm.edu/YeastEnrichr/). 
 
Although 90.4% and 96.9% of DESMOND biclusters found in DREAM5 and Hughes            
datasets were enriched by at least one GO term, fractions of GO-enriched biclusters in              
outputs of ISA (on Hughes dataset) and QUBIC (on DREAM5 dataset) were even higher.              
DESMOND produced the highest percentage of biclusters overrepresented by KEGG          
pathways on Hughes et al. data, but lost to QUBIC on DREAM5.  
 
In addition to GO and KEGG enrichment, we tested all found biclusters for co-regulation by 
transcription factors (TFs).  Information on gene-TF relationships was obtained from 
Saccharomyces Genome Database  ((Cherry et al., 2012)) via YeastMine (Balakrishnan et 
al., 2012).  We used two types of TF-specific gene sets: 
  

● genes regulated by individual TFs (264 gene sets) 
● genes co-regulated by couples of TFs and genes regulated by individual TFs (6674 

gene sets) 
 
Only about 60% of DESMOND biclusters overlapped with known sets of co-regulated genes,             
which is inferior to QUBIC, ISA on both datasets, and COALESCE and DeBi on Hughes data                
(Supplementary Figure 12, right panels). This limited ability to identify putative regulatory            
modules is explained by the fact DESMOND is aimed at differentially expressed biclusters,             
rather than differentially co-expressed.  
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Investigation of OS-associated biclusters 

Of all methods, only DESMOND, DeBi and QUBIC identified OS-associated biclusters in            
both TCGA-RNAseq and METABRIC. All OS-associated biclusters are listed in          
Supplementary Table 5. 

QUBIC  

QUBIC applied with default parameters found only two isolated OS-associated biclusters,           
27x53 in TCGA-RNAseq (HR 3.07) and 18x101 in METABRIC (HR 1.84). Both biclusters             
had high avg.|SNR| of 0.9 and 1.26, and shared 8 genes (Jaccard similarity 0.22): ESR1,               
CA12, AGR3, FOXA1, XBP1, GATA3, C1orf64, MLPH.  

Estrogen receptor alpha (ESR1) expression is a primordial feature in breast cancer, which             
strongly influences treatment selection (Reinert et al., 2019). CA12 and AGR3 expression            
was shown to be correlated with ESR1 expression (Barnett et al., 2008; Garczyk et al.,               
2015). CA12 contributes to the acidification of the tumor microenvironment (Barnett et al.,             
2008), and AGR3 promotes breast cancer cell migration (Obacz et al., 2019). 

FOXA1 expression correlates with luminal subtype and represses basal subtype-associated          
genes, suppressing breast cancer cells migration (Bernardo et al., 2013). GATA3 is also             
associated with luminal subtype (Shaoxian et al. 2017) and is necessary for ESR1             
transcription (“The Significance of GATA3 Expression in Breast Cancer: A 10-Year           
Follow-up Study,” 2009). XBP1 promotes triple-negative breast cancer and is associated           
with unfavourable outcome in breast cancer (X. Chen et al., 2014). C1orf64 tends to be               
coexpressed with androgen receptor in breast cancer and is involved in the interaction of              
estrogen and androgen receptors (Naderi, 2017). MLPH is a Rab effector protein included in              
the ER-positive breast cancer prognostic signature (Thakkar et al., 2010). Overall, these            
genes are upregulated or downregulated in ER-positive breast tumors and have prognostic            
significance in breast cancer. 

With optimized parameters, QUBIC found 3 OS-associated biclusters with similar HR of            
1.26-1.3 and overlapping in samples and genes (Jaccard similarities 0.74-0.91 and           
0.44-0.79 for gene and samples overlaps respectively). In TCGA-RNAseq only one           
OS-associated bicluster of 501 genes and 219 samples was found. It was similar to three               
biclusters detected in METABRIC, shared with them 143-264 genes (Jaccard similarities           
0.25-0.36), and had HR of 1.66. 

All OS-associated biclusters found by QUBIC were significantly enriched by samples with            
Basal subtype. Interestingly, Basal subtype itself demonstrates weaker associations with OS           
in these two cohorts than biclusters found by QUBIC (HR 1.18 and 1.26 in TCGA-RNAseq               
and METABRIC, p-values less than 0.50 and 0.06 respectively).  

DeBi 

With default parameters, DeBi found 37 biclusters in TCGA-RNAseq and 11 in METABRIC.             
Biclusters found in METABRIC were very small in samples (10-16) and had low avg. |SNR|               
0.52-0.63, compared to 20-106 samples and avg.|SNR| of 0.53-0.94 in TCGA-RNAseq. Only            
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2 of 11 biclusters OS-associated biclusters showed significant associations with molecular           
subtypes: one with Basal and the other with LumA. Most TCGA-RNAseq biclusters            
demonstrated significant overlap with Basal (10) and LumB (7) subtypes, or           
under-representation of LumA (13).  

