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1 Supplementary material

S1.1 V-pipe: additional utilities

smallgenomeutilities is a collection of auxiliary scripts to support various
analysis steps included in V-pipe. They allow, e.g., transforming the read
alignment from one reference frame to another, constructing consensus
sequences from aligned reads, obtaining frequencies of minor variants,
providing statistics on the read coverage, and extracting regions of the
read alignment with coverage above a certain threshold. The source code
is available at https://github.com/cbg-ethz/smallgenomeutilities, and the
package is also part of the PyPI (https://pypi.org/) and Bioconda (Grüning
et al., 2018) registries.

S1.2 Improvements of ShoRAH and HaploClique

We have made changes improving the reliability of two software tools
integrated into V-pipe, namely ShoRAH and HaploClique. For ShoRAH,
we ported the code to Python 3, modernized the build system, replaced
expensive function calls with more efficient library functions and Intel
SIMD intrinsics to boost computational efficiency, and implemented VCF
file output. For HaploClique, we improved the build system, incorporated
a continuous integration solution, and introduced functional modifications
to reduce memory usage and execution times.

S1.3 Detailed description of ngshmmalign

Ngshmmalign is a novel sequence aligner developed to align HTS reads for
small genomes. Many viruses are subject to high heterogeneity, stemming
not only from single-nucleotide variants but also from structural variation.
For instance, the HIV-1 env gene is the target of the immune system, and
is therefore subject to strong positive selection. As a result, the locus is
rather heterogeneous, with many newly inserted and deleted amino acids.
A significant issue with current read aligners such as BWA (Li, 2013)
and Bowtie (Langmead and Salzberg, 2012) is their reliance on index
structures, which implicitly requires reads to have a very low edit distance
to the reference genome. Furthermore, even if the seed region matches
the reference genome, flanking indels are often aligned sub-optimally, as
these aligners do not account for local structural heterogeneity.

Ngshmmalign performs a three-step alignment. In the first step, reads
are mapped to the most likely location on the reference genome. In the
second step, multiple read alignments are constructed locally, and a profile
HMM is learned from them. The read alignment is then obtained in the
third step by re-aligning all reads to the profile HMM, which can account
for genomic structural variants found in the data. Below, each of the steps
is described in more detail.

S1.3.1 Reading and checking FASTQ files
Ngshmmalign reads both single-end (e.g., 454, IonTorrent, Illumina) and
paired-end (e.g., Illumina) FASTQ files. In the first step, the input is read
and checked for consistency. This includes checking that no invalid bases
are in the DNA string, the Phred score only contains values in the range
from 0 to 40, and the length of the DNA string matches the Phred score
string.

S1.3.2 Step 1: Read mapping
For performance reasons, the initial mapping is done with a k-mer index.
The reference genome is indexed starting with k = 20. Ambiguous
bases are expanded (e.g., R into A and G) into sequences of length k
comprised of only the bases A, C, G, and T. Unfortunately, in the worst
case (i.e., a genome consisting of all N bases), this expansion can lead to all
combinations in the full sequence space of 4k sequences. If, in generating
the k-mer index, the number of elements in the index exceeds a defined
threshold of 106 elements, then the index generation for k is aborted and

we proceed to build the (k− 1)-mer index. This process is repeated until
the total number of expanded sequences across the genome is below the
threshold. In order to locate a read on the reference genome, the k-mer
index is queried by shifting a window of size k over the read.

The next step is to determine the mean and standard deviation of
the returned location on the genome across the windows on the read.
If the standard deviation is 0, a perfect linear match to a region on the
reference has been found. If the standard deviation is non-zero but very
small, then there is still very high confidence in the determined region.
If the standard deviation is above a certain threshold (1000 by default),
the location returned from the index is not trusted, and we perform a full
genome-wide exhaustive alignment. The rationale of this approach is that
we aim at detecting events that would result in reads mapping equally
well to different locations of the reference genome, e.g., due to structural
variants.

