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1 Related Background

1.1 Genomics

1.1.1 Minor Allele Frequencies
The frequency of minor alleles prompts an immense amount of selection in
heritability, and therefore, recorded as publicly available data for medical
institutions (Hernandez et al., 2019). Using these publicly available Minor
Allele Frequency (MAF) values, the probability of each genetic state in
populations can be inferred using the following equations assuming HW
equilibrium:

AA = 0 : P (Homozygous Major) = (1−MAF)2

Aa = 1 : P (Heterozygous) = 2× (MAF)× (1−MAF)
aa = 2 : P (Homozygous Minor) = (MAF)2

1.1.2 Linkage Disequilibrium
Linkage Disequilibrium (LD) is the non-random heritable associations
of alleles in different loci (Slatkin, 2008). Because it is an indication
of population genetic forces on the genome formation, it is a widely
investigated and exploited research topic in evolution and demographics
studies (Stephens, 2001). Factors that have an impact on LD may vary due
to genetic reshuffling, mutation rate, allelic drift, and so on. In genomic
privacy, LD can be used to infer the state probabilities, and hence, the
values of multiple Single Nucleotide Polymorphisms (SNPs) in correlated
loci given the state value of a single SNP. Therefore, highly correlated
states can be used for the enhancement of beliefs in belief propagation
setup on the other SNPs. By exploring all the coexisting pairs of SNPs in
the large sample population, linkage disequilibrium loci of high correlation
values can be identified.

1.1.3 Mendelian Inheritance Probabilities
Tables 1 and 2 present the Mendelian inheritance probabilities using the
Law of Segregation and the Law of Dominance, respectively.

Table 1. Mendelian inheritance probabilities using the Law of Segregation.

Mother SNP
Father SNP

0 1 2

0 [1, 0, 0] [0.5, 0.5, 0] [0, 1, 0]
1 [0.5, 0.5, 0] [0.25, 0.5, 0.25] [0, 0.5, 0.5]
2 [0, 1, 0] [0, 0.5, 0.5] [0, 0, 1]

Table 2. Mendelian inheritance probabilities using Law of Dominance.

Observed phenotype trait SNP distribution
Dominant (AA or Aa) [0.5, 0.5, 0]

Recessive (aa) [0, 0, 1]

1.2 Local Differential Privacy

Differential Privacy is a system of public data sharing that uses the patterns
of groups in the dataset and while doing so without compromising the
privacy of individuals in the dataset (Dwork, 2006). The main intuition
is that an algorithm is differentially private if the use of any particular
individual’s data cannot be inferred from the computations. If any inference
probability is limited to the upper bound of ρ < ε in the dataset, the
algorithm is ε-differentially private. ε-differential privacy is derived for a
process A if Equation 1 is satisfied in any two neighboring databases D1

and D2 with an outcome O.

P [A(D1) = O] ≤ eε × P [A(D2) = O]. (1)

Equation 1 is symmetrical and valid for any two neighboring databases
D1 and D2. So, this equation can also be written as:

e−ε×P [A(D2) = O]≤P [A(D1) = O]≤eε×P [A(D2)=O]. (2)

Local Differential Privacy (LDP) is the localized version of differential
privacy that targets not the datasets or databases but the data indices.
In LDP, the data is intentionally perplexed by the data owners so that
plausible deniability is ensured without a “trusted party.” The privacy
assured by data owners is expressed as ε-local differential privacy. This ε
value can be thought to provide 100

eε+1
% plausible deniability. As ε gets

smaller, although the outcomes become less likely to be different from one
another, a high level of privacy is ensured. In our use case, LDP is the local
implementation and satisfying Equation 2 on every single data point or
sequential data. We use LDP as an additional privacy preservation measure.
It is a technology adopted by major technology firms like Google, Apple,
and Microsoft for collecting mass anonymized data like web browsing
behaviors, typing behaviors, and telemetry data (Cormode et al., 2018).

A watermarking algorithm with ε-local differentially privacy must
normally satisfy Equation 2, for all sharings of all SNPs. This condition
is used for limiting the amount of information gained by the exclusion of
each shared data from the total set of sharings.

