Ruby Sharma, Sajal Kumar, and Mingzhou Song

SUPPLEMENTAL MATERIALS

Fundamental gene network rewiring at the second order within and across mammalian systems

A Proof of Lemma 2: The covariance matrix Σ_q has rank K-1 in the Sharma-Song test

Proof. From Eq. (5), the covariance matrix $\Sigma_{\mathbf{q}}$ is equal to

$$\Sigma_{\mathbf{q}} = \mathbf{I} - \operatorname{diag}(\mathbf{b})\mathbf{J}_{K} - \mathbf{J}_{K}\operatorname{diag}(\mathbf{b}) + K\mathbf{b}\mathbf{b}^{\top}$$
(S1)

where \mathbf{J}_K is a $K \times K$ matrix of all ones, **b** is a scaling vector (b_1, \ldots, b_K) whose sum is one, and diag(**b**) is a $K \times K$ matrix whose diagonal elements are b_1, \ldots, b_K and off-diagonal elements are all zero. We can rewrite Eq. (5) as

$$\Sigma_{\mathbf{q}} = \mathbf{I} - \operatorname{diag}(\mathbf{b})\mathbf{J}_{K} - \mathbf{J}_{K}\operatorname{diag}(\mathbf{b}) + K\mathbf{b}\mathbf{b}^{\top}$$

$$= \mathbf{I} - \operatorname{diag}(\mathbf{b})\mathbf{I}_{K} - \mathbf{J}_{K}\operatorname{diag}(\mathbf{b}) + \operatorname{diag}(\mathbf{b})\mathbf{I}_{K}\mathbf{I}_{K}\operatorname{diag}(\mathbf{b}) - K\mathbf{b}\mathbf{b}^{\top}$$
(S2)
(S3)

$$= \mathbf{I} - \operatorname{diag}(\mathbf{b})\mathbf{J}_K - \mathbf{J}_K \operatorname{diag}(\mathbf{b}) + \operatorname{diag}(\mathbf{b})\mathbf{J}_K \mathbf{J}_K \operatorname{diag}(\mathbf{b}) \quad (\because \operatorname{diag}(\mathbf{b})\mathbf{J}_K \mathbf{J}_K \operatorname{diag}(\mathbf{b}) = K \mathbf{b}\mathbf{b}^+)$$
(S3)

$$= [\mathbf{I} - \operatorname{diag}(\mathbf{b})\mathbf{J}_K][\mathbf{I} - \mathbf{J}_K \operatorname{diag}(\mathbf{b})]$$
$$= [\mathbf{I} - \operatorname{diag}(\mathbf{b})\mathbf{I}_{-1}][\mathbf{I} - \operatorname{diag}(\mathbf{b})\mathbf{I}_{-1}]^\top$$

$$= [\mathbf{I} - \operatorname{diag}(\mathbf{b})\mathbf{J}_{K}][\mathbf{I} - \operatorname{diag}(\mathbf{b})\mathbf{J}_{K}]^{\top}$$
(S5)

A matrix **B** and its Gram matrix $\mathbf{B}\mathbf{B}^{\top}$ have the same rank rank $(\mathbf{B}\mathbf{B}^{\top}) = \operatorname{rank}(\mathbf{B})$. Let $\mathbf{B} = \mathbf{I} - \operatorname{diag}(\mathbf{b})\mathbf{J}_K$. Then we have $\Sigma_{\mathbf{q}} = \mathbf{B}\mathbf{B}^{\top}$ as apparently a Gram matrix, which must have the same rank with **B**. Next, we show that the rank of **B** is K - 1. We perform Gaussian elimination to transform matrix **B** to a row echelon form to obtain its rank. We can first write **B** as

_

$$\mathbf{B} = \mathbf{I} - \operatorname{diag}(\mathbf{b})\mathbf{J}_{K} = \begin{bmatrix} 1 - b_{1} & -b_{1} & \cdots & -b_{1} & -b_{1} \\ -b_{2} & 1 - b_{2} & -b_{2} & \cdots & -b_{2} & -b_{2} \\ -b_{3} & -b_{3} & 1 - b_{3} & \cdots & -b_{3} & -b_{3} \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ -b_{K-1} & -b_{K-1} & -b_{K-1} & \cdots & 1 - b_{K-1} & -b_{K-1} \\ -b_{K} & -b_{K} & -b_{K} & \cdots & -b_{K} & 1 - b_{K} \end{bmatrix}$$
(S6)

Let \mathbf{r}_i represent the elements on row i in the matrix. Transforming row $i \neq K$ by

$$\mathbf{r}_i \to \mathbf{r}_i - \frac{b_i}{b_K} \mathbf{r}_K, \quad 1 \le i \le K - 1$$
(S7)

we obtain

$$\mathbf{B}_{1} = \begin{bmatrix} 1 & 0 & 0 & \cdots & 0 & -b_{1}/b_{K} \\ 0 & 1 & 0 & \cdots & 0 & -b_{2}/b_{K} \\ 0 & 0 & 1 & \cdots & 0 & -b_{3}/b_{K} \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & 1 & -b_{K-1}/b_{K} \\ -b_{K} & -b_{K} & -b_{K} & \cdots & -b_{K} & 1 - b_{K} \end{bmatrix}$$
(S8)

If $b_K = 0$, we can always choose some row k such that $b_k \neq 0$ instead of row K to perform the row operations. Such a k always exists provided that the sum of b_1 to b_K is always one. For row K, we apply

$$\mathbf{r}_K \to \mathbf{r}_K + b_K \sum_{i=1}^{K-1} \mathbf{r}_i$$

on \mathbf{B}_1 to obtain

$$\mathbf{B}_{2} = \begin{bmatrix} 1 & 0 & 0 & \cdots & 0 & -b_{1}/b_{K} \\ 0 & 1 & 0 & \cdots & 0 & -b_{2}/b_{K} \\ 0 & 0 & 1 & \cdots & 0 & -b_{3}/b_{K} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & 1 & -b_{K-1}/b_{K} \\ 0 & 0 & 0 & \cdots & 0 & 1-b_{1}-b_{2}-\cdots-b_{K} \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & \cdots & 0 & -b_{1}/b_{K} \\ 0 & 1 & 0 & \cdots & 0 & -b_{2}/b_{K} \\ 0 & 0 & 1 & \cdots & 0 & -b_{3}/b_{K} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & 1 & -b_{K-1}/b_{K} \\ 0 & 0 & 0 & \cdots & 1 & -b_{K-1}/b_{K} \\ 0 & 0 & 0 & \cdots & 0 & 0 \end{bmatrix} \quad (\because \sum_{i=1}^{K} b_{i} = 1)$$
(89)

Since this row echelon form of matrix **B** has K - 1 non-zero rows, the rank of $\mathbf{B} = \mathbf{I} - \text{diag}(\mathbf{b})\mathbf{J}_K$ must be K - 1. Therefore, covariance matrix $\Sigma_{\mathbf{q}} = \mathbf{B}\mathbf{B}^{\top}$ —the Gram matrix formed by **B**—must also have the same rank of K - 1.

(S4)

B Proof of Theorem 1: The Sharma-Song test statistic follows a chi-squared null distribution

Proof. The proof is based on the null hypothesis that the row and column variables in each C_k are independent and the K tables are also independent of each other. By Helmert transform via Eqs. (1, 2, 3), the $r \times s$ contingency tables C_1, \ldots, C_K give rise to matrices E_1, \ldots, E_K all of dimension $r \times s$. Given the null hypothesis and by Lemma 1, elements in matrix E_k are i.i.d. standard normal N(0, 1) variables. Elements in E_k are also independent of those in E_l for $l \neq k$. When the row and column marginal distributions are calculated by sample marginal distributions, each E_k contains M = (r-1)(s-1) elements of i.i.d. standard normal variables, excluding the first row and first column of all zeros (Lancaster, 1949). Indeed, sample marginal distributions are used in forming the Helmert matrices in the Sharma-Song test.

As \mathbf{e}_k is a column-major vector representation of \mathbf{E}_k without the first row or column, the *M* components in \mathbf{e}_k are i.i.d. standard normal variables. \mathbf{e}_k and \mathbf{e}_l are independent as \mathbf{E}_k and \mathbf{E}_l are independent when $k \neq l$. We obtain the pooled vector

$$\mathbf{e} = \sum_{k=1}^{K} \mathbf{e}_k \tag{S10}$$

Evidently, components in e are i.i.d. N(0, K) (normal with zero mean and variance K). However, e is statistically dependent of \mathbf{e}_k . Let e_{km} be the *m*-th component of \mathbf{e}_k . Let e_m be the *m*-th component of e. By Eq. (4), we can rewrite matrix \mathbf{Q} by

$$\mathbf{Q} = \begin{bmatrix} \Delta_{11} & \Delta_{21} & \cdots & \Delta_{K1} \\ \Delta_{12} & \Delta_{22} & \cdots & \Delta_{K2} \\ \vdots & \vdots & \ddots & \vdots \\ \Delta_{1M} & \Delta_{2M} & \cdots & \Delta_{KM} \end{bmatrix} = \begin{bmatrix} e_{11} - b_1 e_1 & e_{21} - b_2 e_1 & \cdots & e_{K1} - b_K e_1 \\ e_{12} - b_1 e_2 & e_{22} - b_2 e_2 & \cdots & e_{K2} - b_K e_2 \\ \vdots & \vdots & \ddots & \vdots \\ e_{1M} - b_1 e_M & e_{2M} - b_2 e_M & \cdots & e_{KM} - b_K e_M \end{bmatrix}$$
(S11)

When all elements in \mathbf{Q} are zero, the amount of 2nd-order differences in $\mathbf{C}_1, \ldots, \mathbf{C}_K$ is zero. So we ideally want to measure the null distribution of the distance from all elements to zero. As components within \mathbf{e}_k are independent and components within \mathbf{e} are independent, elements within each column of matrix \mathbf{Q} are statistically independent, implying that the row vectors are statistically independent of each other. Components within each row are statistically dependent due to pooled vector \mathbf{e} being dependent on all \mathbf{e}_k . As \mathbf{q}_m , row m of \mathbf{Q} , is a linear combination of independent N(0, 1) variables, \mathbf{q}_m follows a multivariate normal distribution $N(\mathbf{0}, \mathbf{\Sigma}_{\mathbf{q}})$. We can derive its covariance matrix $\mathbf{\Sigma}_{\mathbf{q}}$ as defined in Eq. (5). Equivalently,

$$\Sigma_{\mathbf{q}} = \mathbf{I} - \begin{bmatrix} b_1 + b_1 - b_1 b_1 K & b_2 + b_1 - b_2 b_1 K & \cdots & b_K + b_1 - b_K b_1 K \\ b_1 + b_2 - b_1 b_2 K & b_2 + b_2 - b_2 b_2 K & \cdots & b_K + b_2 - b_K b_2 K \\ \vdots & \vdots & \ddots & \vdots \\ b_1 + b_K - b_1 b_K K & b_2 + b_K - b_2 b_K K & \cdots & b_K + b_K - b_K b_K K \end{bmatrix}$$
(S12)

It is evident that the sum of column vectors of Σ_q is a zero vector **0**. Thus, Σ_q is rank deficient without an inverse, implying that the Mahalanobis distance between q_m and **0** is undefined.

The projection step in the Sharma-Song test is essential in transforming \mathbf{Q} to a collection of i.i.d. N(0, 1) variables to establish the chi-squared null distribution. We project each row vector \mathbf{q}_m of \mathbf{Q} by $\mathbf{z}_m = \mathbf{q}_m^\top \mathbf{S}_+$ to the column space of $\boldsymbol{\Sigma}_{\mathbf{q}}$. \mathbf{S}_+ is spanned by eigenvectors corresponding to non-zero eigenvalues of $\boldsymbol{\Sigma}_{\mathbf{q}}$. The eigenvalue decomposition of $\boldsymbol{\Sigma}_{\mathbf{q}}$ is $\mathbf{S}\mathbf{A}\mathbf{S}^{-1}$. By the projection, \mathbf{z}_m follows a multivariate normal $N(0, \mathbf{\Lambda}_+)$ distribution. $\mathbf{\Lambda}_+$ is a full-rank diagonal covariance matrix whose diagonal elements are non-zero eigenvalues of $\boldsymbol{\Sigma}_{\mathbf{q}}$.

The squared Mahalanobis distance between \mathbf{z}_m and the origin $\|\mathbf{q}_m^\top \mathbf{S}_+ \mathbf{\Lambda}_+^{-1/2}\|^2$ follows $\chi^2_{\text{rank}(\boldsymbol{\Sigma}_q)}$, a chi-squared distribution with $\text{rank}(\boldsymbol{\Sigma}_q)$ degrees of freedom (McLachlan, 1999). By Lemma 2, $\text{rank}(\boldsymbol{\Sigma}_q) = K - 1$. As the row vectors \mathbf{q}_m (m = 1, ..., M) in \mathbf{Q} are independent of each other and have an equal covariance matrix $\boldsymbol{\Sigma}_q$, the Mahalanobis distances squared are i.i.d. χ^2_{K-1} , that is

$$\left\|\mathbf{q}_{1}^{\top}\mathbf{S}_{+}\boldsymbol{\Lambda}_{+}^{-1/2}\right\|^{2}, \quad \left\|\mathbf{q}_{2}^{\top}\mathbf{S}_{+}\boldsymbol{\Lambda}_{+}^{-1/2}\right\|^{2}, \quad \dots, \quad \left\|\mathbf{q}_{M}^{\top}\mathbf{S}_{+}\boldsymbol{\Lambda}_{+}^{-1/2}\right\|^{2} \sim \text{independently and identicially distributed } \chi^{2}_{K-1}$$
(S13)

Therefore the sum of these M independent chi-squared statistics is also chi-squared, with degrees of freedom $(K-1) \cdot M = (K-1)(r-1)(s-1)$ being the sum of the degrees of freedom from each chi-squared statistic. As this sum is exactly the test statistic D^2 of the Sharma-Song test, we have just proven that D^2 asymptotically follows a chi-squared distribution with $\nu = (K-1)(r-1)(s-1)$ degrees of freedom

$$D^2 \sim \chi^2_{(K-1)(r-1)(s-1)} \tag{S14}$$

under the null hypothesis of the Sharma-Song test.