After mapping reads to a likely location on the genome, reads are
aligned in a semi-global mode using the Smith-Waterman algorithm. The
alignment of individual reads is performed in parallel.

S1.3.3 Step 2: Estimating profile HMM parameters
After the initial mapping, we know the approximate location and
strandedness of the HTS reads on the genome. The genome is then
partitioned into overlapping windows. The size of the window is 6

5
of

the average read length, and adjacent windows are shifted by 1
5

of the
average read length. For example, for 300 nt reads, the window size would
be 360 nt on the reference genome, and windows are shifted by 60 nt. In
effect, the largest overlap between non-identical windows is equal to the
read length. The reads are binned into the windows based on the overlap
between read and window. Each read fits completely into one window. The
special case, in which a read falls exactly into the overlap of two windows
is resolved by selecting one of the two windows uniformly at random.
For every window, we sample without replacement 500 reads among
those that have at least 80% of their bases aligned to the genome. This
is done to limit the computational resources required for the subsequent
multiple sequence alignment step. This step is performed independently
for each of the windows by employing an iterative refinement approach
implemented by the MAFFT software, specifically the L-INS-i method
(Katoh and Standley, 2013).

After all multiple sequence alignments have been performed, the
parameters of the profile HMM are inferred. This is done by assuming
that the multiple sequence alignments locally represent the profile HMM,
such that the parameters can be learned in a supervised manner. The
match-to-match, match-to-deletion, deletion-to-match, and deletion-to-
deletion transition probabilities of the hidden Markov model are estimated
from the individual window-wise alignments. If the match-to-deletion
frequency lies below a certain threshold (5% by default), then the absence
of a biological deletion is assumed and the value is set to the technical
sequencing match-to-deletion probability. The same argument is applied
to deletion-to-deletion transitions, which are set to technical sequencing
error probabilities if the deletion-to-match frequencies are below the 5%
threshold. A position where at least 5% of reads have a base, as opposed
to a gap in the multiple sequence alignment, is considered a biologically
relevant position and is added to the profile. This leads to a situation
where true biological insertions are included into the profile, such that
ideally all remaining insertions are technical errors. This is desirable
for downstream analyses, as modeling insertions is generally harder
than modeling deletions. For instance, most reference-based haplotype
reconstruction tools ignore insertions, but account for deletions.
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S1.3.4 Step 3: Alignment of reads to the profile HMM
After inferring the profile HMM parameters, reads are aligned against the
profile. For performance reasons, we assume that the strandedness of the
reads inferred in the mapping step is correct. All reads are aligned in a
fully concurrent fashion by processing 500 reads per thread by default.

A limitation with other read mappers, such as BWA and Bowtie,
is the deterministic placement of small deletions in homopolymeric
regions, usually by placing them at the beginning of the homopolymer.
These deletions likely correspond to technical errors due to polymerase
slippage and can result in falsely reporting as variants spurious artefacts
in downstream variant calling steps. Ngshmmalign addresses this issue
by determining all co-optimal alignments and creating a per-site deletion
histogram. For every read, the alignment is compared to this deletion
histogram, and the final alignment is chosen such that deletions are evenly
distributed across the homopolymeric region. This avoids choosing co-
optimal alignments with many deletions aligning at the same position by
chance.

S1.3.5 Output of ngshmmalign
Ngshmmalign further checks for the proper orientation of paired-end
reads. Paired-end reads, for which both mates align in forward or
reverse direction, are considered invalid and written to a separate file.
Finally, reads are sorted first by their identifier and then by position,
before being written out in SAM format. Ngshmmalign outputs the
alignment as a fully compliant SAM file that passes all filters of picard (,
http://broadinstitute.github.io/picard). The profile HMM is also output in a
human-readable format that can be edited by users to adjust parameters in
order to perform additional alignment iterations. Besides the SAM output
file, ngshmmalign produces both the majority-vote and the ambiguity-
coded consensus sequences. We use lowercase characters in the consensus
sequences to distinguish positions at which no or insignificant coverage
was encountered, such that users can filter such positions.