In Equation 2, the uncertainty increases with increasing ε at the expense
of privacy. As ε decreases, more privacy is ensured. However, Equation 2
does not cover a localized setup but counts on databases or datasets as a
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whole. Therefore, we use a variant of differential privacy adapted from
the geo-indistinguishability study of Andrés et al. (2012) that is both
localized in SNP level and well suited to our sequential data. In e-DP
part, our framework updates the probabilities of watermarking options
that violate the local differential privacy condition of Andres et al. and his
modified privacy criteria is given as

e−ε×r ×
P (x)

P (x′)
≤

P (x|S)
P (x′|S)

≤ eε×r ×
P (x)

P (x′)
,

∀r > 0, ∀x, x′ : d(x, x′) ≤ r,
(3)

where S represents the set of previous sharings of data and r represents
the distance between the states. In location data, r is calculated as the
maximum Euclidean distance between states. Since our data is sequential
genomic data and the states have no priority over one another, we used
Hamming distance for r, which is equal to one all the time. It is important
to note that the first part of Equation 3 refers to the newly updated
probabilities obtained from modifications such as adding and removing
noise and it corresponds to the ratio between aeis. The second part refers
to the unchanging probabilities of states given the prior information and
it corresponds to the ratio between varis. We can compare the results
for each xi = y, y ∈ {0, 1, 2}, and decide whether the states should be
updated or not for preventing violations against privacy condition.

2 Belief Propagation Algorithm
Belief Propagation (BP), also known as sum-product message passing, is a
message-passing algorithm used for the inference of networks and graphs
like Bayesian Networks and Markov Networks (Braunstein et al., 2005).
BP calculates marginal probability distributions of unknown variables in
factor graphs in an iterative manner using the information from previous
states. In a factor graph, two types of nodes are used: (i) Factor Nodes,
and (ii) Variable Nodes. BP is a widely used technique in graphs because
the marginal probability computation of variables that have a dependency
on multivariate data (factors) gets exponentially complex as the number
of factors increases. Besides, BP provides the flexibility of including
any desired factor, provided that the marginal probability conversion
equations are available. Moreover, marginal probabilities of factors must
be re-computed given the new distribution of variables. With a finite
number of iterations, BP approximates the actual distribution with a low
computational cost. The steps of the proposed BP-based algorithm are as
follows:

• The algorithm starts in a variable node with an initial probability
distribution.

• The algorithm collects messages from the factor nodes for updating
the probability distributions of the targeted unknown variable nodes.
In loopy bilateral graphs, this process is handled in iterations until
convergence. However, this approach is changed to a top-to-bottom
approach with one or two iterations for tree-like graphs like ours for
efficient approximation.

• Variable nodes generate the factor node messages by multiplying all
incoming messages from the neighbors except the receiver neighbor.

• Factor nodes generate the messages by using local functions and send
them to corresponding variable nodes.

• At the end of each iteration, the marginal probability distribution of
each variable node is updated by multiplying all incoming messages
from neighbors.

• The algorithm approximately calculates the beliefs of the variable
nodes and passes it to the “Attack and ε-local differential privacy"
(Attack-eLDP) node.

• The Attack-eLDP node acts as a secondary factor node and calculates a
new message that considers both attack scenarios and local differential
privacy criteria.

• Finally, the Attack-eLDP node passes its message together with
variable node messages as parameters into the watermarking
algorithm.

2.1 Data Model Notations

Table 3 shows the frequently used symbols and notations in the data model.

Table 3. Frequently used symbols and notations

x1, ..., xdl Set of data points
y1, ..., ym Possible values (states) of a data point

dl Length of the data
wl Length of the watermark
h Total number of SPs
Ik Index set of data points that are shared with kth SP
Jk Index set of data points that are watermarked for kth SP
Zk Watermark pattern of kth SP
Wk Watermarked data shared with kth SP
ε Local differential privacy coefficient
σsj Correlation coefficient between sth and jth SNPs
ρ Correlation coefficient threshold
SkIi

Set of states for index i that are shared with the first k SPs

2.2 Nodes in Belief Propagation Algorithm

We provide examples of correlation nodes and attack-eLDP nodes.