The biggest overlap between OS-associated biclusters found in TCGA and METABRIC was            
observed between biclusters of sizes 445x62 and 306x13 and included 72 genes (J=0.11,             
11 shared genes are expected on average). These genes included cell division            
cycle-associated proteins, kinesins, DNA replication licensing factors, centromere proteins,         
cell cycle regulators, etc. They are involved in mitosis and cell cycle, which is associated               
with proliferation, a known prognostic factor in breast cancer (van Diest et al., 2004). Both               
biclusters demonstrated relatively low avg.|SNR| of 0.59. The bicluster of 442 genes and 62              
samples found in TCGA-RNAseq included 34 samples with Basal subtype, when its best             
match from METABRIC demonstrated no significant overlap with any subtype.  

With optimized parameters DeBi found 23 biclusters in TCGA-RNAseq and 5 in METABRIC.             
These biclusters had higher avg.|SNR| than biclusters found with default parameters           
(0.73-1.23 and 0.63-1.1 in TCGA-RNAseq and METABRIC). The biggest overlap was           
between biclusters of sizes 15x15 (TCGA-RNAseq, HR=5.92; p-value<2.40e-02) and         
112x68 (METABRIC, HR=2.24;p-value<1.33e-03) which shared 7 genes (0.14 expected by          
chance): FHOD1, GGT1, KYNU, LBP, PNLIPRP3, POR, TRPV6. Both of these overlapping            
biclusters were enriched by Her2 subtype. Hazard ratios for patient groups defined by these              
biclusters were much higher than for the whole group of patients with Her2-positive disease              
(1.94 in TCGA-RNAseq and 1.54 in METABRIC).  

FHOD1 is associated with EMT and is overexpressed in basal-like triple-negative breast            
cancer (Heuser et al., 2018). GGT1 serum level may be used as a breast cancer biomarker,                
however, not much is known about GGT1 expression in the tumor (Shackshaft et al., 2017).               
KYNU is involved in tryptophan metabolism and is associated with basal breast cancer             
subtype (Heng et al., 2016). PNLIPRP3 is a part of CBFB and RUNX1-influenced prognostic              
signature for breast cancer (Malik et al., 2019). TRPV6 is a calcium channel overexpressed              
in ER-negative breast cancer and associated with decreased survival (pubmeddev & Peters            
AA, n.d.). Thus, the overlapping genes are important for breast cancer biology but do not               
seem to be functionally connected or specifically associated with Her2 subtype. 

DESMOND 

The majority of OS-associated biclusters found by DESMOND were associated with LumA            
subtype. Absolute coefficients in Cox proportional hazards models fitted for patient groups            
defined by these biclusters were nearly the same as for LumA subtype: about 0.52 in               
TCGA-RNAseq and 0.28 in METABRIC. When tested OS of LumA subtype versus all other              
patients, coefficients had negative signs and HR values were below 1. This means that              
patients with LumA subtype of breast cancer demonstrate improved OS, compared to other             
patients. Interestingly, many of OS-associated biclusters found by DESMOND, significantly          
overlapped with the complement of LumA sample set, had positive coefficients and HR more              
than 1. 
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For example, the largest overlap was observed between two LumA-associated biclusters: of            
132 genes and 482 samples in TCGA-RNA (SNR=0.86) and 66 genes and 840 samples              
(SNR=0.84) in METABRIC shared 47 genes (J=0.31): ANLN, ATAD2, AURKA, AURKB,           
BIRC5, BUB1, CASC5, CBX2, CCNA2, CCNB1, CCNB2, CDC20, CDC25A, CDC25C,          
CDCA2, CDCA5, CDCA8, CENPA, CENPE, CENPO, CKS2, FOXM1, HIST1H2BG,         
INCENP, KIF18A, KIF20A, KIF23, KIF2C, KIF4A, MAD2L1, MCM10, NDC80, NEK2, NUF2,           
NUSAP1, PLK1, PLK4, PRC1, RACGAP1, SPC25, TOP2A, TPX2, TRIP13, TROAP, TTK,           
UBE2C, ZWINT. The first bicluster found in TCGA included 376 samples annotated with             
LumA (adjusted hypergeometric p-value < 1.37e-100). Its samples belonged to patients with            
better OS (HR=0.59, adjusted p-value < 4.72e-02). Its best match by genes in METABRIC,              
on the opposite, included samples from patients with lower OS (HR=1.32, adjusted p-value <              
4.72e-02). Samples annotated with LumA were depleted in this bicluster.  