C The Sharma-Song test algorithm

An algorithm to implement the Sharma-Song test is given as Algorithm S1 Sharma-Song-Test. The input to the algorithm is K contingency tables of the same dimension. The output is the test statistic, the degrees of freedom, the effect size ε , and the P-value associated with the input tables for their 2nd-order differences.

Algorithm S1 Sharma-Song-Test $(\mathbf{C}_1, \dots, \mathbf{C}_K)$

1 for k = 1 to K:

- 2 Remove marginal effects from each \mathbf{C}_k to get \mathbf{A}_k
- 3 Perform both row- and column-Helmert transform: $\mathbf{E}_k = \mathbf{V}_k \mathbf{A}_k \mathbf{W}_k^{\top}$
- Vectorize \mathbf{E}_k in column major excluding 1st row and 1st column to get \mathbf{e}_k 4
- 5 The pooled vector $\mathbf{e} = \mathbf{e}_1 + \dots + \mathbf{e}_K$
- 6 Compute the scaling vector **b**: $b_k = \sqrt{n_k} / \sum_{l=1}^K \sqrt{n_l}$
- 7 for k = 1 to K: Calculate deviation vectors $\mathbf{\Delta}_k$ as columns of matrix \mathbf{Q}
- 8 Calculate the covariance matrix $\boldsymbol{\Sigma}_{\mathbf{q}}$
- 9 Perform eigenvalue decomposition on $\Sigma_{\mathbf{q}}$ to find its column space \mathbf{S}_{+}
- 10 Project rows of \mathbf{Q} to \mathbf{S}_+
- 11 Calculate the sum of Mahalanobis distances squared D^2
- 12 Degrees of freedom $\nu = (K-1)(r-1)(s-1)$
- 13 *P*-value = area under the upper tail of the chi-squared distribution χ^2_{ν} greater than or equal to D^2 14 Calculate the effect size $\varepsilon = \sqrt{D^2/[n(r-1)(s-1)]}$, where $n = n_1 + \ldots + n_K$
- 15 return D^2 , ν , P-value, ε

D The second-order network rewiring pipeline

To illustrate how to apply the Sharma-Song test to a mammalian transcriptome collection that contains samples from the ectoderm and primitive streak derived tissue types in mouse and human, we present a workflow diagram that includes all preprocessing and analysis steps as Figure S1. We assume the input data are already normalized and unwanted effects are removed. Our pipeline starts with removing unchanged genes occurring at the bottom 5% median absolute deviation (MAD) in human and mouse data separately. We divide the samples of human and mouse data into four groups: human ectoderm, human primitive streak, mouse ectoderm, and mouse primitive streak. Genes with zero variance within each group are removed from further analysis. Selected genes go to next step for creating co-expression networks. We construct four comparisons: human ectoderm versus primitive streak, mouse ectoderm versus primitive streak, human versus mouse ectoderm, and human versus mouse primitive streak. In each comparison, all genes are discretized using an optimal univariate clustering algorithm (Wang and Song, 2011; Song and Zhong, 2020). For each comparison, we construct a coexpression network of all the conditions. Gene pairs represented in the form of contingency table are evaluated using Pearson's chi-squared test. We select significantly co-expressed patterns with Benjamini-Hochberg adjusted P < 0.1 and Cramér's V > 0.8 in at least one condition. Significantly co-expressed gene pairs are used to create a second-order rewired network. These gene pairs are scaled and shifted in their respective conditions. The scaled and shifted gene pairs are merged together and discretized to form contingency tables. The gene pairs represented by contingency tables are evaluated by Sharma-Song test to build a second-order rewired network. We further obtain ε_{60} , the effect size cutoff at a statistical power of 60% depending on the maximum table size obtained among all the comparison. We select significant second-order differential patterns with Benjamini-Hochberg adjusted P<0.05 and ε > ε_{60} for all comparisons. We provide an R package 'DiffXCoExpNet' which can compare two or more experimental conditions of an omic dataset and generate a second-order rewired network. We have provided the R script files and a vignette to guide the user to perform a second-order rewired analysis through the pipeline.

Fig. S1. A workflow used in the pipeline of second-order network rewiring analysis. The input data contain samples from within and between ectoderm and primitive streak derived tissue groups of human and mouse. We assume the input data are properly normalized and log-transformed. We start with finding high dynamic genes after removing low median absolute deviation (MAD) genes. FANOTM5, Evo-devo and Yang et al. datasets were divided into four species-tissue groups for further analysis. Genes with zero variance are removed from all four groups and then discretized. Within each group, a co-expression network is created for each condition under comparison. Significant unique co-expressed gene pairs are scaled and shifted. Then all selected gene pairs are evaluated by the Sharma-Song test for detecting second-order rewiring. Gene patterns with BH adjusted *P*-value < 0.05 and effect size $\varepsilon > \varepsilon_{60}$ are declared as second-order differential patterns. BH stands for the Beniamini-Hochberg multiple testing correction.

4

E High-degree hub genes in second-order rewired networks during mammalian development

To examine whether the 2nd-order rewired gene networks during mammalian development are reproducible, we examined hub genes in the rewired networks derived from the FANTOM5, Evo-devo, and Yang et al. data collections. We observe that common high-degree hub genes are more prominent in highly 2nd-order differential patterns between the Evo-devo and Yang et al. collections. We define the node degree of a hub gene as the number of 2nd-order differential interactions involving the hub gene. After sorting all 2nd-order differential interactions by increasing *p*-value, we partitioned the interactions into five equal percentile groups: 0-20%, 20-40%, 40-60%, 60-80%, 80-100%. The 0-20% percentile group contains the strongest 2nd-order differential gene interactions. Within each percentile group, we tabulated numbers of genes with degrees 1 to 100. Then we obtained the number of common hub genes between two collections for each degree. For each of the four comparisons (human ectoderm vs primitive streak, nouse ectoderm and human vs mouse primitive streak), we generated curves showing the number of common hub genes across the five percentile groups at each degree from 1 to 100, as shown in Figure S2. We observe that the strongest 2nd-order differential percentile group (0-20%) contain the largest numbers of common high-degree hub genes between collections in all four comparisons. Although the low-degree genes are more often shared across collections, their corresponding curves are flat across percentile groups, irrespective of the strength of 2nd-order rewiring. Therefore, we consider the common high-degree hub genes a reproducible feature of the 2nd-order rewired gene networks.

The FANTOM5 collection does not overlap with the other two collections in terms of common hub genes, due to several possible reasons. First, FANTOM5 data used in this study have a relatively small sample size, thus leading to a relatively low statistical power in contrast to the other two collections. Second, FANTOM5 measured expression of transcription start sites of genes, different from the other two collections measuring all transcript reads within a gene. Third, the CAGE technology used in FANTOM5 is different from the RNA-seq technology used for the other two collections. It will have to be resolved in the future when other large sample sized studies of mammalian development become available.

Fig. S2. Number of common hub genes in 2nd-order differential co-expression networks between Evo-devo and Yang et al. collections by differentiality percentile group and node degree. Each line represents the number of common genes at a given node degree across five percentile groups of 2nd-order differential interactions ordered by increasing *p*-value. The color spectrum from blue to red represents node degree from 1 to 100. The curves shows that the number of common high-degree hub genes decreases as 2nd-order differentiality becomes weaker across the groups. Results are shown for four comparisons: (a) human ectoderm versus primitive streak, (b) mouse ectoderm versus primitive streak, (c) human vs mouse ectoderm, and (d) human versus mouse primitive streak.

F Reproducible second-order rewired gene-gene patterns during mammalian development

Here, we report second-order differential gene pairs found for each species-tissue group comparison that are common to all three mammalian developmental transcriptome datasets of FANTOM5, Evo-devo and Yang et al. For each comparison, we found common co-expressed second-order differential patterns obtained using above pipeline among all datasets. We obtained 55 reproducible second-order rewired gene pairs between human ectoderm and primitive streak derived tissue types, 241 reproducible second-order rewired gene pairs between mouse ectoderm and primitive streak derived tissue types, 17 reproducible second-order rewired gene pairs between human and mouse primitive streak derived tissue types and 85 reproducible second-order rewired gene pairs between human and mouse ectoderm derived tissue types. We observed same mechanistic rewiring in some of these reproducible patterns among all datasets. Reproducible 2nd-order rewired gene pairs are shown for each of the four comparisons among the species-tissue groups in Tables S1, S2, S3, and S4.

Table S1: A total of 55 reproducible second-order rewired gene pairs between human ectoderm and
primitive streak derived tissue types. Gene pairs with their second-order differential P-values and effect
sizes ε are shown as obtained from FANTOM5, Yang et al. and Evo-devo datasets, respectively.

Gene	Gene	FANTOM5 P-value / Effect size ε	Yang el al. P-value / Effect size ε	Evo-devo <i>P</i> -value / Effect size
ATP8B2	SLC35F1	0.0103 / 0.60	0.0027 / 0.41	2e-11/0.3
ABLIM1	PKIB	0.0307 / 0.47	0.00033/0.49	3.4e-24/0.62
TIAM1	MPP3	0.0319/0.47	0.0019/0.42	1.1e-15/0.35
PTGFRN	MPP3	0.0162/0.54	0.00035/0.49	1.7e-19/0.4
CHN2	CDR2L	0.0204 / 0.52	8 3e-06 / 0 64	$1.4e_{-12} / 0.42$
TMSB10	KCTD2	0.0146 / 0.55	7 2e-05 / 0.55	7.4e-12/0.3
LONRE3	KCTD2	0.0121/0.57	1.5e-06 / 0.7	$2e_{-}22 / 0.43$
RNF128	GALK1	0.0066/0.70	0.00014 / 0.52	8 8e-18 / 0 38
STEGAL NAC5	STK10	0.0113 / 0.59	0.0011/0.45	$9.1e_{-}06 / 0.26$
PPP1R3C	ENO3	0.0083/0.64	0.00031 / 0.49	6.6e-22 / 0.58
AFAPIL 2	ALDOC	0.0168 / 0.54	8 7e-05 / 0 54	$1.2e_{-}20/0.41$
VANGL2	ALDOC	0.0234 / 0.50	$1.3 \pm 0.06 / 0.71$	$1.2e^{-20}/0.41$
DOK7	ALDOC PNE43	0.023470.30	0.00042/0.48	7.5e 13 / 0.32
CCDC ⁸⁹ P	NI NI	0.0250/0.48	0.014/0.33	1.30-13/0.32
NDEID2	DCS14	0.023270.49	0.01470.33	1.56-11/0.5
NDFIP2	ROS14	0.0348/0.40	20.04/0.5	7.50.07 (0.33
NKGN	KUS14 EDD1	0.0254 / 0.49	5e-04 / 0.5	1.5e-0770.29
ATLB	CLUDI	0.0089/0.03	0.0012/0.44	1.0e-12 / 0.20
HPN	GLUDI	0.0091/0.62	0.0001370.53	0.2e-15 / 0.29
RAPIGAP	PHYHIP	0.0055/0.78	0.0081/0.36	1.5e-10/0.38
GPR155	NIPAL2	0.0105 / 0.60	0.0014 / 0.44	6.4e-09 / 0.35
LETM2	RGS22	0.0078 / 0.65	0.00096 / 0.45	4.2e-09 / 0.26
CPT1B	TMEM65	0.0283 / 0.48	0.00053 / 0.47	1e-13 / 0.45
ARNT2	RND1	0.0216 / 0.51	1.1e-05 / 0.62	8.9e-24 / 0.44
KCTD14	SOCS1	0.0235 / 0.50	0.00048 / 0.48	4.9e-06 / 0.27
MICAL2	CHRD	0.0146 / 0.55	0.0012 / 0.44	2.5e-15 / 0.48
SORCS1	ST6GAL1	0.0146 / 0.55	1.9e-05 / 0.6	1.4e-08 / 0.25
SH3RF1	ST6GAL1	0.0073 / 0.67	2.6e-05 / 0.59	4.1e-15 / 0.26
WSCD2	BDH1	0.0315 / 0.47	5.8e-06 / 0.65	8.8e-20 / 0.4
EZR	TIAM1	0.0207 / 0.51	0.00011/0.53	1.1e-15 / 0.48
P2RX4	TIAM1	0.0224 / 0.51	0.013 / 0.34	9.2e-24 / 0.61
LPCAT3	TIAM1	0.0243 / 0.50	0.0012 / 0.44	7.5e-30 / 0.69
TMSB10	TIAM1	0.0246 / 0.49	0.00031 / 0.49	2e-16 / 0.49
LONRF3	TIAM1	0.0283 / 0.48	0.00052 / 0.47	1.1e-21 / 0.58
POLB	TRIM36	0.0235 / 0.50	4.6e-05 / 0.57	2.5e-17 / 0.31
ALS2	ISOC1	0.0110 / 0.59	0.0012 / 0.44	6e-21 / 0.34
MPZL3	CCDC88B	0.0252 / 0.49	0.0088 / 0.36	9.8e-10 / 0.37
TACC1	MDK	0.0140 / 0.56	0.00085 / 0.46	1.9e-07 / 0.31
LETM2	ZMYND12	0.0307 / 0.47	9.4e-05 / 0.54	8.7e-07 / 0.29
S1PR5	MARCKSL1	0.0336 / 0.46	0.0051/0.38	8.8e-12 / 0.3
POLB	P2RX4	0.0113 / 0.59	0.0036 / 0.4	1.1e-20 / 0.56
CACNA1A	P2RX4	0.0174/0.53	0.0027 / 0.41	9.4e-23 / 0.36
CACNA1A	TMSB10	0.0146 / 0.55	6e-04 / 0.47	5.4e-13 / 0.27
POLB	EEF2K	0.0246 / 0.49	0.0031/0.4	2.3e-19 / 0.39
COIL	PCSK4	0.0243 / 0.50	0.0019/0.42	4.6e-18 / 0.28
MYCBPAP	PCSK4	0.0060 / 0.72	0.00093 / 0.45	2.4e-19 / 0.29
COIL	IZUMO4	0.0324 / 0.47	0.00059 / 0.47	1.5e-13 / 0.33
OTUR2	IZUM04	0.0269 / 0.49	0.0021 / 0.42	9.1e-14 / 0.33
BRAP	IZUM04	0.0269 / 0.49	0.00016/0.52	9.2e-15 / 0.34
COL	ZFR?	0.0161 / 0.54	0.001 / 0.45	9.8e-15 / 0.25
ACREP	ZFR2	0.0323 / 0.47	9e-06 / 0.63	3.9e-12/0.31
CCDC87	COL	0.0234 / 0.50	0.0018 / 0.43	5e-15 / 0.26
ECDC07 FAM71E1	COIL	0.023470.50	0.0018 / 0.45	$4.2e_{-10}/0.20$
	OTUP2	0.0140/0.50	0.0007870.40	+.20 - 10 / 0.28
SU2DE1	ANKSE	0.0065/0.04	570.0570.56	2.0. 16 / 0.2/
5H3KF1	AINE 30	0.0144 / 0.50	5.78-0570.56 0.0001870.50	2.9e-10/0.30
LKWDI	DRAP	0.0198 / 0.52	0.00018/0.52	1.4e-12/0.31
KDM4D	BKAP	0.0083/0.64	0.0041/0.39	1.6e-09 / 0.27
MMD2		0.01/1/0.53	0.0001970.51	3.6e-13/0.27
AGBL5	LKWDI	0.0094 / 0.62	0.0061/0.37	1.7e-18/0.39
KDM4D	FAM71E1	0.0234 / 0.50	0.0019 / 0.42	1.1e-12 / 0.43