2.2.1 Correlation Node Example
Figure 1 shows how correlation nodes are connected with variable nodes
and how they send messages to one another.

c2,3

var1 var2 var3

c1,2

Fig. 1. The relationship between variable nodes and correlation nodes. Both nodes may
receive and send messages. For simplicity, one message for each type is shown.

For example, SNP1 is connected with SNP2 via c1,2 = i for x1 = 0,

x2 = 2 with σ1,2 = 0.9 and µv1→iP (x1 = y) = [0.3, 0.6, 0.1],
y ∈ {0, 1, 2} at the vth iteration. Then, we may calculate the message
from i to 2nd variable node, λvi→2P (x2 = y) as:

λvi→2P (x2 = y) =[
1− (0.92 × 0.3)

3
,

1− (0.92 × 0.3)

3
,

1− (0.92 × 0.3)

3

]
+

[
0, 0, (0.92)× (0.3)],

]
λvi→2P (x2 = y) = [0.2523, 0.2523, 0.4954].
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2.2.2 Attack-eLDP Node Example
For example, assume for the index i, vari = µvi→aeiP (xi=y) =

[0.6, 0.4, 0] sends the following message to the attack-eLDP node aei
and Sk−1

i = {0, 0, 1, 0, 1, 0} where k = 7. We may calculate the
watermarking probabilities of index i for SP7 as follows:

For x7i = 0, α = 5 =⇒
Binomial(S7

i |x7i = 0) =
(7
5

)
× (0.6)5 × (0.4)7−5 = 0.261,

For x7i = 1, α = 3 =⇒
Binomial(S7

i |x7i = 1) =
(7
3

)
× (0.4)3 × (0.6)7−3 = 0.290,

For x7i = 2, α = 1 =⇒
Binomial(S7

i |x7i = 2) =
(7
1

)
× (0)1 × (1)7−1 = 0.

A7
i = Normalized([0.261, 0.290, 0]) ≈ [0.474, 0.526, 0] is the updated

watermarking probability distribution of index i for SP7.
Continuing from the above example, we can calculate the privacy

conditions as follows:

For x7i = 0,
P (x|S)
P (x′|S)

=
0.474

0.526
=0.901, and

P (x)

P (x′)
=
0.6

0.4
=1.500.

This means e−ε × 1.500 ≤ 0.901 ≤ eε × 1.500 must be satisfied
for not violating the ε-local differential privacy. Since 0.901

1.500
≤1 and

ln(0.601)= − 0.509, if ε ≤ 0.509 the state probability of P (x7i = 0)

must be updated for not violating the privacy by averaging the attack
node probabilities with variable node probabilities. After P (x) is set, the
distribution is continuously normalized to converge into the probability
that satisfies the condition.

For x7i = 1,
P (x|S)
P (x′|S)

=
0.526

0.474
=1.110, and

P (x)

P (x′)
=
0.4

0.6
=0.667.

This means e−ε × 0.667 ≤ 1.110 ≤ eε × 0.667 must be satisfied for
not violating the ε-local differential privacy. Since 1.110

0.667
= 1.664 and

ln(1.664) = 0.223, if ε ≤ 0.223 the state probability of P (x7i = 1)

must be updated likewise.

For x7i = 2,
P (x|S)
P (x′|S)

=
0

1
=0, and

P (x)

P (x′)
=
0

1
=0.

This meanse−ε×0 ≤ 0 ≤ eε×0 and it never violates the local differential
privacy for any ε just like the case of x7i = 0. However, we know that
P (xi = 2) = 0 and it is an impossible watermarking case regardless of
the violation.

If Alice set her privacy criteria to ε < 0.509, aei’s final marginal
probability distribution will be equal to the distribution enforced by the
eDP part. Otherwise, the distribution remains the same as attack part
determined, which is equal to [0.474, 0.526, 0].