The overlapping genes are associated with cell cycle and mitosis. Anilin is involved in              
cytokinesis. ATAD2 is involved in reading epigenetic marks during DNA replication (Koo et             
al., 2016). AURKA and AURKB are involved in chromosome segregation and are shown to              
be overexpressed in breast cancer (Tang et al., 2017). Survivin (BIRC5) is also involved in               
cell division, as well as in apoptosis inhibition (Jha et al., 2012). CDCA2, CDCA5, and               
CDCA8 are cell division cycle-associated proteins, and their higher expression was shown to             
be associated with reduced survival in breast cancer (Phan et al., 2018). CENPA, CENPE              
and CENPO are centromere proteins involved in cell division by participating in the             
centromere formation. CENPA was shown to be associated with negative patient prognosis            
in breast cancer (Sun et al., 2016). 

CKS2 is a subunit of cyclin-dependent kinases and is associated with poor prognosis in              
breast cancer (Huang et al., 2019). FOXM1 is also involved in cell division and is shown to                 
be overexpressed in primary breast cancer (Wonsey & Follettie, 2005). INCENP is a             
centromere protein interacting with AURKB (Xu et al., 2010). KIF18A, KIF20A, KIF23, KIF2C             
and KIF4A are kinesin superfamily members involved in transport of chromosomes during            
mitosis. Some of them are associated with poor prognosis in breast cancer (Lucanus & Yip,               
2018). MAD2L1 is a component of the mitotic spindle assembly checkpoint. MCM10 is a              
DNA replication licensing factor overexpressed in breast cancer (Mahadevappa et al., 2018).            
NDC80 is a kinetochore protein associated with negative prognosis in breast cancer (Meng             
et al., 2015). NUF2 and SPC25 are also components of the NDC80 complex. 

NEK2 is a cell cycle-associated protein kinase important for breast cancer proliferation            
(Cappello et al., 2014). NUSAP1 is a nucleolar spindle-associated protein and has a             
negative prognostic significance in breast cancer (L. Chen et al., 2015). PLK1 and PLK4 are               
known cell cycle regulators (Lee et al., 2014). PRC1 is involved in cytokinesis (Jiang et al.,                
1998). RACGAP1 is also essential for cytokinesis and was shown to have prognostic             
significance in luminal breast cancer (Milde-Langosch et al., 2013). 

TOP2A encodes for DNA topoisomerase II alpha and was shown to be associated with              
proliferation in breast cancer (An et al., 2018). TPX2 is a microtubule-associated protein that              
is involved in mitotic spindle organization (Wittmann et al., 2000). TRIP13 is involved in              
spindle assembly checkpoint and DNA repair and is overexpressed in breast cancer (Lu et              
al., 2019). TROAP is required for spindle assembly and is involved in breast cancer              
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proliferation (Li et al., 2019). TTK is a component of the spindle assembly complex (Kaistha               
et al., 2014; Yang et al., 2018). UBE2C is involved in protein degradation and has a negative                 
prognostic significance in breast cancer (Mo et al., 2017). ZWINT is involved in the              
kinetochore formation (Yang et al., 2018). 

One of the primordial features of the luminal A subtype tumors is low proliferation marker               
expression (Hashmi et al., 2018). Thus, the overlap of the luminal A-correlated gene sets              
found by DESMOND containing exclusively mitosis- and proliferation-associated genes may          
serve as a biological confirmation of the method validity and of the benefit of the               
network-constrained approach.  
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Supplementary Figures  



 

 

 

 

 

 

Figure S1. Performance (A), Relevance (B), and Recovery (C) scores demonstrated by            
DESMOND and baseline methods on 20 synthetic datasets containing biclusters of different            
shapes. For non-deterministic methods, average performance in 10 runs is reported. For each of              
baselines, performance scores for default (D) and optimized (O) parameters are reported. 



 

 

 

 

 

 

 

Figure S2. Characteristics of differentially expressed biclusters produced by DESMOND and           
baseline methods in TCGA and METABRIC data with default (A) and optimized (B) parameters.              
Since QUBIC produced less than 10 biclusters on all real datasets with optimized parameters, its               
results are represented by dots instead of boxplots.  



 

  

  

Figure S3. Connectivity of biclusters found with default (A, C) and optimized (B, D) parameters.               
Subnetwork connectivity was measured as a ratio of the actual edge number to the maximal               
possible number of edges in a fully connected subnetwork with the same number of nodes.               
Connectivity varies between 0 when all nodes are disconnected and 1 when the network is fully                
connected. As expected, biclusters produced by DESMOND demonstrated higher connectivity on           
average than biclusters found by all other methods. Panels C and D demonstrate the dependency               
between connectivity and size in terms of genes for biclusters found by all compared methods.  



