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Supplementary Figures:  
 

 

Fig. S1. Effects of the Gene Filter (GF) and PCA step on the accuracy (ARI) of RCSL in the 16 datasets. The ARI 

values were computed according to the annotated cell types.  

 

Fig. S2. Comparison of running time of RCSL, RCSL without Gene Filter (GF) and RCSL without PCA. 

 

Fig. S3. The running time of RCSL and RCSL2 on the 16 scRNA-seq datasets. 



 

Fig. S4. The comparison of the accuracy of RCSL using KNN and RCSL using LSH for finding k-NNs using 

Euclidean distance, cosine angle distance and Hamming distance. 
 
 
 

Fig. S5. Performance of the algorithms (RCSL, RCSL2, SC3, SIMLR, pcaReduce, k-means, CIDR, Seurat) on the 

16 datasets measured by Normalized Mutual Information (NMI). The last panel shows the average NMI value for 

each algorithm over the 16 datasets. 
 

 

 

 



Fig. S6. Performance of the algorithms (RCSL, RCSL2, SC3, SIMLR, pcaReduce, k-means, CIDR, Seurat) on the 

16 datasets measured by Fowlkes-Mallows index (FM). The last panel shows the average FM value for each 

algorithm over the 16 datasets. 

 

 

 

 

Fig. S7. Heatmap of Spearman’s rank correlation matrix Ss and similarity matrix S in RCSL as well as the block-

diagonal similarity matrices B learned by RCSL, RCSL2, SIMLR in the indicated eight datasets. Cells are arranged 

according to their annotated types indicated by differently colored bars at the top and left of the matrices.  



 

 

Fig. S8. 2-D PCA displays of the expression data matrices and matrices produced by RCSL in the 10 datasets. 

 

 

 

 

 

 

 

 

 

 
 

 

 



 
Fig. S9. 2-D t-SNE displays of the expression data matrices and matrices produced by RCSL in the 16 datasets. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 
Fig. S10. 2-D UMAP displays of the expression data matrices and matrices produced by RCSL in the 16 datasets. 
 
 
 
 

 
Fig. S11. Performance of RCSL and RCSL2 on 10 simulated datasets measured by adjusted rand index (ARI).  

 
 
 
 
 



 

 

Fig. S12. Heatmap of Spearman’s rank correlation matrix Ss and similarity matrix S in RCSL as well as the block-

diagonal similarity matrices B learned by RCSL and RCSL2 in the 10 simulated datasets. Cells are arranged 

according to their types indicated by differently colored bars at the top and left of the matrices.  

 

 

 

 

 

 

 
 



 

 
Fig. S13. UMAP visualization of constructed MSTs (Minimum Spanning Trees) based on the clustering results of 

RCSL. 

 

 



Supplementary Tables: 
Table S1: Extended summary of the 16 scRNA-seq datasets used in this study. 

Datasets 
Accession 

ID 
Species # Cells # Classes Protocol UMI Cell types 

Treutlein GSE52583 Mouse 80 5 SMARTer No AT1 (41) AT2 (12) BP (13) ciliated (3) Clara (11)             

Biase 
GSE57249 Mouse 56 4 SMARTer No Zygote (7) 2-cell (20) 4-cell (20) Blast (9)       

      5     Zygote (7) 2-cell (20) 4-cell (20) ICM (4) TE (3)             

Goolam 
E-MTAB-

3321 
Mouse 124 5 Smart-Seq2 No 2-cell (16) 4-cell (64) 8-cell (32)  16-cell (6) Blast (6)             

Ting GSE51372 Mouse 114 5 Tang No 16-cell (6) 2-cell (16) 4-celll (64) 8-cell (32) Blast (6)             

Zeisel GSE60361 Mouse 3005 9 

Smart-Seq 

STRT-Seq 

UMI  

Yes astrocytes (198) 
ca1pyramidal 

(948) 

endothelial 

(175) 
ependymal (26) 

interneurons 

(290) 
microglia (98) mural (60) 

oligodendrocytes 

(820) 

slpyramidal 

(390) 
    

Deng 

GSE45719 Mouse 268 6 Smart-Seq2 No Zygote (12) 2-cell (22) 4-cell (14)  8-cell (37)  16-cell (50) Blast (133)   

      10 Drop-seq No Zygote (4) 
early 2-cell 

(8) 

Mid 2-cell 

(12) 
Late 2-cell (10) 4-cell (14)  8-cell (37)  16-cell (50) Early blast (43) Mid blast (60) 

Late blast 

(30) 
  

Darmanis GSE67835 Human 466 9 SMARTer No astrocytes (62) 
endothelial 

(20) 

fetal_quiescent 

(110) 

fetal_replicating 

(25) 
hybrid (46) microglia (16) neurons (131) 

oligodendrocytes 

(38) 
OPC (18)     

Muraro GSE85241 Human 2122 9 CEL-Seq2 No acinar (219) alpha (812) beta (448) delta (193) ductal (245) endothelial (21) epsilon (3) gmma (101) 
mesenchymal 

(80) 
    

Klein GSE65525 Mouse 2717 4 inDrop No d0 (933) d2 (303） d4 (683) d7 (798)               

Romanov GSE74672 Mouse 2881 7     astrocytes (267) 
endothelial 

(240) 

ependymal 

(356) 
microglia (48) neurons (898) oligos (1001) vsm (71)         

Xin GSE81608 Human 1492 4 SMARTer No alpha (886) beta (472) delta (49) gamma (85)               