Gene	Gene	FANTOM5	Yang el al.	Evo-devo
		P -value / Effect size ε	P -value / Effect size ε	P -value / Effect size ε
	1 . 7	0.0100.10.65	0.0022.40.50	2.2.15.(0.20
Megf11	Lin/a	0.0108 / 0.65	0.002370.58	3.3e-15 / 0.28
Ttil7	Tbkl	0.0261 / 0.49	0.013/0.45	1.3e-09 / 0.26
Bphl	AvprIa	0.0260 / 0.49	0.05/0.35	2.6e-15 / 0.34
Kctd17	B4galnt1	0.0233 / 0.51	0.017 / 0.43	1.6e-13 / 0.26
Als2	Itga7	0.0195 / 0.53	0.0044 / 0.52	1.9e-19 / 0.38
Slco4a1	Itga7	0.0134 / 0.58	0.024 / 0.41	1e-17 / 0.36
Eml1	Lama4	0.0188 / 0.53	0.0038 / 0.53	5.1e-31 / 0.3
Nxn	Slc16a10	0.0122 / 0.61	0.0016 / 0.62	1.1e-30 / 0.4
Reep6	Prmt2	0.0302 / 0.48	0.041 / 0.37	1.1e-08 / 0.33
Ror1	Prmt2	0.0146 / 0.58	0.0075 / 0.48	1.2e-13 / 0.43
Wdr81	Dip2a	0.0148 / 0.58	0.046 / 0.36	3.1e-17 / 0.3
Ulk4	Pcsk4	0.0260 / 0.49	0.0094 / 0.47	8.3e-15 / 0.28
Fnbp1	Ascl1	0.0184 / 0.54	0.027 / 0.4	2.6e-13 / 0.26
Diras2	Apaf1	0.0269 / 0.49	0.00099 / 0.68	2.5e-09 / 0.34
B3galnt1	Fzd2	0.0233 / 0.51	0.029 / 0.39	3.7e-22 / 0.56
Cerk	Fads6	0.0125 / 0.61	0.00082 / 0.7	8.2e-17 / 0.3
Rfx2	Mafg	0.0134 / 0.58	0.0046 / 0.51	3.8e-13 / 0.31
Lin54	Fn3k	0.0206 / 0.52	0.038 / 0.37	1.2e-22 / 0.34
Slc9a3	Stk10	0.0155 / 0.56	0.007 / 0.49	9.3e-13 / 0.26
Bmp1	Stk10	0.0261 / 0.49	0.025/0.4	1.6e-12/0.3
Exph5	Stk10	0.0250/0.50	0.0094 / 0.47	9e-12/0.29
Iagan2	Dusp18	0.0190/0.53	0.00097/0.68	2.6e-14/0.44
Tto7b	Mtfn1	0.0173 / 0.55	0.039 / 0.37	$1.2e_{-}08/0.33$
Marveld2	Cede69	0.0097 / 0.72	0.026/0.4	1.6e-16 / 0.35
Marveroz Nom3	Tufain1	0.0051/0.72	0.015 / 0.44	8.0e 12 / 0.29
Npili3	David 1	0.023170.30	0.013 / 0.44	3.96 - 1270.29
Stam2	PIT11 Cuadal	0.025770.50	0.03/0.39	2.7e-0970.34
Sh50p4		0.0113/0.65	0.0270.42	2.5e-10/0.57
SIC14a1	Ttc/b	0.0178/0.54	0.004 / 0.53	1.1e-19/0.32
Stk17b	510983	0.0206/0.52	0.011/0.45	1.1e-15/0.28
Evc2	Iqgap2	0.0151/0.57	0.0084/0.4/	9.1e-22/0.34
GIb112	Fam10/a	0.009770.76	0.041/0.37	1e-18/0.31
Stap2	Itgb7	0.0378/0.46	0.027 / 0.4	5.1e-17 / 0.26
Rbpms	Map3k12	0.0260 / 0.50	0.0032 / 0.54	7.6e-15 / 0.28
Fgf7	Khdrbs3	0.0343 / 0.47	0.0034 / 0.54	1.5e-21 / 0.4
Pxn	Khdrbs3	0.0151 / 0.57	0.028 / 0.4	4.5e-16 / 0.34
T111	Khdrbs3	0.0177 / 0.54	0.0034 / 0.54	1.8e-20 / 0.39
Exph5	Khdrbs3	0.0260 / 0.49	0.022 / 0.41	2.9e-21 / 0.29
Stat4	Chrac1	0.0221 / 0.51	0.015 / 0.44	8.9e-21 / 0.29
Sema7a	Grina	0.0325 / 0.47	0.0037 / 0.53	8.1e-14 / 0.43
St6galnac6	Mgat3	0.0122 / 0.61	0.029 / 0.39	7.4e-28 / 0.28
Rnd3	Fgf12	0.0325 / 0.47	0.0068 / 0.49	2.1e-19 / 0.52
Cdon	Tmem44	0.0162 / 0.56	0.002 / 0.59	1.5e-11 / 0.29
Chst10	Hagh	0.0119 / 0.62	0.019 / 0.42	1.3e-14 / 0.27
Stk17b	Stap2	0.0268 / 0.49	0.0061 / 0.49	7.3e-11 / 0.28
Ahcyl1	Arhgap28	0.0113 / 0.64	0.024 / 0.41	1.2e-09 / 0.35
Kifap3	Ltbp1	0.0097 / 0.73	0.031 / 0.39	5.6e-27 / 0.28
Etfb	Cdca5	0.0122 / 0.61	0.024 / 0.41	1.2e-13 / 0.32
Chmp4b	Prdx5	0.0214 / 0.51	0.013 / 0.44	4.5e-10 / 0.36
Lonrf2	Prrx1	0.0195 / 0.53	0.024 / 0.4	5.7e-24 / 0.36
Slc4a3	Prrx1	0.0236 / 0.51	0.0031/0.55	6.3e-21 / 0.33
Amotl2	Mcm3	0.0188 / 0.53	0.018 / 0.43	3.1e-12/0.3
Exph5	Stk17b	0.0260 / 0.49	0.0026 / 0.56	2.1e-14 / 0.32
Megf11	Als2	0.0168 / 0.55	0.015 / 0.44	5.6e-21 / 0.55
Arhoan33	Pak6	0.0333/0.47	0.0077 / 0.48	4.1e-10/0.36
Stam?	Nusan1	0.0237 / 0.50	0.0075 / 0.48	9.9e-17 / 0.35
Inpp50	Shf	0.0115 / 0.63	0.03 / 0.30	7.86-15/0.33
Snapin	Xrn2	0.0361 / 0.05	0.007 0.09	5 66-07 / 0.33
Coord	Slco/o1	0.0184 / 0.54	0.00197 0.01	0.30-16/0.29
Dtaf	Ochole	0.0164 / 0.54	0.0040/0.52	10.00/0.24
Pigif	Mont-9:1	0.02/9/0.49	0.040/0.30	16-09/0.20
Bnc2	маркопрі	0.0100 / 0.65	0.015/0.45	1.0e-10/0.2/
Vamp8	Spata6	0.0134 / 0.60	0.004 / 0.53	2./e-12/0.25

Table S2: A total of 241 reproducible second-order rewired gene pairs between mouse ectoderm and primitive streak derived tissue types. Gene pairs with their second-order differential P-values and effect sizes ε are shown as obtained from FANTOM5, Yang et al. and Evo-devo datasets, respectively.