3 Watermarking Algorithm
Algorithm 1 gives the pseudo-code of the the watermarking algorithm. The
input of the algorithm includes data, atks, wScore andwl. The only output
is newdata. In the algorithm, data represents the original data of the data
owner with length dl. atks represents the probability distributions of SNPs
generated by the belief propagation algorithm considering all the prior
information, sharings with SPs, and ε-LDP requirements as a 3-by-dl array.
wScore represents the watermarking probability of SNPs by subtracting the
atks probability of the actual state from 1. wScore values are organized in
descending order to give priority on SNPs with the highest watermarking
probability.wl represents the length of the watermark. Finally, the output,
newdata, represents an altered version of the original data with a watermark
pattern of length wl.

In the algorithm, the while loop embeds a watermark to the indices
with the highest wScore, denoted as wScore(j, 2) and j goes from 1 to dl
until the number of embedded indices reach to wl. Basically, wScore(j,2)
is the index in data that corresponds to the jth index that is stored in
wScore’s second column. It is also important to note that the rows of
wScore matrix are sorted in descending order by the scores stored in the
first column which are collectively denoted as wScore(:,1). We determine
the embedding via random number generation, denoted as r and between
0 and 1, matching the probability distribution space. Assume that r =

0.42 and the distribution of atk = [0.32, 0.03, 0.55]. Inside the while
loop, the first two conditions are not satisfied because r < 0.32 and
r < 0.32+ 0.03. For the final condition, if the given index is not already
equal to 2 and it is not previously embedded a watermark, the new version
of the data and wmFlag are changed into 2, and the watermark tracker k
is incremented by one. A special condition not included in the pseudo-
code algorithm also checks whether a certain index is watermarked in the
same way throughout the previous SPs. If an index is embedded with a
watermark that is the same across all SPs, it is useless and just a utility
decreasing factor.

Algorithm 1 Watermarking Algorithm
Watermark(data, atks, wScore, wl)
1: j ← 1

2: k ← 0

3: newdata← data
4: while k < wl do
5: i← wScore(j, 2) {index of the SNP}
6: temp← data(i) {actual state of SNP}
7: wmflag← −1
8: r ← random(0, 1)

9: if atks(i, 1) ≥ r then
10: if temp 6= 0 and wmflag = −1 then
11: newdata(i)← 0

12: wmflag(i)← 0

13: k++
14: end if
15: else if atks(i, 1) + atks(i, 2) ≥ r then
16: if temp 6= 1 and wmflag = −1 then
17: newdata(i)← 1

18: wmflag(i)← 1

19: k++
20: end if
21: else if atks(i, 1) + atks(i, 2) < r then
22: if temp 6= 2 and wmflag = −1 then
23: newdata(i)← 2

24: wmflag(i)← 2

25: k++
26: end if
27: end if
28: if j == length(data) then
29: j ← 1

30: else
31: j++
32: end if
33: end while
34: return newdata

4 Evaluation

4.1 Detection Methods

For detection, we compare the attacked data produced by malicious SPs
with each of our previously shared data and watermark patterns. Assuming,
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we know the number of malicious SPs, we use two detection methods
Hamming Distance (H) and custom spPenalizer (E) and their relaxed
versions Hamming Distance Relaxed (HR) and spPenalizer Relaxed (ER).
H method as the name suggests, calculates the Hamming distances
between attacked data and every shared SP data by checking every index.
After the distances are calculated, all SPs are sorted from least different
than the attack data (least distance) to the most different (most distance)
and top k (# of malicious SPs) SPs are flagged as malicious. E method,
firstly identifies the indices that has not been the same with the original
data at least once (conflicting indices) for all SPs. Then, the variance of
each conflicting index is calculated as a penalizing factor. Depending on the
match of indices between shared SP data and attack data, penalizing factors
are added into the matching SPs. Finally, top k SPs who are penalized the
most are flagged as malicious SPs. In the relaxed versions of both methods,
top k+1 are used in flagging process.