S1.4 Additional details on simulated data sets

Table S1. Data sources used for HIV-1 and HCV sequences.

Data source
GenBank No. of

Reference
accession no. sequences

1051 EU575134-
EU575183

50 Lee et al.
(2009)

BORI0637 EU576274-
EU576302

29 Lee et al.
(2009)

1a KY565136-
KY565195

60 El-Diwany
et al. (2017)

The number of haplotypes in each constructed population ranges from
8 to 60. For the HIV-1-based data sets, we subsample sequences from
a given patient to generate data sets with 12, 25, and 50 haplotypes
from subject 1051, and with 8, 15, 28, and 29 haplotypes from subject
BORI0637. For the HCV-based data sets, we subsample sequences from
different genotypes to generate data sets with 8, 15, 30, and 60 haplotypes
from genotype 1a. Haplotypes were mixed either at equal proportions or
by drawing their relative frequencies from a Dirichlet distribution. We
evaluate two strategies for the concentration parameters of the Dirichlet
distribution. We either use a symmetric distribution with αi = 1 for all i,
or a modification thereof obtained by choosing one haplotype j at random
and setting its weight to αj = 20. The former is equivalent to a uniform
distribution over the standard (n−1)-simplex. The latter is used to emulate
a single viral strain dominating the population, while other strains co-exist
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Fig. S1 . Multi-step strategy for read alignment. A Ngshmmalign defaults to a k-mer
index for the initial approximate read mapping, with fallback to exhaustive alignment. B
Mapped reads are binned into overlapping windows and a multiple sequence alignment is
performed for each window using MAFFT. C From the local multiple sequence alignments,
the parameters of a global profile Hidden Markov Model (HMM) are estimated. D Reads
are re-aligned against the profile HMM.

at lower abundances. For each population, we generate data sets with read
coverages of 10,000× and 40,000×. For each combination of number
of haplotypes, read coverage, and haplotype frequency distributions, we
simulate 6 independent data sets.

As reference sequences for the read alignment, we use the HXB2
(GenBank accession number K03455.1) and H77 (Genbank accession
number NC_004102.1) strain sequences, for HIV-1 and HCV, respectively.

S1.5 Detailed benckmarking results

We demonstrate V-pipe’s benchmarking functionality by assessing the
accuracy of SNV detection using various read aligners and mutation
callers. The results summarised in Figure 3 panels A and B are shown
in more detail in Figures S4 and S7 , respectively.
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Table S2. Fraction of aligned reads averaged across all simulated data sets for
each given virus type

Virus ngshmmalign BWA MEM Bowtie

HIV-1 0.966 0.998 0.955
HCV 0.985 0.999 0.892

The low F1 scores observed for the HIV-1-based data sets with 29
haplotypes (below 0.5 in most cases, Figs. S4 and S7 ) are attributed to
the fact that one viral sequence from subject BORI0637 exhibits two very
large deletions (around 230 bp each), which are almost as long as the read
length. This particular sequence was excluded from the remaining data sets.
In addition, the data sets containing this sequence were not accounted for
in the main text figures.

Although aligning reads with ngshmmalign and performing mutation
calling with ShoRAH resulted in better F1 scores in most cases, there is a
trade-off between accuracy and computational resources. On average and
using 9 cores, ngshmmalign required 640 MB RAM and took 10 m 38 s,
BWA MEM required 320 MB RAM and took 9 s, and Bowtie 2 required
332 MB RAM and took 25 s. For the mutation calling, ShoRAH took on
average 50 m 47 s using 4.3 GB RAM and 9 cores, whereas LoFreq took
on average 5 m 47 s using 75 MB RAM and executed as a single-threaded
program. All the data sets were processed in 18-core Intel Xeon Gold 6140
processors.