Reln	Pik3r3	0.0173 / 0.55	0.016 / 0.43	1.6e-13 / 0.26
Rps5	Prkcz	0.0206 / 0.52	0.0032 / 0.55	6.1e-16 / 0.29
Pgm211	Mcm7	0.0098 / 0.69	0.018 / 0.43	1.4e-21 / 0.4
Yipf2	Gpr146	0.0281 / 0.49	0.025 / 0.4	3.6e-08 / 0.32
Cx3cl1	Ctbp2	0.0134 / 0.59	0.0052 / 0.51	3e-21 / 0.33
Fam98c	Pwwp2b	0.0132 / 0.60	0.046 / 0.36	3.2e-19 / 0.38
Clmn	Zbtb39	0.0314 / 0.48	0.034 / 0.38	1.1e-06 / 0.28
Sfxn2	Pcbd1	0.0113 / 0.63	0.02 / 0.42	3.2e-16 / 0.29
Atxn3	Pcsk4	0.0206 / 0.52	0.029 / 0.39	4.9e-25 / 0.27
Nphp1	Mex3d	0.0206 / 0.52	0.018 / 0.42	5.6e-10 / 0.27
Rnf32	Mex3d	0.0260 / 0.49	0.042 / 0.37	5.4e-10 / 0.27
Odf2	Psmc3ip	0.0206 / 0.52	0.015 / 0.44	1.6e-14 / 0.27
Ttc21b	Wdpcp	0.0206 / 0.52	0.0027 / 0.56	1.1e-16 / 0.26
Shroom1	Sec24a	0.0223/0.51	0.0023 / 0.58	1.6e-16 / 0.48
Itgal	Myolg	0.0260 / 0.49	0.005970.5	6.1e-1//0.35
Upf3a Decl11e	Ap2b1 Thu2	0.0260 / 0.49	0.049/0.36	1.3e-14 / 0.33
Clin2	I DX2	0.0165 / 0.55	0.00470.33	1.7e-2070.33
Cup2 Copk	Itgas	0.0149/0.57	0.04870.36	7.20.14 (0.27
Acrbp	Atyn3	0.02007 0.32	0.01970.42	1.2e - 14 / 0.27
Fam118h	Atxn3	0.0206 / 0.52	0.0048/0.51	2 8e-20 / 0 29
Ctsa	Ddx24	0.0240/0.52	0.029/0.39	6e-13/031
Nkanl	Cenk	0.0260/0.49	0.0041 / 0.52	7 2e-14 / 0.27
Cep72	Cenk	0.0260 / 0.49	0.009 / 0.47	5.7e-10/0.27
Phf7	Cenk	0.0260 / 0.49	0.019 / 0.42	9.3e-13 / 0.41
Ddhd1	Ccnk	0.0260 / 0.49	0.0071/0.48	7.2e-14 / 0.27
Ropn11	Ccnk	0.0260 / 0.49	0.0041 / 0.52	7.5e-12 / 0.29
Chrac1	Ccnk	0.0260 / 0.49	0.0076 / 0.48	1.3e-14 / 0.33
Ypel1	Ccnk	0.0206 / 0.52	0.032 / 0.39	1.3e-14 / 0.33
Tctex1d2	Ccnk	0.0260 / 0.49	0.0016 / 0.62	1.3e-14 / 0.33
Lca51	Ccnk	0.0260 / 0.49	0.0041 / 0.52	7.2e-14 / 0.27
Efhb	Ccnk	0.0260 / 0.49	0.0041 / 0.52	7.2e-14 / 0.27
Cabyr	Ccnk	0.0260 / 0.49	0.0019 / 0.59	7.2e-14 / 0.27
Spata24	Ccnk	0.0260 / 0.49	0.019 / 0.42	7.2e-14 / 0.27
Ccdc87	Ccnk	0.0206 / 0.52	0.045 / 0.36	7.2e-14 / 0.27
Spata17	Ccnk	0.0177 / 0.54	0.045 / 0.36	7.2e-14 / 0.27
Ppp1r42	Ccnk	0.0260 / 0.49	0.0041 / 0.52	7.2e-14 / 0.27
Nphp1	Ccnk	0.0206 / 0.52	0.0015 / 0.62	7.5e-11 / 0.38
Kif3b	Ccnk	0.0260 / 0.49	0.0022 / 0.58	7.2e-14 / 0.27
Wfdc3	Ccnk	0.0260 / 0.49	0.0076 / 0.48	1.3e-14 / 0.33
Ddx20	Ccnk	0.0206 / 0.52	0.012 / 0.45	1.3e-14 / 0.33
Lrriq3	Ccnk	0.0260 / 0.49	0.0019 / 0.59	1.3e-14 / 0.33
Lrrc34	Ccnk	0.0260 / 0.49	0.0026 / 0.56	1.3e-14 / 0.33
Sclt1	Ccnk	0.0206/0.52	0.0042/0.52	1.5e-15 / 0.46
Fhad	Cenk	0.0260/0.49	0.0042/0.52	1.5e-15 / 0.46
Aptx Wd-21	Cenk	0.01///0.54	0.04570.36	7.5e-12/0.29
W dr51	Cenk	0.020670.52	0.0019/0.59	1.3e-14/0.33
Pnf22	Conk	0.0260 / 0.49	0.00297 0.33	7.50.11/0.33
Ccdc96	Cenk	0.0260 / 0.49	0.0026 / 0.56	7.3e-14/0.33
Amn1	Cenk	0.0260 / 0.49	0.046 / 0.36	1.2e - 14 / 0.27
Fank1	Cenk	0.0206 / 0.52	0.0026 / 0.56	$7.2e_{-}14/0.27$
Wdr93	Cenk	0.0260/0.49	0.009 / 0.47	7.5e-12/0.29
Ankrd42	Cenk	0.0260 / 0.49	0.0026 / 0.56	1.5e-15/0.46
Txnl4b	Ccnk	0.0260 / 0.49	0.045 / 0.36	1.3e-14 / 0.33
Polb	Ccnk	0.0260 / 0.49	0.0029 / 0.55	7.2e-14 / 0.27
Lrp2bp	Ccnk	0.0260 / 0.49	0.045 / 0.36	1.3e-14 / 0.33
Kdm4d	Ccnk	0.0260 / 0.49	0.0026 / 0.56	7.2e-14 / 0.27
Fam118b	Ccnk	0.0260 / 0.49	0.019/0.42	1.3e-14 / 0.33
Spa17	Ccnk	0.0260 / 0.49	0.034 / 0.38	1.3e-14 / 0.33
Efhc2	Ccnk	0.0260 / 0.49	0.0026 / 0.56	1.3e-14 / 0.33
Ttc21b	Hspa2	0.0260 / 0.49	0.0066 / 0.49	3.7e-23 / 0.26
Ttc21b	Wdr35	0.0260 / 0.49	0.0059 / 0.5	1.4e-24 / 0.32
Pomt1	Zc3h14	0.0206 / 0.52	0.037 / 0.38	1.4e-12 / 0.25
Sh3gl3	Pik3r1	0.0206 / 0.52	0.0042 / 0.52	9.5e-19 / 0.37
Ulk4	Nkapl	0.0260 / 0.49	0.0089 / 0.47	7.9e-16 / 0.29
Pter	Bphl	0.0206 / 0.52	0.0025 / 0.57	2.4e-12 / 0.41
Upf3a	Cep72	0.0260 / 0.49	0.034 / 0.38	5.7e-10/0.27

Polb	Cep72	0 0260 / 0 49	0.034/0.38	1 9e-25 / 0 27
Ccdc87	Phf7	0.0206 / 0.52	0.011/0.46	1.7e-12/0.25
Xkr8	Phf7	0.0206 / 0.52	0.0029 / 0.55	7.1e-12 / 0.29
Upf3a	Phf7	0.0260 / 0.49	0.004 / 0.53	9.3e-13 / 0.41
Fam118b	Phf7	0.0260 / 0.49	0.035 / 0.38	7.1e-12 / 0.29
Ddx20	Ddhd1	0.0206 / 0.52	0.04 / 0.37	7.2e-29 / 0.29
Lyar	Ddhd1	0.0260 / 0.49	0.026 / 0.4	2e-30 / 0.3
Ulk4	Ddhd1	0.0260 / 0.49	0.016 / 0.43	1.4e-19 / 0.32
Ribc1	Ddhd1	0.0206 / 0.52	0.014 / 0.44	4e-22 / 0.25
Upf3a	Ropn11	0.0260 / 0.49	0.0088 / 0.47	7.5e-12 / 0.29
Amotl2	Racgap1	0.0373 / 0.46	0.011 / 0.46	7.1e-14 / 0.43
Sclt1	Ypel1	0.0162 / 0.56	0.024 / 0.41	7.5e-15 / 0.33
Ift172	Ypel1	0.0206 / 0.52	0.0059 / 0.5	3.9e-24 / 0.31
Upf3a	Ypel1	0.0206 / 0.52	0.0063 / 0.49	1.3e-14 / 0.33
Ribc1	Ypel1	0.0162 / 0.56	0.0066 / 0.49	8.5e-16 / 0.25
Ttc21b	Tctex1d2	0.0260 / 0.49	0.046 / 0.36	6.8e-18 / 0.27
Xkr8	Tctex1d2	0.0206 / 0.52	0.015 / 0.44	1.3e-16 / 0.26
Aptx	Tctex1d2	0.0177 / 0.54	0.029 / 0.39	8.8e-16 / 0.25
Tesk1	Tctex1d2	0.0206 / 0.52	0.017 / 0.43	5e-28 / 0.34
Ift172	Tctex1d2	0.0260 / 0.49	0.049 / 0.35	1.3e-23 / 0.31
Upf3a	Tctex1d2	0.0260 / 0.49	0.035 / 0.38	1.3e-14 / 0.33
Ssr4	Tctex1d2	0.0237 / 0.50	0.035 / 0.38	1.7e-29 / 0.29
Btbd3	Fstl1	0.0097 / 0.77	0.0042 / 0.52	6.1e-22 / 0.41
Ddx20	Lca51	0.0206 / 0.52	0.023 / 0.41	1.4e-22 / 0.25
Etfb	Sod2	0.0134 / 0.59	0.0097 / 0.46	1.2e-31 / 0.36
Aptx	Tbp	0.0177 / 0.54	0.037 / 0.38	1.1e-19 / 0.28
Ulk4	Tbp	0.0260 / 0.49	0.0016 / 0.62	3e-15 / 0.33
Zdhhc4	Mapk14	0.0349 / 0.47	0.021 / 0.42	1.3e-14 / 0.33
Ulk4	Efhb	0.0260 / 0.49	0.0089 / 0.47	2.6e-14 / 0.27
Upf3a	Cabyr	0.0260 / 0.49	0.004 / 0.53	7.2e-14 / 0.27
Svip	Camk4	0.0325 / 0.47	0.023 / 0.41	3.1e-23 / 0.35
Odf2	Spata24	0.0206 / 0.52	0.019 / 0.42	7.6e-17 / 0.3
Btbd3	Ppic	0.0190 / 0.53	0.014 / 0.44	2.4e-19 / 0.28
Upf3a	Ccdc87	0.0206 / 0.52	0.02/0.42	7.2e-14 / 0.27
Upf3a	Spata17	0.0177 / 0.54	0.02/0.42	7.2e-14 / 0.27
Xkr8	Efhc1	0.0206 / 0.52	0.016 / 0.43	2.8e-10/0.27
Sclt1	Stk36	0.0206/0.52	0.012/0.45	1.1e-15/0.34
Aptx	Stk36	0.017770.54	0.015 / 0.44	5e-18/0.27
Pold	StK30	0.0260/0.49	0.007370.48	9.86-23 / 0.26
Ankrd49	Mydil Den 1a42	0.0162 / 0.56	0.034 / 0.38	1.4e-12/0.41
Odf2	Ppp1r42	0.0260/0.49	0.008870.47	7.2e-14 / 0.2/
Vlr9	Nphp1	0.0162 / 0.56	0.009/0.47	1.1e-12/0.41
Typl/h	Nphp1	0.010270.50	0.017/0.43	4.26-11/0.28
Linf3a	Nphp1	0.0206 / 0.52	0.045/0.50	7.50.11/0.27
Col4a1	Rphp1 Btbd3	0.020070.52	0.03470.38	1.3e-11/0.38
Col4a2	Btbd3	0.0154/0.56	0.0022/0.58	$3.3e_{-}21/0.4$
Odf2	Kif3b	0.0206/0.52	0.017/0.43	7.6e-17/0.3
Sclt1	Kif3b	0.0206/0.52	0.046 / 0.36	2.2e-16/0.29
Upf3a	Kif3b	0.0260 / 0.49	0.019 / 0.42	7.2e-14 / 0.27
Amn1	Wfdc3	0.0260 / 0.49	0.012/0.45	9.4e-17 / 0.26
Ulk4	Wfdc3	0.0260 / 0.49	0.015 / 0.43	6.4e-15 / 0.33
Ribc1	Wfdc3	0.0206 / 0.52	0.015 / 0.44	2.9e-18 / 0.27
Gpr160	Tprn	0.0362 / 0.46	0.0049 / 0.51	4.1e-09 / 0.34
Xkr8	Odf2	0.0162 / 0.56	0.017 / 0.43	2.1e-16 / 0.35
Amn1	Odf2	0.0206 / 0.52	0.0026 / 0.56	5.8e-17 / 0.35
Wdr62	Odf2	0.0206 / 0.52	0.0061 / 0.49	1.1e-16 / 0.29
Ulk4	Odf2	0.0206 / 0.52	0.0015 / 0.63	2.3e-17 / 0.49
Fgfr1	Fam171a1	0.0167 / 0.55	0.038 / 0.37	2.5e-26 / 0.45
Gdi1	Pomt1	0.0260 / 0.49	0.047 / 0.36	1.9e-12 / 0.25
Tbx18	Casq2	0.0380 / 0.46	0.045 / 0.36	2.3e-17 / 0.27
Xkr8	Ddx20	0.0162 / 0.56	0.0066 / 0.49	4.4e-18 / 0.27
Iqce	Ddx20	0.0206 / 0.52	0.026 / 0.4	1.8e-16 / 0.26
Rnf32	Ddx20	0.0206 / 0.52	0.015 / 0.44	5.2e-10 / 0.27
Upf3a	Ddx20	0.0206 / 0.52	0.026 / 0.4	1.3e-14 / 0.33
Ribc1	Ddx20	0.0162 / 0.56	0.023 / 0.41	7.2e-16 / 0.25
Fancd2	Sass6	0.0244 / 0.50	0.0012 / 0.65	4.1e-17 / 0.26
Upf3a	Lrriq3	0.0260 / 0.49	0.004 / 0.53	1.3e-14 / 0.33