Wang GSE83139 Human 457 7 SMARTer No acinar (6) alpha (190) beta (111) delta (9) ductal (96) gamma (18) mesenchyme (27)         

PBMC4K SRP073767 Human 4292 11 
10xGenomics 

Chromium  
Yes 

CD14+ 

Monocyte 

(1083) 

CD19+ 

B (606) 
CD34+ (11) 

CD4+ T 

Helper2 (36) 

CD4+/CD25 

T Reg (363) 

CD4+/CD45RA+/CD25- 

Naive T (386)  
Dendritic (120) 

CD4+/CD45RO+ 

Memory (353) 

CD56+ NK 

(220) 

 CD8+ 

Cytotoxic 

T (473) 

CD8+/CD45RA+ 

Naive Cytotoxic 

(641) 

Yan 
GSE36552 Human 90 6 Tang No Zygote (6) 2-cell (6) 4-celll (12) 8-cell (20) 16-cell (16) Blast (30)         

            Oocyte (3) Zygote (3) 2-cell (6) 4-celll (12) 8-cell (20) morula (16) Late blast (30)         

Hayashi GSE98664 Mouse 414 5 RamDA-seq No 00h (89) 12h (67) 24h (89) 48h (79) 72h (90)             

Petropoulos 
E-MTAB-

3929 
Human 1289 5 Smart-Seq2 No 

Embryonic 

Day3 (75)  

Embryonic 

Day4 (154) 

Embryonic 

Day5 (304) 

Embryonic 

Day6 (345) 

Embryonic 

Day7 (411) 
            



Table S2: Cells types and subtypes annotated in the Biase, Deng and Yan datasets. 

Biase 
Cell type Zygote (7) 2-cell (20) 4-cell (20) Blast (9) 

Sub-type Zygote (7) 2-cell (20) 4-cell (20) ICM (4) TE (3) 

 

Deng 
Cell type  Zygote (12) 2-cell (22) 

4-cell 
(14) 

8-cell 
(37) 

16-cell 
(50) Blast (133) 

Sub-type  Zygote 
(4) 

Early 2-cell 
(8) 

Mid 2-cell 
(12) 

Late 2-cell 
(10) 

4-cell 
(14) 

8-cell 
(37) 

16-cell 
(50) 

Early blast 
(43) 

Mid blast 
(60) 

Late blast 
(30) 

 

Yan 
Cell type Zygote (6) 2-cell (6) 4-cell (12) 8-cell (20) 16-cell (16) Blast (30) 

Sub-type Oocyte (3) Zygote (3) 2-cell (6) 4-cell (12) 8-cell (20) Morula (16) Late blast (30) 

 

Table S3. Summary of the 10 simulated datasets and the ARI value of RCSL and RCSL2. 
# Cells 300 500 1000 2000 3000  

# Cell types 4 5 4 5 5 6 5 6 6 7  

Datasets Simulate1 Simulate2 Simulate3 Simulate4 Simulate5 Simulate6 Simulate7 Simulate8 Simulate9 Simulate10 Average 

ARI 
RCSL 0.9142 0.9043 0.9858 0. 9680 0. 9785 0.9938 0.9048 0.9375 1 0.9268 0.9514 

RCSL2 0.9268 0.7285 0.9524 0. 9794 0. 9725 0.9903 0.9028 0.9987 0.9951 0.9976 0.9444 

 

 

 

 

 

 

 

 

 

 

 



Supplementary Note:  

Procedure for constructing the block-diagonal matrix B 
 

Note that Eq. (4) is difficult to solve since LB = DB − 
BT	+	B
2

, and DB also depends on B, which leads 

to the constraint rank(LB) = N − C becomes a complex nonlinear constraint. Let σi(LB) be the i-th 

smallest eigenvalue of LB. Since LB is positive semidefinite, σi(LB) ≥ 0. Thus the constraint rank(LB) 

= N − C in problem (4) can be satisfied if ∑ σ"(LB) = 0C
i=1 . Imposing a large enough value β, Eq. (4) 

can be transformed into an optimization problem, 

                        .                     (5) 

Note that when β is large enough, the sum of the C smallest eigenvalues in LB is forced to zero. Let 

YNÍC be the class indicator matrix, where yil = 1 indicates that cell i is assigned to the cluster l. CLR 

finds B by solving the following constrained minimization problem, 

                    .                  (6) 

To do so, we fix B and update Y: when B is fixed, problem (6) becomes, 

                     .                               (7) 

The optimal solution of Y is the C eigenvectors of LB corresponding to the C smallest eigenvalues. 

CLR then fix Y and update B: when Y is fixed, problem (7) can be transformed into, 

               ,                         (8) 

where yi is the class indicator vector of cell i. Note that problem (8) is independent for different i, 
so we can parallel the calculations by solving each i independently, and rewrite (8) in the vector 

form for each i. 

                     ,                           (9) 

where , and fi is a vector with the j-th element equal to fij (similarly to bi and si). Problem 

(9) can be solved by using an iterative reweighted method described in (Nie, et al., 2016), which 

grantees converge to the optimal solution. Let U be the N×N diagonal matrix whose diagonal entry 

, and the  is the current value. Then, problem (9) can be solved by iteratively 

solving the following problem: 

                    .                   (10) 

It has been proved that this iterative method decreases the objective of (9) in each iteration and it 

will converge to the optimal solution (Nie, et al., 2010). Then the problem with a convex objective 

and linear constraints can be solved efficiently by the standard convex optimization method using 
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existing algorithm CLR. In our implementation, we set the largest number of iterations to 30. 
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