S1.5.1 Statistical test
We use the Wilcoxon signed-rank test to assess the difference in the F1

scores of SNV calls while grouping the results by the read coverage
and the strategy used to generate the haplotype abundances. In most
cases, the differences in the performance metric between ngshmmalign
and each of the competitors remain significant at a 5% significance level
after correcting for multiple comparisons using the Bonferroni correction
method (Table S3).

S1.5.2 Performance of deletion calling
In addition to reporting performance metrics in terms of position-wise
deletions (Fig. S10 ), we extend ShoRAH to preserve the deletion length
from locally reconstructed haplotypes, as opposed to unrolling deletions
to individual positions. In addition, deletions are reported complying with
the VCF format specifications. For the evaluation in Figure S11 , true
positives are reported deletions that agree with an expected deletion in
both position and length.
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Table S3. Evaluation of the differences in F1 scores of SNV calls using the Wilcoxon signed rank test. The reported p-values are corrected using the Bonferroni
correction method. Dirichlet: haplotype frequencies sampled from a Dirichlet distribution with a high concentration parameter for one of the haplotypes (α0 = 20

and αi = 1, i 6= 0). Uniform: haplotype frequencies sampled from a symmetric Dirichlet distribution (αi = 1, ∀i). Equal prop.: haplotype frequencies are set to
1/n where n is the number of haplotypes