Xkr8	Sclt1	0.0162 / 0.56	0.0073 / 0.48	4e-15 / 0.33
Tesk1	Sclt1	0.0162 / 0.56	0.016 / 0.43	8.3e-17 / 0.35
Styx11	Sclt1	0.0349 / 0.47	0.0055 / 0.5	5.1e-15 / 0.33
Rnf32	Sclt1	0.0206 / 0.52	0.0055 / 0.5	7.5e-11 / 0.38
Lrrc56	Sclt1	0.0206 / 0.52	0.012 / 0.45	1.3e-14 / 0.27
Wdr62	Sclt1	0.0206 / 0.52	0.025 / 0.4	3.1e-17 / 0.3
Txnl4b	Sclt1	0.0206 / 0.52	0.0032 / 0.54	1.2e-14 / 0.33
Lrp2bp	Sclt1	0.0206 / 0.52	0.0032 / 0.54	3.6e-15 / 0.33
Lrrc49	Sclt1	0.0206 / 0.52	0.0059 / 0.5	2e-10 / 0.27
Ribc1	Sclt1	0.0162 / 0.56	0.011 / 0.46	1.6e-16 / 0.35
Zdhhc4	Slc50a1	0.0349 / 0.47	0.021 / 0.42	1.3e-14 / 0.33
Tollip	Slc50a1	0.0349 / 0.47	0.038 / 0.37	4.2e-09 / 0.25
Ankrd42	Xkr8	0.0206 / 0.52	0.0042 / 0.52	1.3e-14 / 0.33
Ulk4	Xkr8	0.0206 / 0.52	0.035 / 0.38	4.9e-15 / 0.33
Upf3a	Aptx	0.0177 / 0.54	0.02 / 0.42	7.5e-12 / 0.29
Lrp2bp	Aptx	0.0177 / 0.54	0.02 / 0.42	1.1e-19 / 0.28
Gdi1	Aptx	0.0177 / 0.54	0.0048 / 0.51	3.6e-10 / 0.27
Rnf32	Tesk1	0.0206 / 0.52	0.026 / 0.4	5.5e-10 / 0.27
Upf3a	Tesk1	0.0206 / 0.52	0.045 / 0.36	1.3e-14 / 0.33
Gdi1	Tesk1	0.0206 / 0.52	0.0015 / 0.63	5.4e-13 / 0.31
Fancd2	Cdc7	0.0168 / 0.55	0.014 / 0.44	1.4e-14 / 0.33
Ulk4	Tchp	0.0206 / 0.52	0.0032 / 0.54	1.7e-12 / 0.3
Upf3a	Iqce	0.0260 / 0.49	0.035 / 0.38	1.3e-14 / 0.33
Ift172	Rnf32	0.0260 / 0.49	0.02 / 0.42	2.6e-12 / 0.3
Upf3a	Rnf32	0.0260 / 0.49	0.004 / 0.53	7.5e-11 / 0.38
Arih2	Rnf32	0.0260 / 0.49	0.021 / 0.41	5.1e-10 / 0.27
Txnl4b	Agbl5	0.0206 / 0.52	0.0033 / 0.54	2.9e-16 / 0.26
Amn1	Ift172	0.0260 / 0.49	0.0032 / 0.54	7.5e-21 / 0.29
Ulk4	Ift172	0.0260 / 0.49	0.005 / 0.51	3e-15 / 0.33
Txnl4b	Amn1	0.0260 / 0.49	0.029 / 0.39	1.6e-16 / 0.26
Upf3a	Amn1	0.0260 / 0.49	0.0055 / 0.5	1.3e-14 / 0.33
Arih2	Amn1	0.0260 / 0.49	0.0048 / 0.51	1.6e-16 / 0.26
C2cd3	Kdm3a	0.0239 / 0.50	0.021 / 0.41	2.6e-08 / 0.32
Amotl2	Lig1	0.0369 / 0.46	0.044 / 0.36	9.7e-16 / 0.34
Upf3a	Wdr93	0.0260 / 0.49	0.0029 / 0.55	7.5e-12 / 0.29
Ribc1	Ankrd42	0.0206 / 0.52	0.0059 / 0.5	1.3e-14 / 0.33
Upf3a	Txnl4b	0.0260 / 0.49	0.0022 / 0.58	1.3e-14 / 0.33
Lrp2bp	Upf3a	0.0260 / 0.49	0.02 / 0.42	1.3e-14 / 0.33
Ulk4	Upf3a	0.0260 / 0.49	0.0032 / 0.54	1.5e-15 / 0.46
Fam118b	Upf3a	0.0260 / 0.49	0.004 / 0.53	1.3e-14 / 0.33
Spa17	Upf3a	0.0260 / 0.49	0.035 / 0.38	1.3e-14 / 0.33
Ulk4	Polb	0.0260 / 0.49	0.032 / 0.39	1.7e-19 / 0.32
Fam118b	Lrp2bp	0.0260 / 0.49	0.011 / 0.46	6.2e-20 / 0.28
Ribc1	Fam118b	0.0206 / 0.52	0.0048 / 0.51	3.7e-18 / 0.27

Gene	Gene	FANTOM5	Yang el al.	Evo-devo
		P -value / Effect size ε	P -value / Effect size ε	P -value / Effect size ε
	TMEM200A	0.042/0.57	0.019 / 0.52	9.2. 11 / 0.25
PKP3	I MEM200A	0.042/0.57	0.018 / 0.52	8.3e-11/0.35
PKP3	UNC5B	0.042/0.5/	0.0085 / 0.59	1.4e-10/0.35
USI	ISPAN15	0.02770.73	0.0054 / 0.63	0.00034/0.2/
TACC1	UST	0.047 / 0.55	0.015 / 0.54	0.00047/0.26
NRIP2	SASH1	0.042 / 0.56	0.036 / 0.46	1.2e-08 / 0.31
ST6GALNAC5	PGAM2	0.027 / 0.75	0.0016 / 0.77	2.5e-11 / 0.49
HSPA12A	XRCC3	0.027 / 0.80	0.012 / 0.56	6.1e-09 / 0.32
EPHB2	INF2	0.027 / 0.68	0.0076 / 0.6	2.4e-07 / 0.38
ETS2	TIAM1	0.040 / 0.58	0.0045 / 0.65	2e-15 / 0.58
SEL1L3	ETS2	0.027 / 0.79	0.017 / 0.53	7.5e-16 / 0.59
FZD7	SH3BGR	0.034 / 0.61	0.0058 / 0.63	1.4e-14 / 0.41
SHF	SH3BGR	0.042 / 0.56	0.0022 / 0.73	2.7e-14 / 0.56
FOXP1	SH3BGR	0.027 / 0.75	0.011 / 0.56	1.4e-17 / 0.46
SNRK	SH3BGR	0.027 / 0.68	0.028 / 0.49	5.5e-14 / 0.55
ADRB1	TNFSF9	0.034 / 0.60	0.0029 / 0.69	1.1e-10 / 0.47
CCDC88B	ALDH1A1	0.027 / 0.75	0.0034 / 0.68	8.7e-10 / 0.33
PTPN9	TOMM40L	0.042 / 0.57	0.012 / 0.56	5.7e-09 / 0.43
SLC31A2	CAPN3	0.028 / 0.67	0.01 / 0.57	1.2e-11/0.37
SH3BGRL	F3	0.042 / 0.57	0.019 / 0.51	9.8e-12 / 0.5
TMSB10	ZMAT3	0.034 / 0.60	0.019/0.52	5.5e-10 / 0.45
CCDC120	TNC	0.044 / 0.56	0.033/0.47	0.00035/0.27
SMPD3	KNDC1	0.028 / 0.66	0.016/0.53	6.4e-08/0.3
MYBBP1A	NACA	0.034/0.61	0.0064/0.61	1.4e-05/0.32
ANKRD46	NCOA7	0.034/0.61	0.041/0.45	$9.2e_{-}09/0.42$
SBK1	CNKSR3	0.048 / 0.54	0.0011/0.82	2.7e-06 / 0.26
ACVB1	DDED	0.028 / 0.64	0.0096 / 0.50	0.00017 / 0.28
AC IFI		0.028 / 0.04	0.008670.39	0.0001770.28
INTIN4	FNID SDOCK2	0.028/0.08	0.001070.70	2.10-11/0.30
SMARCALI	SPUCK2	0.049/0.34	0.026 / 0.49	1.5e-08 / 0.42
SLC/A0	DCDD2	0.02770.73	0.03770.46	36-04/0.27
EMLI	PCBP3	0.040 / 0.57	0.0024 / 0.71	3.6e-09/0.43
AQP/	PCBP3	0.040/0.57	0.018 / 0.52	2.2e-0770.29
BMPI	NTN4	0.027/0.69	0.019/0.52	2.2e-09/0.44
CERK	TTYH2	0.027 / 0.68	0.0011/0.82	3.6e-08 / 0.4
SGPP2	TTYH2	0.027 / 0.70	0.023 / 0.5	1.3e-07 / 0.29
GNAL	UBE2O	0.043 / 0.56	0.012 / 0.56	5.4e-06 / 0.34
LRRC10B	RAB40B	0.047 / 0.55	0.045 / 0.44	4.4e-07 / 0.28
FGF7	STK10	0.028 / 0.64	0.004 / 0.66	1.2e-11 / 0.5
PTPN18	TRIM7	0.049 / 0.54	0.044 / 0.44	1.4e-08 / 0.42
ARHGEF37	SLC22A4	0.042 / 0.57	0.01 / 0.57	2.3e-11/0.36
PCDHB12	TRPV2	0.040 / 0.57	0.016 / 0.53	1.4e-08 / 0.26
ENPP2	KCNAB3	0.041 / 0.57	0.0095 / 0.58	1.5e-08 / 0.41
HSPB8	RNF43	0.028 / 0.66	0.0064 / 0.61	8.8e-11 / 0.35
TMEM106B	TMEM100	0.043 / 0.56	0.009 / 0.58	2.1e-10 / 0.46
DHDDS	EML1	0.032 / 0.63	0.0016 / 0.76	1.9e-11 / 0.49
TRIM9	PTPRN2	0.034 / 0.61	0.01 / 0.57	9.4e-11 / 0.35
SFXN4	RRM2	0.032 / 0.62	0.012 / 0.56	2.8e-11 / 0.36
POLE	F13A1	0.032 / 0.62	0.017 / 0.53	4.1e-17 / 0.45
FGF7	SLC9A3	0.028 / 0.64	0.00098 / 0.85	2.9e-13 / 0.39
MAP4K1	PCSK1	0.028 / 0.64	0.045 / 0.44	5.5e-08 / 0.4
PPTC7	ITIH3	0.042 / 0.56	0.0024 / 0.71	4.8e-07 / 0.28
LPCAT4	ENPP2	0.028 / 0.64	0.039 / 0.45	0.00029 / 0.27
LCAT	ENPP2	0.028 / 0.64	0.0038 / 0.66	1.1e-08 / 0.42
GPN1	LRRC24	0.040 / 0.57	0.0031 / 0.69	1.6e-08 / 0.31
SDR42E1	SLC7A4	0.034 / 0.59	0.037 / 0.46	2.6e-16 / 0.27
FBXO2	PIGP	0.040 / 0.57	0.034 / 0.47	5.2e-16 / 0.43
DHDDS	MRPS34	0.034 / 0.61	0.04 / 0.45	1.3e-05 / 0.32
GNAI3	RPUSD1	0.034 / 0.59	0.043 / 0.44	6.8e-09 / 0.42
ALS2	ADAMTS10	0.028 / 0.64	0.0063 / 0.62	3.9e-11/0.36
TRO	NRXN1	0.028 / 0.65	0.034 / 0.47	8.1e-08 / 0.29
ABCG4	PCDHB12	0.034 / 0.59	0.043 / 0.45	4.3e-18 / 0.64
	GNAL	0.027 / 0.67	0.043 / 0.44	6.9e-05 / 0.20
ADAPT	JINL	0.02770.07	0.0407.0.44	0.70-037 0.29

Table S3: A total of 85 reproducible second-order rewired gene pairs between human and mouse ectoderm derived tissue types. Gene pairs with their second-order differential P-values and effect sizes ε are shown as obtained from FANTOM5, Yang et al. and Evo-devo datasets, respectively.

CKS1B	PHLPP1	0.027 / 0.67	0.03 / 0.48	6.5e-10 / 0.45
ARRDC4	KCNJ10	0.027 / 0.67	0.037 / 0.46	1.8e-08 / 0.41
DISP2	BPNT1	0.032 / 0.62	0.03 / 0.48	5e-14 / 0.4
DHDDS	PLEKHM3	0.032 / 0.63	0.012/0.56	1.6e-12 / 0.52
CSRNP3	DNER	0.034 / 0.62	0.03 / 0.48	0.00027 / 0.27
RHOF	NGEF	0.047 / 0.55	0.025 / 0.5	3e-07 / 0.28
ARRDC4	RCN1	0.035 / 0.59	0.0033 / 0.68	1.3e-13 / 0.54
SS18L1	SLC12A6	0.043 / 0.56	0.0081 / 0.59	1.5e-14 / 0.41
PXN	FGF7	0.034 / 0.59	0.016 / 0.53	3.7e-14 / 0.55
TLL1	FGF7	0.042 / 0.57	0.0022 / 0.73	0.00019 / 0.28
PPP1R3F	DTD1	0.032 / 0.62	0.036 / 0.46	6.8e-15 / 0.42
TBCEL	SS18L1	0.040 / 0.58	0.037 / 0.46	4.3e-07 / 0.37
GPRC5B	ARHGAP15	0.027 / 0.67	0.013 / 0.55	1.3e-09 / 0.33
DLAT	BCL9	0.027 / 0.67	0.018 / 0.52	1.4e-05 / 0.32
MAST3	RAVER2	0.039 / 0.58	0.0085 / 0.59	2.9e-11 / 0.49
AQP7	DHDDS	0.032 / 0.63	0.011 / 0.56	1.3e-08 / 0.31
HS3ST1	GALNT12	0.032 / 0.62	0.006 / 0.62	2.6e-14 / 0.34
MAP4K1	SLC24A2	0.028 / 0.64	0.0069 / 0.61	1.6e-11 / 0.49
TMEM123	LRRC8B	0.027 / 0.78	0.012 / 0.56	1.6e-07 / 0.29
TUBGCP2	FLT1	0.042 / 0.57	0.026 / 0.49	2.5e-05 / 0.31
TMEM135	ENO2	0.043 / 0.56	0.006 / 0.62	6.4e-19 / 0.47
NELL1	SCRN1	0.041 / 0.57	0.012 / 0.55	1.2e-09 / 0.33
ENPP6	ARRDC4	0.029 / 0.64	0.01 / 0.57	3e-09 / 0.43
ABHD8	TMCO3	0.028 / 0.65	0.038 / 0.46	1e-20 / 0.37