4.2 Single SP Attack

In single SP attacks, a single SP uses all the knowledge available to itself for
inferring the marginal state probabilities of SNPs. This process is similar to
the calculations in the belief propagation part of our watermarking scheme.
Later on, malicious SP identifies the top wl SNPs with least probabilities
P (xi = y), y ∈ {0, 1, 2} as watermarked, and modifies them to their
most likely states for the prior information available to itself.

Figure 2 shows the impact of watermark length on precision for various
values of LDP coefficients (ε). Appendix § 4.2 provides the impact of
detection methods and ε values on the precision for a single SP attack. In
all cases, wl ≥ 40 seems to be the breaking point where the precision
reaches almost 100%. In our data, we believe that this corresponds to the
minimum amount of change needed for distinguishing a version of shared
data from another effectively. For example, this wl may not suffice for
comparison among 50 SPs. We observe that ε has no significant impact on
precision.

Figure 3 shows a comparison of the detection methods for a single
SP attack. We observe that the relaxed versions HR and ER outperform
the methods H and E. However, the methods E and ER outperform the
methods H and HR.

4.3 Collusion Attack

Figure 4 shows a comparison of the detection methods for a collusion
attack. Similar to single SP attack, we observe that the relaxed versions
HR and ER outperforms the H and E methods. Differing from the single SP
attack though, the results of H and E and HR and ER are almost identical.

Figure 5 shows that the relaxation of the privacy criteria ε to 0.5 or 1
does not impact the precision results at all.

Figure 6 depicts the impact of privacy criteria (ε) on precision. The
case for k = 2 provides limited information because allwl values, except
wl = 10, give 100% precision. For both k = 6 and k = 10 though, the
precision remains stable with naturally lower precision results for k = 10.
Sometimes, arbitrary fluctuations occur throughout different watermark
lengths, but overall, the observed impact of ε is negligible.

4.4 Removal Attack

Figure 7 shows the impact of watermark length and multiplier factor of
indices removed on precision for 2 and 6 colluding malicious SPs. For
i > 2.4, almost all of the watermarked indices are removed from all
malicious SP sets -a trend that is observed in the following figures, too-
and they cannot be identified. For i < 2.4, i = 1.6 seems like a safe-spot
where precision results do not deviate. Due to the increasing number of
collaborators, overall precision dropped for all watermark lengths from 2
SPs to 6 SPs, similar to the observations in collusion attacks.

4.5 Utility

4.5.1 Kinship Coefficient-based Utility
In this method, φ= 1

2

n+1, where n is the degree of affinity and
n=0, 1, and 2 correspond to the monozygotic twin, parent-offspring (or
full sibling), and second degree, respectively. We compare the kinship
relationship between the original data and embedded-data. As we can see
from Figure 8, even for high values of wl (such as 100), even though the
kinship coefficient changes (compared to its original value), interpretation
of the kinship relationships remain intact. As in the utility loss method, data
generated by malicious SPs are more divergent than the original version,
which can be observed from φ results. It should be noted that φ is not a
variable with a linear change like utility loss. Therefore, the generation
of data with less utility than the utility of the watermarked versions is a
penalizing factor for malicious SPs.

4.6 Correlation Threshold (ρ)

Figure 9 shows that ρ has a minor impact on precision for varying
watermark lengths. Keeping ρ > 0.5 in experiments is to keep correlation
coefficients, their corresponding coefficients of determination and by doing
so the inference strength of the correlations relatively high.
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Fig. 2: The impact of watermark length and ε on precision for a single SP
attack.
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Fig. 3: The impact of watermark length and detection method on precision
for a single SP attack (ε=0).
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Fig. 4: The impact of watermark length and detection method on precision
for a collusion attack (ε=1).
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Fig. 5: The impact of watermark length on precision for collusion attacks
with different number of malicious SPs and ε values.
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Fig. 6: The impact of ε on precision for collusion attacks with different
number of malicious SPs and ε values.
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Fig. 7: The impact of watermark length on precision for a removal attack
with different number of malicious SPs and i values.
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Fig. 8: The impact of watermark length on kinship coefficient.
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Fig. 9: The impact of watermark length on precision for different ρ values.
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