Data sets Compared tools Coverage Haplotype distribution p-value

HIV-1 / 1051

ngshmmalign vs
BWA MEM

all all 1.194× 10−17

10000× Dirichlet 4.807× 10−4

10000× Uniform 4.807× 10−4

10000× Equal proportions 4.807× 10−4

40000× Dirichlet 4.807× 10−4

40000× Uniform 4.807× 10−4

40000× Equal proportions 4.807× 10−4

ngshmmalign vs
Bowtie 2

all all 1.262× 10−17

10000× Dirichlet 4.807× 10−4

10000× Uniform 4.807× 10−4

10000× Equal proportions 4.807× 10−4

40000× Dirichlet 4.807× 10−4

40000× Uniform 9.613× 10−4

40000× Equal proportions 4.807× 10−4

HIV-1 / BORI0637

ngshmmalign vs
BWA MEM

all all 1.846× 10−22

10000× Dirichlet 3.755× 10−5

10000× Uniform 7.510× 10−6

10000× Equal proportions 5.257× 10−5

40000× Dirichlet 8.261× 10−4

40000× Uniform 7.510× 10−5

40000× Equal proportions 7.510× 10−6

ngshmmalign vs
Bowtie 2

all all 2.491× 10−23

10000× Dirichlet 7.510× 10−5

10000× Uniform 1.502× 10−5

10000× Equal proportions 7.510× 10−6

40000× Dirichlet 5.257× 10−5

40000× Uniform 7.510× 10−6

40000× Equal proportions 7.510× 10−6

HCV

ngshmmalign vs
BWA MEM

all all 1.804× 10−20

10000× Dirichlet 3.357× 10−3

10000× Uniform 7.510× 10−6

10000× Equal proportions 7.510× 10−6

40000× Dirichlet 0.04677

40000× Uniform 7.510× 10−6

40000× Equal proportions 5.163× 10−6

ngshmmalign vs
Bowtie 2

all all 1.958× 10−13

10000× Dirichlet 1

10000× Uniform 7.510× 10−6

10000× Equal proportions 1.900× 10−3

40000× Dirichlet 1

40000× Uniform 1.427× 10−4

40000× Equal proportions 3.357× 10−3

HIV-1 / 1051
ShoRAH vs
LoFreq

all all 2.463× 10−17

10000× Dirichlet 4.807× 10−4

10000× Uniform 4.807× 10−4

10000× Equal proportions 4.807× 10−4

40000× Dirichlet 9.613× 10−4

40000× Uniform 0.17688

40000× Equal proportions 4.807× 10−4

HIV-1 / BORI0637
ShoRAH vs
LoFreq

all all 0.02909

10000× Dirichlet 0.30307

10000× Uniform 0.661993

10000× Equal proportions 1

40000× Dirichlet 1

40000× Uniform 1

40000× Equal proportions 1

HCV
ShoRAH vs
LoFreq

all all 0.025239

10000× Dirichlet 1

10000× Uniform 3.755× 10−5

10000× Equal proportions 1

40000× Dirichlet 1

40000× Uniform 8.006× 10−3

40000× Equal proportions 1
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Fig. S2 . Average read coverage after read alignment for simulated data sets with different numbers of haplotypes. The upper and lower panel show
results for the corresponding initial read coverage (i.e., before QC and read alignment). The colored bars depict results obtained by using different read
aligners, namely Bowtie 2, BWA MEM and ngshmmalign. The error bar corresponds to the standard error across 18 data sets with same number of
underlying haplotypes and initial read coverage, but different distributions of the haplotype frequencies.
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Fig. S3 . Evaluation of potential alignment bias due to differences in divergence between the underlying haplotypes and the reference strain. For the HCV-based data sets, we plot the
fraction of A aligned reads and B aligned bases versus the divergence from the reference strain. Divergence is estimated as the Hamming distance between each haplotype and the reference
strain divided by the sequence length (x-axis). The colored shapes depict results obtained by aligning reads with Bowtie 2, BWA MEM, or ngshmmalign.
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Fig. S4 . Performance of SNV detection on simulated data sets for different read aligners. We use ngshmmalign, BWA MEM or Bowtie 2 for the read alignment, and fix ShoRAH for
mutation calling. We simulate data sets with different number of haplotypes, read coverages and distributions of haplotype frequencies. F1 scores of SNV calls are shown for data sets based
on A HIV-1 sequences from subjects 1051 and BORI0637, and on B HCV genotype 1a sequences. The error bar corresponds to the standard error across 6 replicates. Dirichlet: haplotype
frequencies sampled from a Dirichlet distribution with a high concentration parameter for one of the haplotypes (α0 = 20 and αi = 1, i 6= 0). Uniform: haplotype frequencies sampled
from a symmetric Dirichlet distribution (αi = 1 for all i). Equal prop.: haplotype frequencies are set to 1/n where n is the number of haplotypes
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Fig. S5 . Evaluation of the performance of different tools for SNV calling on HIV-1-based simulated data sets. We use ngshmmalign, BWA MEM or Bowtie 2 for the read alignment, and
fix ShoRAH for mutation calling. A Recall and B precision of SNV calls as a function of number of haplotypes, and for different read coverages and distributions of haplotype frequencies.
The error bar corresponds to the standard error across 6 replicates. Dirichlet: haplotype frequencies sampled from a Dirichlet distribution with a high concentration parameter for one of the
haplotypes (α0 = 20 and αi = 1, i 6= 0). Uniform: haplotype frequencies sampled from a symmetric Dirichlet distribution (αi = 1 for all i). Equal prop.: haplotype frequencies are
set to 1/n where n is the number of haplotypes
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Fig. S6 . Performance of SNV detection for different read aligners on HCV-based simulated data sets. We use ngshmmalign, BWA
MEM or Bowtie 2 for the read alignment, and fix ShoRAH for mutation calling. A Recall and B precision of SNV calls as a function
of number of haplotypes, and for different read coverages and distributions of haplotype frequencies. The error bar corresponds to the
standard error across 6 replicates. Dirichlet: haplotype frequencies sampled from a Dirichlet distribution with a high concentration
parameter for one of the haplotypes (α0 = 20 and αi = 1, i 6= 0). Uniform: haplotype frequencies sampled from a symmetric
Dirichlet distribution (αi = 1 for all i). Equal prop.: haplotype frequencies are set to 1/n where n is the number of haplotypes.
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Fig. S7 . Evaluation of the performance of different tools for SNV calling on simulated data sets. We fix ngshmmalign for the read alignment, and compare ShoRAH with LoFreq for
mutation calling. We simulate data sets with different number of haplotypes, different read coverages and distributions of haplotype frequencies. A F1 scores of SNV calls are shown for
data sets based on HIV-1 sequences from subjects 1051 and BORI0637. B F1 scores of SNV calls are shown for data sets based on HCV genotype 1a sequences. The error bar corresponds
to the standard error across 6 replicates. Dirichlet: haplotype frequencies sampled from a Dirichlet distribution with a high concentration parameter for one of the haplotypes (α0 = 20 and
αi = 1, i 6= 0). Uniform: haplotype frequencies sampled from a symmetric Dirichlet distribution (αi = 1 for all i). Equal prop.: haplotype frequencies are set to 1/n where n is the
number of haplotypes
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Fig. S8 . Evaluation of the performance of different tools for SNV calling on HIV-1-based simulated data sets. We fix ngshmmalign for the read alignment, and compare ShoRAH with
LoFreq for the mutation calling. A Recall and B precision of SNV calls as a function of number of haplotypes, and for different read coverages and distributions of haplotype frequencies.
The error bar corresponds to the standard error across 6 replicates. Dirichlet: haplotype frequencies sampled from a Dirichlet distribution with a high concentration parameter for one of the
haplotypes (α0 = 20 and αi = 1, i 6= 0). Uniform: haplotype frequencies sampled from a symmetric Dirichlet distribution (αi = 1 for all i). Equal prop.: haplotype frequencies are
set to 1/n where n is the number of haplotypes
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Fig. S9 . Performance of SNV detection for different mutation callers on HCV-based simulated data sets. We fix ngshmmalign for the read alignment, and compare ShoRAH with LoFreq
for mutation calling. A Recall and B precision of SNV calls as a function of number of haplotypes, and for different read coverages and distributions of haplotype frequencies. The error bar
corresponds to the standard error across 6 replicates. Dirichlet: haplotype frequencies sampled from a Dirichlet distribution with a high concentration parameter for one of the haplotypes
(α0 = 20 and αi = 1, i 6= 0). Uniform: haplotype frequencies sampled from a symmetric Dirichlet distribution (αi = 1 for all i). Equal prop.: haplotype frequencies are set to 1/n