Gene	Gene	FANTOM5	Yang el al.	Evo-devo
		$P\text{-value}$ / Effect size ε	$P\text{-value}$ / Effect size ε	$P\text{-value}$ / Effect size ε
MBD1	PFN4	0.0147 / 0.50	$3.2e_{-}05/0.39$	1e-07 / 0 27
PIAS2	MBD1	0.0147 / 0.50	0.00013 / 0.47	2e-07 / 0.27
AGBL5	MBD1	0.0147 / 0.50	0.00013 / 0.47	2e-07 / 0.27 2e-07 / 0.27
ACREP	MBD1	0.0090 / 0.53	4 5e-05 / 0 51	2 7e-07 / 0.27
FAM71F1	MBD1	0.0147 / 0.50	4.5e-05 / 0.51	$2.7e_{-07} / 0.26$
RAREPK	PSMC3IP	0.0088 / 0.53	0.00057 / 0.43	3.4e-19/0.28
XKR8	AMZ2	0.0063 / 0.55	0.00045 / 0.34	$8.4e_{-}28/0.29$
PI K4	FBX048	0.0063 / 0.57	0.0027 / 0.37	$3.9e_{-}18/0.32$
TACC3	FBX048	0.0281 / 0.46	0.002/70.37	$1.6e_{-}21/0.35$
FZH2	FBXO48	0.0281 / 0.46	0.0064 / 0.34	$3.6e_{-}19/0.33$
TTK	FBX048	0.0147 / 0.50	0.0027 / 0.37	7.4e-21/0.35
DAREDK	CDKI 3	0.0172 / 0.49	0.0051/0.35	2.9e 24 / 0.52
XKR8	CDKL3	0.0172 / 0.49	7 3e-05 / 0 49	$8.4e_{-}28/0.29$
SNAP20	COIL	0.0063 / 0.57	0.0053 / 0.35	$1.1e_{-20}/0.35$
RAREPK	COIL	0.0088 / 0.53	0.00056 / 0.43	$2.9e_{-}24/0.52$
XKR8	COIL	0.0063 / 0.55	4.6e-05 / 0.5	2.96-24 / 0.52 8 $4e_{-}28 / 0.29$
SPAG4	COIL	0.0063 / 0.57	0.0077/0.33	1.6e-07 / 0.27
RAREPK	CCNK	0.0079 / 0.54	0.00014 / 0.47	$2.3e_{-}23/0.51$
VKD8	CCNK	0.0061/0.59	4e 05 / 0 51	2.5e=2370.51
7C3H14	ACTP10	0.0061 / 0.59	46-0370.31	2 1e 10 / 0.33
TTC21P	HSDA 2	0.0061 / 0.60	0.003870.30	2.10-1970.33
DADEDV	ACVD1	0.000170.00	0.001670.39	1.5e-14/0.29
RADEPK DM20D1	AC IPI	0.0112/0.52	0.0001270.47	4.7e-2270.56
PM20D1	UOL 8	0.0241/0.4/	0.000/1/0.42	2./e-21/0.29
NEAT	NOL8	0.008070.54	0.001970.39	8.50-10/0.5
	IBP	0.0063/0.5/	0.0009370.41	1./e-23/0.2/
RABEPK	SDATA 24	0.007970.54	0.0028/0.3/	1.4e-2070.25
KABEPK	SPATA24	0.008870.53	0.001570.39	2.2e-24 / 0.52
A DI ND	SPAIA24	0.0063/0.5/	0.0002170.46	8.6e-2770.29
APLNK	PDGFRB	0.0283 / 0.46	0.001170.4	1.4e-11/0.34
AKK8 DOLE	PIAS2	0.0063/0.5/	0.0001270.48	8.4e-28 / 0.29
PULE VVD9	NDUDI	0.017270.49	0.0012/0.4	2.7e-1070.52
ADOOL	NPHPI	0.0063/0.5/	0.0001370.36	1./e-23/0.2/
APOOL	MKKS SDAC4	0.027470.46	0.003570.36	5.8e-18/0.32
KABEPK	SPAG4	0.008870.55	0.001170.4	2.26-24/0.52
FAM118B	SPAG4	0.00/2/0.55	0.002670.37	1.1e-22 / 0.36
EFHC2	SPAG4	0.0061 / 0.60	0.0018 / 0.39	5.1e-23/0.3/
TIC2IB	TCEA2	0.0060 / 0.63	6.8e-05 / 0.49	1.4e-2970.3
SCLIT	ICEA2	0.0061/0.61	0.00170.41	1.1e-21/0.26
DDX20	RABEPK	0.0063/0.5/	0.001570.39	2.9e-24 / 0.52
SCETT	RABEPK	0.007270.55	0.001270.4	2.1e-22/0.36
	RABEPK	0.007970.54	0.0006170.42	7.1e-22 / 0.26
UBXNII	RABEPK	0.007970.54	0.0005670.43	1.3e-21/0.29
LKKC8B	RABEPK	0.007270.55	0.003970.36	1.2e-23/0.3/
AGBL5	RABEPK	0.0088 / 0.53	0.0028/0.37	2.9e-24 / 0.52
PHKG2	RABEPK	0.0088 / 0.53	0.0015 / 0.39	1.7e-2070.25
FAM/IEI	RABEPK	0.0088 / 0.53	0.0015 / 0.39	1.7e-24 / 0.52
UPF3A	RABEPK	0.0088 / 0.53	0.001 / 0.41	7.2e-21/0.29
POLB	RABEPK	0.0079/0.54	0.00049/0.43	1.2e-23/0.37
FAM118B	RABEPK	0.0088 / 0.53	2.3e-05 / 0.53	1.3e-21/0.35
RWDD2A	RABEPK	0.0088 / 0.53	0.0002770.45	2.8e-10/0.32
XKR8	DDX20	0.0172 / 0.49	0.00021/0.46	8.4e-28 / 0.29
ECHS1	ST3GAL3	0.0262 / 0.46	8.9e-06 / 0.56	3.9e-14 / 0.38
TESK1	XKR8	0.0061 / 0.59	0.00075/0.42	5.9e-26 / 0.28
AGBL5	XKR8	0.0063 / 0.57	0.00012 / 0.48	8.4e-28 / 0.29
AMN1	XKR8	0.0255 / 0.46	0.00018 / 0.36	8.4e-28 / 0.29
FAM71E1	XKR8	0.0063 / 0.57	0.00021 / 0.46	5.9e-26 / 0.28
SPA17	XKR8	0.0061 / 0.59	0.00021 / 0.46	1.5e-22 / 0.27

Table S4: A total of 57 reproducible second-order rewired gene pairs between human and mouse primitive streak derived tissue types. Gene pairs with their second-order differential P-values and effect sizes ε are shown as obtained from FANTOM5, Yang et al. and Evo-devo datasets, respectively.

G Biological pathways enriched with genes in second-order rewiring during mammalian development

We found pathways that are highly enriched in genes involved in 2nd-order rewired gene interactions in all four species-tissue comparisons. We first obtained the genes involved in significant 2nd-order differential co-expressed patterns in each comparison. Then, we found the common genes among all three datasets: FANTOM5, Evo-devo and Yang el al.. The obtained common genes are then used to perform SIGORA analysis (Foroushani et al., 2013) to identify enriched pathways.

G.1 Pathways enriched in human ectoderm versus primitive streak derived tissue types

Comparison 1: Human ectoderm versus primitive streak derived tissue groups. The significant second-order differential patterns obtained from rewiring pipeline for FANTOM5 et al., Evo-devo and Yang et al. are utilized to find 4,599 common genes. The obtained genes are supplied to a R function SIGORA (Foroushani et al., 2013) which statistically links genes to pathways using a KEGG repository which contains information about all the pathways and involved genes. Using the human KEGG repository (Kanehisa and Goto, 2000) and common genes, returned 56 enriched pathways post Bonferroni correction (Dunnett, 1955) ($P \le 0.05$). Table S5, shows all 56 enriched pathways with Kegg pathway id, description, the Bonferroni adjusted p-value, number of successes and the pathway size.

Tab	le S5	: Biological	pathways	enriched	with	rewired	second-orde	r gene-	gene	differer	ıtial
patt	erns l	between hur	nan ectode	rm and p	rimiti	ive streal	k.				

KEGG Pathway ID	Description	Bonferroni	Successes	Pathway Size
hsa04360	Axon guidance	0.0e+00	99	181.00
hsa04010	MAPK signaling pathway	8.0e-263	123	294.00
hsa04110	Cell cycle	8.1e-183	58	124.00
hsa04530	Tight junction	4.3e-145	73	169.00
hsa04015	Rap1 signaling pathway	1.1e-97	91	210.00
hsa04310	Wnt signaling pathway	3.0e-93	66	160.00
hsa04261	Adrenergic signaling in cardiomyocytes	1.4e-85	66	150.00
hsa04510	Focal adhesion	2.8e-83	92	201.00
hsa04910	Insulin signaling pathway	6.0e-82	58	137.00
hsa04390	Hippo signaling pathway	2.6e-79	71	157.00
hsa04210	Apoptosis	1.2e-69	56	136.00
hsa04144	Endocytosis	7.4e-67	79	252.00
hsa05202	Transcriptional misregulation in cancer	9.2e-65	61	192.00
hsa04810	Regulation of actin cytoskeleton	3.3e-64	90	218.00
hsa05412	Arrhythmogenic right ventricular	4.8e-59	41	77.00
	cardiomyopathy (ARVC)			
hsa03030	DNA replication	1.4e-57	23	36.00
hsa04142	Lysosome	6.4e-57	46	128.00
hsa04014	Ras signaling pathway	1.3e-54	85	232.00
hsa04931	Insulin resistance	3.6e-54	53	108.00
hsa04340	Hedgehog signaling pathway	4.8e-47	25	50.00
hsa05205	Proteoglycans in cancer	2.3e-36	80	205.00
hsa04911	Insulin secretion	3.8e-36	38	86.00
hsa04350	TGF-beta signaling pathway	4.6e-33	35	94.00
hsa04068	FoxO signaling pathway	1.7e-30	50	131.00
hsa05166	HTLV-I infection	4.0e-28	77	219.00
hsa00564	Glycerophospholipid metabolism	2.1e-23	35	98.00
hsa04218	Cellular senescence	2.1e-22	59	156.00
hsa00100	Steroid biosynthesis	5.5e-22	11	20.00
hsa00860	Porphyrin and chlorophyll metabolism	9.1e-21	15	42.00
hsa05120	Epithelial cell signaling in	1.7e-20	31	70.00
	Helicobacter pylori infection			
hsa04921	Oxytocin signaling pathway	1.4e-18	56	154.00
hsa05231	Choline metabolism in cancer	3.7e-18	41	98.00
hsa04071	Sphingolipid signaling pathway	7.9e-18	49	119.00
hsa00900	Terpenoid backbone biosynthesis	6.1e-17	13	22.00
hsa00280	Valine, leucine and isoleucine degradation	6.7e-17	22	48.00
hsa04710	Circadian rhythm	1.6e-16	16	31.00
hsa04670	Leukocyte transendothelial migration	8.0e-16	46	114.00
hsa04514	Cell adhesion molecules (CAMs)	2.2e-14	44	149.00
hsa01200	Carbon metabolism	2.4e-14	49	0.00
hsa04151	PI3K-Akt signaling pathway	6.6e-14	123	354.00

16 G BIOLOGICAL PATHWAYS ENRICHED WITH GENES IN SECOND-ORDER REWIRING DURING MAMMALIAN DEVELOPMENT

hsa04070	Phosphatidylinositol signaling system	8.0e-14	38	97.00
hsa05132	Salmonella infection	1.1e-13	30	249.00
hsa03460	Fanconi anemia pathway	2.0e-13	20	54.00
hsa05221	Acute myeloid leukemia	3.1e-13	31	67.00
hsa05222	Small cell lung cancer	1.8e-12	42	92.00
hsa04072	Phospholipase D signaling pathway	4.8e-12	55	148.00
hsa04914	Progesterone-mediated oocyte maturation	8.3e-12	39	100.00
hsa04152	AMPK signaling pathway	1.3e-11	48	120.00
hsa04520	Adherens junction	1.4e-11	33	71.00
hsa04024	cAMP signaling pathway	1.7e-11	78	216.00
hsa00562	Inositol phosphate metabolism	2.8e-11	30	73.00
hsa04666	Fc gamma R-mediated phagocytosis	3.5e-11	35	97.00
hsa00270	Cysteine and methionine metabolism	5.0e-11	19	50.00
hsa04512	ECM-receptor interaction	5.7e-11	36	88.00
hsa00604	Glycosphingolipid biosynthesis	3.5e-10	8	15.00
	- ganglio series			
hsa05220	Chronic myeloid leukemia	4.6e-10	32	76.00

G.2 Pathways enriched in mouse ectoderm versus primitive streak derived groups

Comparison 2: Mouse ectoderm versus primitive streak derived tissue groups. The significant second-order differential patterns obtained from rewiring pipeline for FANTOM5 et al., Evo-devo and Yang et al. are utilized to find 7,345 common genes for this comparison. We supplied common genes and using mouse KEGG repository (Kanehisa and Goto, 2000) we obtained 89 enriched pathways post Bonferroni correction (Dunnett, 1955) ($P \le 0.05$). Table S6, shows all 89 enriched pathways with Kegg pathway id, description, the Bonferroni adjusted p-value, number of successes and the pathway size.

Table S6: Biological pathways enriched with rewired second-order gene-gene differential patterns between mouse ectoderm and primitive streak.