 

 

 

 

Figure S4. Redundancy of biclusters discovered by each method in TCGA-micro, TCGA-RNAseq and             
METABRIC. Each heatmap shows Jaccard similarities computed for each pair of biclusters,            

considering genes and samples: , where , are gene         
sets, and , are sample sets from biclusters 1 and 2. QUBIC and ISA2 identify biclusters                 
strongly overlapping in genes and samples. Biclusters found by other methods are non-redundant or              
almost non-redundant.  
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Figure S5. Percentage of gene clusters significantly (BH-adjusted p-value<0.05) overlapping with at            
least one functionally related gene set from GO Biological Process (GOBP), GO Molecular Function              
(GOMF) and GO Cellular Component (GOCC). Results obtained with default (A) and tuned (B)              
parameters. 
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Figure S6. Similarities of functionally coherent gene sets determined by biclusters found by             
different methods in TCGA-micro (A), TCGA-RNAseq (B), METABRIC (C) datasets. For two gene             
sets similarity equals Jaccard index computed for these two sets if their overlap is significant               
(BH-adjusted p-value in hypergeometric test < 0.05), or 0 otherwise. For the convenience of              
visualisation, only randomly chosen one third of all biclusters is shown for DeBi and DESMOND. 
ISA2 and DeBi output many biclusters strongly overlapping in genes. The examples of alike gene               
sets found by other pairs of methods are rather isolated. Of all functionally coherent biclusters               
output by DESMOND, 18%, 21%, and 14% have zero similarity in genes with all biclusters found by                 
other methods in TCGA-micro, TCGA-RNAseq, and METABRIC respectively. 

  

Figure S7. The effect of the network randomization on the results. A. Performance, Recovery, and               
Relevance scores computed on 20 synthetic datasets, averaged in 10 runs. B. The percentage of               
biclusters overrepresented by GO terms and KEGG pathways on TCGA-micro.  



 

 

 

Figure S8. Distributions of Jaccard similarities of known breast cancer subtypes and sample sets              
defined by biclusters produced by each method. For each bicluster, over- and under-representation             
of each subtype was evaluated using the hypergeometric test. Each bicluster was annotated with              
the subtype based on a minimal adjusted p-value passing threshold of 0.05. The results obtained               
with default parameters and with parameters optimized on synthetic data are shown in figures A               
and B respectively. When the group contains less than 10 biclusters, the results are shown as dots                  
instead of a boxplot. Claudin-low subtype was annotated only in METABRIC dataset and therefore               
biclusters found in TCGA data sets were not tested for overlap with this subtype. All methods                
except QUBIC with optimized parameters found biclusters overlapping with Jaccard similarities           
about 0.5 and higher with Luminal A (LumA) subtype in TCGA. ISA2 and DESMOND found               
biclusters strongly overlapping with Basal subtype in TCGA datasets (Jaccard similarity above 0.8).             
ISA2 applied with default but not with optimized parameters identified biclusters strongly (Jaccard             
about 0.5) overlapping with Her-2 subtype in TCGA. For all other subtypes in TCGA and all                
subtypes in METABRIC, overlaps with the most significantly enriched biclusters were even weaker.             
DESMOND managed to find biclusters with stronger overlaps with LumA, LumB and Basal             
subtypes in TCGA than its competitors. 



 



Figure S9. Association of biclusters found by DeBi and DESMOND with overall survival.             
Every circle represents a bicluster, with size and color intensity proportional to avg.|SNR|.             
The X and Y axes show a negative logarithm of adjusted p-values and coefficients (logarithm               
of Hazard Ratio) of Cox regression models fitted for patient sets defined by biclusters. The               
best biomarkers have higher average SNR and larger positive or negative regression            
coefficients. 

 

 

 

 

 

 

 

 

Figure S10. Similarities of biclusters found in TCGA-BRCA datasets profiled by RNA-seq            
and microarrays computed considering genes and shared samples. (A) Total number of            
biclusters tested. Transparent parts of the bars show a total number of biclusters including              
those which had no best match. (B) Distributions of log-transformed fold-enrichments of            
Jaccard similarities computed for best matches. 



 

 

 

 

 

 

Figure S11. Characteristics of biclusters found by DESMOND and baseline methods in two yeast              
datasets with default (D) and optimized (O) parameters. A. Total number, average absolute SNR,              
and sizes in genes and samples. B. Connectivity of found biclusters. FABIA(D) outputs no biclusters               
on both datasets and therefore is not shown. 



 

 

 

 

Figure S12. The percentage of biologically significant biclusters found on DREAM5 (A) and             
Hughes et al. datasets (B). D and O indicate whether the method was applied with default or                 
optimized parameters. Only methods that produced at least one enriched bicluster are shown. Left              
panels show the percentages of functionally coherent biclusters produced by each method. right             
panels demonstrate the percentages of biclusters significantly overlapping by sets of genes            
regulated by the same single TF or by the same pair of TFs.  