where n is the number of haplotypes.
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Fig. S10 . Assessment of identification of position-wise deletions on simulated HIV-1 data sets. A We compare ngshmmalign, BWA
MEM and Bowtie 2 for read alignment, and fix ShoRAH for mutation calling. B We use ngshmmalign for the read alignment, and
compare ShoRAH with LoFreq for mutation calling. In both panels, F1 scores are averaged over data sets with various numbers
of haplotypes based on HIV-1 subtype B sequences from subjects 1051 and BORI0637. Results are shown for a read coverage
of 10,000× and 40,000×, as well as for different distributions of haplotype frequencies as described in the Methods Section 2.4
(Dirichlet: Dir(α0 = 20, αi6=0 = 1). Uniform: Dir(αi = 1). Equal prop.: all haplotype frequencies equal). The error bar
corresponds to the standard error.
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Fig. S11 . Assessment of long-deletion calling on simulated HIV-1 data sets. A We compare ngshmmalign, BWA MEM and Bowtie 2
for read alignment, and fix ShoRAH for mutation calling. B We use ngshmmalign for the read alignment, and compare ShoRAH with
LoFreq for mutation calling. In both panels, F1 scores are averaged over data sets with various numbers of haplotypes based on HIV-1
subtype B sequences from subjects 1051 and BORI0637. Results are shown for a read coverage of 10,000× and 40,000×, as well as
for different distributions of haplotype frequencies as described in the Methods Section 2.4 (Dirichlet: Dir(α0 = 20, αi6=0 = 1).
Uniform: Dir(αi = 1). Equal prop.: all haplotype frequencies equal). The error bar corresponds to the standard error.
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Fig. S12 . Comparison of estimated versus reported haplotype abundances from
longitudinal samples of patient p2 of Zanini et al. (2015). Dotted lines delimit a ±4%
abundance error band centered around the previously reported abundances.