KEGG Pathway ID	Description	Bonferroni	Successes	Pathway Size
mmu04010	MAPK signaling pathway	0.0e+00	175	294.00
mmu04360	Axon guidance	0.0e+00	133	180.00
mmu04110	Cell cycle	2.3e-302	88	123.00
mmu04144	Endocytosis	2.1e-166	134	273.00
mmu04142	Lysosome	1.9e-148	77	131.00
mmu04530	Tight junction	1.0e-142	98	167.00
mmu04146	Peroxisome	9.4e-117	54	86.00
mmu04015	Rap1 signaling pathway	5.2e-114	134	214.00
mmu04014	Ras signaling pathway	3.9e-109	128	232.00
mmu05205	Proteoglycans in cancer	4.1e-98	128	205.00
mmu04115	p53 signaling pathway	1.4e-91	53	72.00
mmu04141	Protein processing in endoplasmic reticulum	3.4e-82	88	172.00
mmu04931	Insulin resistance	2.2e-72	77	110.00
mmu05202	Transcriptional misregulation in cancer	1.3e-71	96	223.00
mmu04390	Hippo signaling pathway	4.8e-71	99	157.00
mmu04510	Focal adhesion	3.7e-62	129	201.00
mmu04210	Apoptosis	1.3e-61	86	136.00
mmu04068	FoxO signaling pathway	1.0e-60	82	131.00
mmu04810	Regulation of actin cytoskeleton	2.4e-58	124	220.00
mmu00562	Inositol phosphate metabolism	2.0e-55	55	72.00
mmu00564	Glycerophospholipid metabolism	5.9e-51	56	98.00
mmu04151	PI3K-Akt signaling pathway	8.0e-50	196	359.00
mmu04330	Notch signaling pathway	1.4e-48	37	54.00
mmu03030	DNA replication	1.1e-47	28	35.00
mmu04350	TGF-beta signaling pathway	6.6e-46	55	95.00
mmu04070	Phosphatidylinositol signaling system	2.4e-45	67	96.00
mmu04261	Adrenergic signaling in cardiomyocytes	1.3e-44	88	152.00
mmu05412	Arrhythmogenic right ventricular	4.6e-43	50	77.00
	cardiomyopathy (ARVC)			

G.2 Pathways enriched in mouse ectoderm versus primitive streak derived groups

mmu04150	mTOR signaling pathway	8.0e-42	86	156.00
mmu04512	ECM-receptor interaction	7.0e-41	57	88.00
mmu04340	Hedgehog signaling pathway	5.3e-38	33	52.00
mmu04910	Insulin signaling pathway	9.4e-37	76	139.00
mmu04520	Adherens junction	1.3e-36	47	71.00
mmu04216	Ferroptosis	9.2e-34	29	40.00
mmu04120	Ubiquitin mediated proteolysis	9.8e-33	71	146.00
mmu04722	Neurotrophin signaling pathway	1.3e-32	71	121.00
mmu00532	Glycosaminoglycan biosynthesis	1.3e-30	16	20.00
	- chondroitin sulfate / dermatan sulfate			
mmu05231	Choline metabolism in cancer	8.2e-30	60	98.00
mmu04137	Mitophagy - animal	1.9e-29	41	66.00
mmu04072	Phospholipase D signaling pathway	5.6e-29	87	149.00
mmu04710	Circadian rhythm	2.2e-28	23	30.00
mmu05166	HTLV-I infection	1.0e-26	121	248.00
mmu04310	Wnt signaling pathway	1.1e-26	91	162.00
mmu01200	Carbon metabolism	1.8e-23	72	0.00
mmu04211	Longevity regulating pathway	2.1e-22	58	90.00
mmu04914	Progesterone-mediated oocyte maturation	3.0e-22	58	90.00
mmu04218	Cellular senescence	6.2e-21	97	185.00
mmu01521	EGFR tyrosine kinase inhibitor resistance	6.9e-21	51	0.00
mmu04071	Sphingolipid signaling pathway	2.9e-19	76	124.00
mmu04136	Autophagy - other	8.9e-19	20	32.00
mmu05132	Salmonella infection	3.2e-18	43	253.00
mmu04933	AGE-RAGE signaling pathway	1.0e-16	70	101.00
	in diabetic complications			
mmu04152	AMPK signaling pathway	2.8e-15	77	126.00
mmu05224	Breast cancer	1.2e-14	85	147.00
mmu04140	Autophagy - animal	1.4e-14	78	138.00
mmu04911	Insulin secretion	4.4e-14	53	86.00
mmu00520	Amino sugar and nucleotide	2.6e-13	29	50.00
	sugar metabolism			
mmu04932	Non-alcoholic fatty liver disease (NAFLD)	5.4e-13	86	151.00
mmu04666	Fc gamma R-mediated phagocytosis	8.2e-13	53	92.00
mmu00534	Glycosaminoglycan biosynthesis	8.6e-13	16	24.00
00510	- heparan sulfate / heparin	~ ~		
mmu00640	Propanoate metabolism	5.2e-12	26	34.00
mmu00604	Glycosphingolipid biosynthesis	5.7e-12	12	15.00
04611	- ganglio series	2 0 11	74	124.00
mmu04611	Platelet activation	2.8e-11	76	124.00
mmu00280	Valine, leucine and isoleucine degradation	4.4e-11	33	57.00
mmu04114	Oocyte meiosis	2.4e-10	70	119.00
mmu01522	Endocrine resistance	2.2e-09	60	0.00
mmu00514	Small call lung concer	0.8e-09	15	45.00
mmu05222	A must reach is lateral solares is (ALS)	1.30-09	03	95.00
mmu05014	Amyotrophic lateral scierosis (ALS)	1.46-08	51	370.00 86.00
mmu00510	N Chucen biogynthesis	2.20-08	20	50.00
mmu05220	N-Orycan biosynthesis	8.4e-08	30	76.00
mmu00120	Ubiguinone and other	3.7e-08	40	11.00
mmu00130	terpenoid guinone biosynthesis	2.16-07	0	11.00
mmu04713	Circadian entrainment	5 30-07	51	08.00
mmu00020	Citrate cycle (TCA cycle)	7.4e-07	24	32.00
mmi0/020	Regulation of lipolysis in adiposytes	9.1e-07	27	56.00
mmu00260	Glycine serine and threening metabolism	9.10-07 9.4e-07	37 24	<u>40.00</u>
mmu()5152	Tuberculosis	1.1e-06	2 4 70	180.00
mmi04657	II17 signaling nathway	2.4e-06	42	91.00
mmu01212	Fatty acid metabolism	2.9e-06	36	0.00
mmu03410	Base excision repair	3.5e-06	22	34.00
mmu03440	Homologous recombination	4.3e-06	22	41.00
mmu05161	Hepatitis B	8.6e-06	98	163.00
mmu05100	Bacterial invasion of epithelial cells	1.4e-05	46	76.00
		-	-	

18 G BIOLOGICAL PATHWAYS ENRICHED WITH GENES IN SECOND-ORDER REWIRING DURING MAMMALIAN DEVELOPMENT

mmu05217	Basal cell carcinoma	2.1e-05	37	63.00
mmu04213	Longevity regulating pathway	3.6e-05	37	62.00
	- multiple species			
mmu00330	Arginine and proline metabolism	5.0e-05	29	54.00
mmu01524	Platinum drug resistance	7.2e-05	44	0.00
mmu00670	One carbon pool by folate	9.5e-05	14	19.00

G.3 Pathways enriched in human versus mouse ectoderm derived tissue groups

Comparison 3: Human versus mouse ectoderm derived tissue groups. For this comparison, like previous study we obtained 7,037 coinciding genes among all datasets. Since the genes belong to both human and mouse data. We obtained 58 enriched pathways post Bonferroni correction (Dunnett, 1955) ($P \le 0.05$) for human using SIGORA analysis and human KEGG repository (Kanehisa and Goto, 2000). We obtained 26 enriched pathways post Bonferroni correction (Dunnett, 1955) ($P \le 0.05$) for mouse using mouse KEGG repository (Kanehisa and Goto, 2000). We report 23 intersecting enriched pathways from human and mouse. Table S7, shows all 23 enriched pathways with Kegg pathway id of human and mouse, description, the Bonferroni adjusted p-value, number of successes and the pathway size of both human and mouse.

Table S7: Biological pathways enriched with rewired second-order gene-gene differential patterns between human and mouse ectoderm.

Human	Mouse	Description	Bonferroni	Successes	Pathways Size	Bonferroni	Successes	Pathways Size
Pathway ID	Pathway ID		(hsa)	(hsa)	(hsa)	(mmu)	(mmu)	(mmu)
hsa04010	mmu04010	MAPK signaling pathway	0.0e+00	172	294.00	0.0e+00	172	294.00
hsa04110	mmu04110	Cell cycle	0.0e+00	83	124.00	4.2e-284	83	123.00
hsa04360	mmu04360	Axon guidance	0.0e+00	129	181.00	0.0e+00	129	180.00
hsa04144	mmu04144	Endocytosis	2.2e-281	126	252.00	8.0e-94	127	273.00
hsa04310	mmu04310	Wnt signaling pathway	1.9e-223	94	160.00	1.4e-127	93	162.00
hsa04142	mmu04142	Lysosome	5.2e-191	70	128.00	2.3e-111	70	131.00
hsa05205	mmu05205	Proteoglycans in cancer	6.0e-180	123	205.00	1.3e-132	125	205.00
hsa04530	mmu04530	Tight junction	4.4e-176	97	169.00	2.4e-140	97	167.00
hsa04014	mmu04014	Ras signaling pathway	1.2e-158	128	232.00	1.9e-115	127	232.00
hsa04910	mmu04910	Insulin signaling pathway	1.2e-146	86	137.00	1.8e-111	87	139.00
hsa04015	mmu04015	Rap1 signaling pathway	9.3e-146	128	210.00	1.1e-98	128	214.00
hsa04141	mmu04141	Protein processing in	2.4e-124	86	171.00	2.3e-67	86	172.00
		endoplasmic reticulum						
hsa00564	mmu00564	Glycerophospholipid metabolism	1.5e-103	54	98.00	1.2e-69	54	98.00
hsa04068	mmu04068	FoxO signaling pathway	2.3e-102	82	131.00	6.2e-74	81	131.00
hsa05202	mmu05202	Transcriptional misregulation	7.9e-95	90	192.00	8.0e-60	90	223.00
		in cancer						
hsa04390	mmu04390	Hippo signaling pathway	1.4e-89	93	157.00	4.3e-61	93	157.00
hsa04810	mmu04810	Regulation of actin cytoskeleton	1.3e-87	124	218.00	3.8e-55	124	220.00
hsa04210	mmu04210	Apoptosis	5.3e-84	82	136.00	1.6e-61	82	136.00
hsa04350	mmu04350	TGF-beta signaling pathway	3.7e-80	52	94.00	4.5e-40	51	95.00
hsa03030	mmu03030	DNA replication	1.1e-74	28	36.00	1.3e-66	28	35.00
hsa04710	mmu04710	Circadian rhythm	5.3e-71	25	31.00	1.1e-57	24	30.00
hsa05412	mmu05412	Arrhythmogenic right ventricular	7.6e-69	52	77.00	1.3e-55	52	77.00
		cardiomyopathy (ARVC)						
hsa04070	mmu04070	Phosphatidylinositol	2.8e-66	65	97.00	1.4e-50	65	96.00
		signaling system						

G.4 Pathways enriched in human versus mouse primitive streak derived tissue groups

Comparison 4: Human versus mouse primitive streak derived tissue groups. We obtained 3,357 coinciding genes involved in second-order differential patterns among all datasets. We obtained 14 enriched pathways post Bonferroni correction (Dunnett, 1955) ($P \le 0.05$) for human using SIGORA analysis and human KEGG repository (Kanehisa and Goto, 2000). We obtained 7 enriched pathways post Bonferroni correction (Dunnett, 1955) ($P \le 0.05$) for mouse using mouse KEGG repository (Kanehisa and Goto, 2000). We report six intersecting enriched pathways from human and mouse. Table S8, shows all six enriched pathways with Kegg pathway id of human and mouse, description, the Bonferroni adjusted p-value, number of successes and the pathway size of both human and mouse.

Table S8: Biological pathways enric	ned with rewired	l second-order	gene-gene	differential
patterns between human and mouse	rimitive streak.			

