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1 Simulation Studies

We carried out a simulation study to measure the empirical performance of the proposed FWOC and
compared with BhGLM, PLDA and PCRM.

In the simulations, we simulated moderate high-dimensional datasets, with dimension of 500 and
sample size of 150. The samples are assumed to come from four classes with natural ordering: C1 ≺
C2 ≺ C3 ≺ C4 and the sample sizes are distributed as n1 = 45, n2 = 35, n3 = 40, n4 = 30. The
observations from class k are assumed to follow a multivariate normal distribution Np(µk,Σk), where µk

and Σk are the mean vector and covariance matrix for class k and p = 500. Among the 500 features, we
assume that there are 20 signal variables which contribute to the separation of classes and the rest will be
noise variables. We further divide the signal features into two categories, one consists of order-concordant
variables, (i.e., ordinal variables), the other consists of order-discordant variables (i.e., nominal variables).
In the following, based on how much ordinality is existing among the classes, we consider three different
scenarios that are characterized by different mean structures of the signal variables:

• linear ordinality

• nonlinear ordinality

• nominal situation

The signal variables in the scenario of ‘linear ordinality’ are all ordinal variables. There are ten ordinal
variables and ten nominal variables in the scenario of ‘nonlinear ordinality’. The signal variables in the
nominal situations will all be nominal variables. Let the mean vector for class k be µk = (e ∗mk,0),
where e is the effect size, mk is the mean structure for the signal variables, and 0 is the mean structure
for the noise variables, whose elements are all zero. The values of mk are shown in Figure 1. The effect
size (e) over all the simulations is set to be 0.25. We fix the variance to be 1. For each mean structure,
we consider three correlation structures: 1) identity matrix; 2) block auto-correlation matrix; 3) block
compound symmetry matrix. The block auto-correlation matrix Σauto and block compound symmetry
matrix Σcs are given in the following:

Σauto =

(
A(ρ1)ns×ns 0(p−ns)×(p−ns)

0(p−ns)×(ns) I(p−ns)×(p−ns)

)
,Σcs =

(
C(ρ2)ns×ns 0(p−ns)×(p−ns)

0(p−ns)×(ns) I(p−ns)×(p−ns)

)
,

where ns = 20 is the number of signal variables, I is the identity matrix and 0 is the matrix whose
elements are all zeros. A(ρ1) is the auto-correlation matrix with coefficient ρ1 = 0.9, C(ρ2) is the
compound symmetry matrix with coefficient ρ2 = 0.7.

For each simulated dataset, we randomly split it to a training set with 70% observations and a test
set with 30% observations. We used the training set for model building (parameter tuning) and the test
set for model assessment. The test results are averaged over 100 repetitions, which are given in Figure
2, 3, 4 and 5.
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(a) Linear ordinality (b) Nonlinear ordinality

(c) Nominal situation

Figure 1: The class mean structures mk for the three scenarios. The values are presented in the y-axis,
the indexes of the signal variables are presented in the x-axis. Mean structures for the four classes
are colored differently. Note that we allow different distances between means from adjacent classes for
different dimensions, which are shown in the figure.

In general, the performance of FWOC is very competitive under the three scenarios. Especially in
the scenario of ‘nonlinear ordinality’, the advantage of FWOC is the most obvious. Among the three
scenarios, the performances of BhGLM and PCRM are only acceptable in the ‘linear ordinality’ case.
The performance of BhGLM and PCRM is not well in other cases, which is not beyond our expectations.
In terms of feature selection, PCRM performs well in achieving a sparse solution, but BhGLM fails with
feature selection. In practice, data are complicated such that the classes have a high probability of being
‘nonlinear’ aligned, in which these model-based approaches might fail.
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Figure 2: The average classification accuracy, Kendall’s τ and weighted cost (when d = 1) over 100
simulated data sets under the scenario of linear ordinality. Standard deviations are represented by error
bars. The three columns show the three metrics, whose values are displayed on the x axis. Different
correlation structures under the scenario are presented in the rows.

Figure 3: The average classification accuracy, Kendall’s τ and weighted cost (when d = 1) over 100
simulated data sets under the scenario of nonlinear ordinality. Standard deviations are represented by
error bars. The three columns show the three metrics, whose values are displayed on the x axis. Different
correlation structures under the scenario are presented in the rows.
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Figure 4: The average classification accuracy, Kendall’s τ and weighted cost (when d = 1) over 100
simulated data sets under the scenario of nonlinear ordinality. Standard deviations are represented by
error bars. The three columns show the three metrics, whose values are displayed on the x axis. Different
correlation structures under the scenario are presented in the rows.
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(a) Linear ordinality (b) Nonlinear ordinality

(c) Nominal situation

Figure 5: The bargraph shows the number of selected features by each method, which is scaled on the
left y axis. The line plot shows the ratio of selected signal features over all selected features, which is
scaled on the right y axis. The blue line shows the signal ratio and the red line shows the ordinal ratio
(ordinal ratio is only available under the scenario of nonlinear ordinality). The three rows show the three
correlation structures
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2 Comparisons Between ‘Rank-correlation’ and ‘Equal weights’

Here, we discuss the difference between using W̄ and identity matrix I in the L2 penalty. In W̄ , Kendall’s
τ was used to measure the weights. We can expect that W̄ will favor ordinal signal variables than
nominal signal variables when they both exist. We used a simple setting to illustrate our idea. Similar
with the simulation studies, we simulated toy datasets under the scenario of ‘linear ordinality’, ‘nonlinear
ordinality’ and ‘nominal situation’. We set n = 100, p = 30 and the samples are assumed to come from
four ordinal classes with sizes: n1 = 20, n2 = 30, n3 = 30, n4 = 20. Data are normally distributed
with identity covaraince matrix and the effect size is set to be 1.5. There are 10 signal variables in
each scenario. Linear scenario contains 10 ordinal signal variables, nominal scenario contains 10 nominal
variables and nonlinear scenario contains 5 ordinal variables and 5 nominal variables. We generated 30
datasets in each scenario and varied r ∈ (0, 0.1, 0.3). The average absolute values of the coefficients of
the first two discriminating vectors are given in Figure 6, 7 and 8. Note that for linear and nominal case,
there is no obvious difference between the coefficients, as both W̄ and I selected all the signal variables.
However, when the signal variables are different, i.e., in the nonlinear case, as shown in Figure 7, W̄
obtained higher weights in ordinal variables and less weights in nominal variables compared with I. The
difference is larger as r gets smaller. This confirms that the proposed method indeed encourages more
ordinally interpretable results while controlling the class separability in L2 sense.

Figure 6: The average absolute values of the first 20 coefficients of the first two discriminant vectors
(linear scenario). Blue lines represent results from W̄ and black lines represent results form I. Indices
of 1-10 indicate ordinal signal variables.

6



Figure 7: The average absolute values of the first 20 coefficients of the first two discriminant vectors
(nonlinear scenario). Blue lines represent results from W̄ and black lines represent results form I.
Indices of 1-5 indicate ordinal signal variables and 6-10 indicate nominal signal variables.
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Figure 8: The average absolute values of the first 20 coefficients of the first two discriminant vectors
(nominal scenario). Blue lines represent results from W̄ and black lines represent results form I. Indices
of 1-10 indicate nominal signal variables.
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