Human Pathway ID	Mouse Pathway ID	Description	Bonferroni (hsa)	Successes (hsa)	Pathways Size (hsa)	Bonferroni (mmu)	Successes (mmu)	Pathways Size (mmu)
hsa04144	mmu04144	Endocytosis	1.2e-231	74	252.00	8.3e-129	74	273.00
hsa04110	mmu04110	Cell cycle	1.3e-194	52	124.00	8.8e-170	52	123.00
hsa04360	mmu04360	Axon guidance	3.0e-135	57	181.00	4.6e-100	58	180.00
hsa04146	mmu04146	Peroxisome	9.8e-133	36	83.00	1.5e-109	36	86.00
hsa00280	mmu00280	Valine, leucine and	4.3e-89	30	48.00	1.2e-66	30	57.00
		isoleucine degradation						
hsa04530	mmu04530	Tight junction	3.2e-79	53	169.00	1.1e-70	53	167.00

H Detecting rewired miRNA-gene patterns between developing mouse cerebellum and liver

H.1 Preparation of FANTOM5 developing mouse cerebellum and liver data

We prepared FANTOM5 developing mouse cerebellum and liver data as follows. *Sample selection:* Cerebellum had 37 samples over 13 developmental time points with 3 replicates for the first 12 time points (E11 to N09) and one replicate for N30. Liver had 15 samples over 15 development time points. *Usage of microRNA (miRNA):* FANTOM Consortium (2017) measured TPMs of 641 pri-miRNAs, with names of their host genes, across all 1029 matching samples from the mouse dataset. They found that pri-miRNAs are co-expressed with mature miRNA and suggested pri-miRNAs as a proxy to mature miRNAs. *Pre-processing:* We started with TPMs of two datasets containing 641 pri-miRNAs and 22,637 pl TSSs across 37 cerebellum samples and that across 15 liver samples. Each dataset was found to be fairly normally distributed. Thus, we did not log scale the data. N30 in cerebellum was often recognized as an outlier and removed. Mostly unchanged TSSs and pri-miRNAs with MAD (median absolute deviation) at the bottom 5% were removed from both datasets. After preprocessing, we obtain 12,937 TSSs and 502 pri-miRNAs for 36 cerebellar samples and 15 liver samples. We than constructed co-expression networks for both tissue types evaluating $502 \times 12,937$ patterns using second-order network rewiring pipeline. We obtained 20,577 significant patterns in cerebellum and 197,347 in liver. A union of 216,709 unique patterns were supplied to the Sharma-Song test that returned 42,352 significant (Benjamini-Hochberg adjusted P < 0.05 and $\varepsilon > 0.456$) 2nd-order differential patterns. Figure S3 shows five second-order differential patterns.

Fig. S3. Detected 2nd-order differential miRNA-gene patterns across developing mouse cerebellum, liver, lung, kidney, and heart by the Sharma-Song test. Each point represents one tissue sample. The horizontal axis is an miRNA with both promoter and miRNA names, and the vertical axis the TSS of a gene. A curve is fitted to sample points of each tissue type by loess to summarize the dynamics. (a)–(d), four miRNA-gene pairs that are 2nd-order differential between developing cerebellum and liver. (e), a pattern that is 2nd-order differential between developing cerebellum and liver. (e), a pattern that is 2nd-order differential between developing cerebellum and liver.

H.2 Biological pathways enriched with rewired second-order miRNA-gene differential patterns between developing cerebellum and liver in mice

Second-order differential patterns (42,352) (Benjamini-Hochberg adjusted P < 0.05 and $\varepsilon > 0.4565$) were selected with 5,888 unique TSSs. A SIGORA (Foroushani et al., 2013) analysis on the TSSs returned 12 enriched pathways post Bonferroni correction (Dunnett, 1955). The top pathways spliceosome (mmu03040), RNA-transport (mmu03013), and cell-cycle (mmu04110), all critical in development. Spliceosome is a large nuclear machinery responsible for splicing. Alternate splicing is critical in cellular differentiation and organism development, collaborating with other components to generate abundant protein diversity (Wang et al., 2015). This diversity can lead to mechanistic rewiring. For example, alternative splicing events can rewire transcriptional control (Will and Helms, 2017). The RNA-transport pathway is functionally coupled with transcription, splicing, 3'-end formation and translation (Kanehisa and Goto, 2000), all of which are prone to rewiring. Cell cycles are closely coupled with cellular differentiation where development signals often determine cell cycle mode specific to cell type (Jakoby and Schnittger, 2004), subject to tissue specific rewiring. For example, in some brain regions, the orientation of granule cell precursor division can determine the production of more granule cell precursors or granule cells (Miyashita et al., 2017).

20

Liver and cerebellum specific pathways are also enriched with 2nd-order rewiring. The glycerophospholipid metabolism pathway is involved in hen's liver development (Li et al., 2015). Its dysfunction in rat was associated with liver fibrosis development (Wang et al., 2016), suggesting its importance in maintaining hepatic homeostasis.

Such biological evidence supports the effectiveness of Sharma-Song test to implicate rewired pathways critical for tissue-specific development.

Table S9. Biological pathways enriched with rewired second-order miRNA-gene differential patterns between developing mouse cerebellum and liver.

Pathway ID	KEGG pathway name	P-value	Successes	Pathway size
mmu03013	RNA transport	0.0e+00	79	182.00
mmu03040	Spliceosome	0.0e+00	67	136.00
mmu04141	Protein processing in endoplasmic reticulum	0.0e+00	75	172.00
mmu04110	Cell cycle	2.9e-206	67	123.00
mmu03030	DNA replication	4.0e-142	31	35.00
mmu04146	Peroxisome	4.1e-111	43	86.00
mmu04218	Cellular senescence	6.8e-108	76	185.00
mmu04144	Endocytosis	5.3e-98	100	273.00
mmu00280	Valine, leucine and isoleucine degradation	5.4e-91	37	57.00
mmu04142	Lysosome	9.2e-87	55	131.00
mmu00564	Glycerophospholipid metabolism	1.6e-45	36	98.00
mmu04360	Axon guidance	8.4e-34	69	180.00

Pathway ID is the KEGG ID of a pathway. KEGG pathway name is the name of a pathway in KEGG. *P*-value is the adjusted enrichment *P*-values obtained from SIGORA. Successes is the number of genes involved in 2nd-order differential patterns found in the selected pathway. Pathway size is the total number of genes belonging to the selected pathway.

H.3 Second-order differential network of spliceosome pathway between developing cerebellum and liver in mice

We expand on the top pathway–spliceosome (mmu03040) by building a 2nd-order differential network between developing cerebellum and liver using the Sharma-Song test. A sub-network is shown in Figure S4 consisting of 12 second-order gene-gene patterns (edges) out of 200 patterns. Top five hub TSSs ranked by their degrees are highlighted, along with other nodes. A total of 136 TSSs involved in the spliceosome KEGG pathway (Kanehisa and Goto, 2000) were extracted using the R package 'KEGGREST' (Tenenbaum, 2016). Only 112 TSSs out of 132 had p1 profiles available in mouse FANTOM5. We selected 104 high dynamic TSSs using MAD(median absolute deviation). We followed the second-order network rewiring pipeline to build cerebellum and liver specific co-expression networks using 104×104 co-expression patterns. We found 78 significant patterns in cerebellum and 612 patterns in liver. A union of 677 patterns were given to the Sharma-Song test which returned 42 significant (Benjamini-Hochberg adjusted P<0.05and $\varepsilon>0.456$) 2nd-order differential patterns. Hub genes were identified by a high degree of connections, out of which *Sf3a3*, *Sf3a1*, *Snrpa1*, *Sf3b3*, *Dhx15*, *Lsm2* and *U2af2*, stood out with each having more than 20 degrees. The seven hub genes accounted for a total 200 (out of 677) edges, including 12 (out of 42) 2nd-order differential edges, presented in Figure S4.

Fig. S4. A spliceosome second-order differential co-expression sub-network featuring 200 patterns (edges) across top hub genes in developing mouse cerebellum and liver tissues. The orange edges represent significant co-expression patterns among transcripts (aquamarine). The top five hub genes, ranked by their degree, are represented in gold. Edges representing 2nd-order changes between cerebellum and liver are highlighted in red.

I Benchmarking the Sharma-Song test for differential patterns across three conditions

We conducted simulation study with similar experimental design as given in the Results section 3.4. The difference is that we use K = 3 experimental conditions here instead of K = 2 in section 3.4. We did not include the DGCA method as its core statistic was not designed for over two conditions, which could be extended to three conditions. However, we saw from the previous study that differential correlation and DGCA had almost the same performance. Again, we observed the substantially better performance of Sharma-Song test over the heterogeneity test and differential correlation. The result is shown in Figure S5.

Fig. S5. Benchmarking the Sharma-Song test and three other methods. (a), ROC curve at noise level 0.1 for the 2nd-order study. (b, c, d), AUROC (Y-axis) at noise levels 0, 0.1 and 0.4 with increasing strength of differentiality (X-axis) of 2nd-order differential tables. (e), ROC curve at noise level 0.1 for the full-order differential study. (f, g, h), AUROC (Y-axis) at noise levels 0, 0.1 and 0.4 with increasing strength of differentiality (X-axis) of full-order differential tables.

J The statistical power of the Sharma-Song test

The statistical power of the Sharma-Song test as a function of sample size given false positive rate, effect size, and table size is shown in Figure S6. To estimate the effect size cutoff of 0.23, we used the thresholding strategy mentioned earlier for fixed 3×3 , 4×4 and 5×5 table sizes, by simulating 100,000 differential patterns for each table size across two conditions with 50 samples in each condition. Finally, we took the median of their effect sizes at 60% thresholds. The following procedure was used to compute the statistical power in relation to sample size:

- 1. For each table size $r \times s$, we simulated the alternative population at sample sizes between 3 to 100, with the requirement that a sample size n is no smaller than r;
- 2. For each valid sample size *n*, the alternative population was generated by simulating 100,000 discrete differential co-expression patterns in two experimental conditions;
- 3. Differential co-expression patterns were simulated using simulate_tables (Sharma et al., 2017) in the 'FunChisq' R package where we generated two contingency tables each with r rows, s columns and n samples;
- 4. Each table was randomly selected to carry either a functional, a dependent but non functional or an independent relationship, however, for $n < r \cdot s$, each table could only carry a functional or an independent relationship, as per the minimum requirements for non-functional dependent relationships in simulate_tables. A table pair C_1 , C_2 was considered differential if their weighted cell-wise difference Δp was found to be larger than 2.2e-16, where Δp was calculated as:

$$\Delta p = \sum_{i=1}^{r} \sum_{j=1}^{s} \left| \frac{\mathbf{C}_{1}[i,j] - \bar{\mathbf{C}}_{1}[i,j]}{n} - \frac{\mathbf{C}_{2}[i,j] - \bar{\mathbf{C}}_{2}[i,j]}{n} \right|$$
(S15)

where $\bar{\mathbf{C}}_1$ and $\bar{\mathbf{C}}_2$ are the expected count matrices defined in the main text;

5. Once we obtained the alternative population for a given table and sample size, we applied Sharma-Song test on all 100,000 differential patterns. To calculate the statistical power, the ground truth tables were determined to be those with an effect size ε >0.23, irrespective of their Sharma-Song *P*-value. The true-positive cases were determined to be those among the ground-truth tables with a Sharma-Song *P*<0.05.

Fig. S6. The statistical power of Sharma-Song test as a function of sample size given false positive rate 0.05, effect size ε_{60} , and table size. The horizontal axis represents the sample size. The vertical axis represents the statistical power (true positive rate). The three curves stand for the power given table dimensions of 3×3 (red), 4×4 (blue) and 5×5 (green).

References

Dunnett, C. W. (1955). A multiple comparison procedure for comparing several treatments with a control. *J Am Stat Assoc*, 50(272):1096–1121. FANTOM Consortium (2017). An integrated expression atlas of miRNAs and their promoters in human and mouse. *Nat Biotechnol*, 35(9):872–878.

Foroushani, A. B., Brinkman, F. S., and Lynn, D. J. (2013). Pathway-GPS and SIGORA: identifying relevant pathways based on the over-representation of their gene-pair signatures. *PeerJ*, 1:e229.

Jakoby, M. and Schnittger, A. (2004). Cell cycle and differentiation. Current Opinion in Plant Biology, 7(6):661-669.

Kanehisa, M. and Goto, S. (2000). KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Research, 28(1):27-30.

Lancaster, H. O. (1949). The derivation and partition of χ^2 in certain discrete distributions. *Biometrika*, 36(1/2):117–129.

Li, H., Wang, T., Xu, C., Wang, D., Ren, J., Li, Y., Tian, Y., Wang, Y., Jiao, Y., Kang, X., and Liu, X. (2015). Transcriptome profile of liver at different physiological stages reveals potential mode for lipid metabolism in laying hens. *BMC Genomics*, 16(1):763.

McLachlan, G. J. (1999). Mahalanobis distance. Resonance, 4(06):20–26.

Miyashita, S., Adachi, T., Yamashita, M., Sota, T., and Hoshino, M. (2017). Dynamics of the cell division orientation of granule cell precursors during cerebellar development. *Mech Dev*, 147:1–7.

Sharma, R., Kumar, S., Zhong, H., and Song, M. (2017). Simulating noisy, nonparametric, and multivariate discrete patterns. *R J*, 9(2):366–377. Song, M. and Zhong, H. (2020). Efficient weighted univariate clustering maps outstanding dysregulated genomic zones in human cancers. *Bioinformatics*, 36(20):5027–5036.

Tenenbaum, D. (2016). KEGGREST: Client-side REST access to KEGG. R package version 1.30.0.

Wang, G., Li, Z., Li, H., Li, L., Li, J., and Yu, C. (2016). Metabolic profile changes of CCl4-liver fibrosis and inhibitory effects of Jiaqi Ganxian granule. *Molecules*, 21(6):698.

Wang, H. and Song, M. (2011). Ckmeans.1d.dp: Optimal k-means clustering in one dimension by dynamic programming. R J, 3(2):29–33.

Wang, Y., Liu, J., Huang, B. O., Xu, Y.-M., Li, J., Huang, L.-F., Lin, J., Zhang, J., Min, Q.-H., Yang, W.-M., and Wang, X.-Z. (2015). Mechanism of alternative splicing and its regulation. *Biomed Rep*, 3(2):152–158.

Will, T. and Helms, V. (2017). Rewiring of the inferred protein interactome during blood development studied with the tool PPICompare. *BMC Syst Biol*, 11(1):44.