scAMACE: Model-based approach to the joint analysis of single-cell data on chromatin accessibility, gene expression and methylation

Jiaxuan Wangwu ${ }^{1}$, Zexuan Sun ${ }^{1}$, and Zhixiang Lin *1
${ }^{1}$ Department of Statistics, The Chinese University of Hong Kong, Hong Kong SAR, China

SUPPLEMENTARY MATERIALS

1 Supplementary Text

1.1 Joint likelihood

- scCAS data

$$
\begin{aligned}
& \boldsymbol{P}\left(\boldsymbol{X}, \boldsymbol{U}_{i .}, \boldsymbol{O}_{i .}, \boldsymbol{Z}_{i .} \mid \boldsymbol{\psi}^{a c c}, \boldsymbol{\omega}^{a c c}, \boldsymbol{\pi}_{i}\right) \\
& =\prod_{i} \prod_{k}\left\{\psi_{k}^{a c c} * \prod_{g}\left[\omega_{k g}^{a c c}\left(\pi_{i 1} f_{1}\right)^{o_{i g}}\left(\left(1-\pi_{i 1}\right) f_{0}\right)^{1-o_{i g}}\right]^{u_{i g}} *\left[\left(1-\omega_{k g}^{a c c}\right) f_{0}\right]^{1-u_{i g}}\right\}^{z_{i k}} .
\end{aligned}
$$

- scRNA-Seq data

$$
\begin{aligned}
& \boldsymbol{P}\left(\boldsymbol{Y}, \boldsymbol{U}_{l .}, \boldsymbol{V}_{l .}, \boldsymbol{Z}_{l \cdot} \mid \boldsymbol{\psi}^{r n a}, \boldsymbol{\omega}^{r n a}, \boldsymbol{\pi}_{l}\right)=\prod_{l} \prod_{k}\left[\psi_{k}^{r n a} * \boldsymbol{A}\right]^{z_{l k}} \\
& \boldsymbol{A}=\prod_{g}\left\{\omega_{k g}^{r n a}\left[\pi_{l 1} g_{1}\right]^{v_{l g}} *\left[\left(1-\pi_{l 1}\right) g_{0}\right]^{1-v_{l g}}\right\}^{u_{l g}} *\left\{\left(1-\omega_{k g}^{r n a}\right)\left[\pi_{l 0} g_{1}\right]^{v_{l g}} *\left[\left(1-\pi_{l 0}\right) g_{0}\right]^{1-v_{l g}}\right\}^{1-u_{l g}}
\end{aligned}
$$

- sc-methylation data

$$
\begin{aligned}
& \boldsymbol{P}\left(\boldsymbol{T}, \boldsymbol{U}_{d .}, \boldsymbol{M}_{d .}, \boldsymbol{Z}_{d .} \mid \boldsymbol{\psi}^{m e t}, \boldsymbol{\omega}^{m e t}, \boldsymbol{\pi}_{d}\right)=\prod_{d} \prod_{k}\left[\psi_{k}^{m e t} * \boldsymbol{B}\right]^{z_{d k}}, \\
& \boldsymbol{B}=\prod_{g}\left\{\omega_{k g}^{m e t}\left(\pi_{d 1} h_{1}\right)^{m_{d g}} *\left[\left(1-\pi_{d 1}\right) h_{0}\right]^{1-m_{d g}}\right\}^{u_{d g}} *\left\{\left(1-\omega_{k g}^{m e t}\right)\left(\pi_{d 0} h_{1}\right)^{m_{d g}} *\left[\left(1-\pi_{d 0}\right) h_{0}\right]^{1-m_{d g}}\right\}^{1-u_{d g}} .
\end{aligned}
$$

[^0]
1.2 Q-function

Let $\boldsymbol{\Gamma}$ denote the missing data, and let $\boldsymbol{\Phi}$ denote the parameters. the Q -function is $\boldsymbol{Q}\left(\boldsymbol{\Phi} \mid \boldsymbol{\Phi}_{\text {old }}\right)=$ $\mathbb{E}_{\text {old }}(\ln (\boldsymbol{P}(\boldsymbol{\Phi}, \boldsymbol{\Gamma} \mid$ obs. $)))$, where the expectation is over $\boldsymbol{\Gamma}$ under distribution $\boldsymbol{P}\left(\boldsymbol{\Gamma} \mid \boldsymbol{\Phi}^{\text {old }}\right.$, obs. $):=\boldsymbol{P}_{\text {old }}(\boldsymbol{\Gamma})$.
$\ln (\boldsymbol{P}(\boldsymbol{\Phi}, \boldsymbol{\Gamma} \mid o b s)$.
$=\sum_{i} \sum_{k} z_{i k} \ln \left(\psi_{k}^{a c c}\right)+\sum_{i} \sum_{k} z_{i k} \sum_{g}\left[u_{i g} \ln \left(\omega_{k g}^{a c c}\right)+\left(1-u_{i g}\right) \ln \left(1-\omega_{k g}^{a c c}\right)\right]$
$+\sum_{i} \sum_{k} z_{i k} \sum_{g}\left[u_{i g} o_{i g} \ln \left(\pi_{i 1}\right)+u_{i g}\left(1-o_{i g}\right) \ln \left(1-\pi_{i 1}\right)+u_{i g} o_{i g} \ln \left(f_{1}\right)+\left(1-u_{i g} o_{i g}\right) \ln \left(f_{0}\right)\right]$
$+\sum_{l} \sum_{k} z_{l k} \ln \left(\psi_{k}^{r n a}\right)+\sum_{l} \sum_{k} z_{l k} \sum_{g}\left[u_{l g} \ln \left(\omega_{k g}^{r n a}\right)+\left(1-u_{l g}\right) \ln \left(1-\omega_{k g}^{r n a}\right)\right]$
$+\sum_{l} \sum_{k} z_{l k} \sum_{g}\left[u_{l g} v_{l g} \ln \left(\pi_{l 1}\right)+u_{l g}\left(1-v_{l g}\right) \ln \left(1-\pi_{l 1}\right)\right]$
$+\sum_{l} \sum_{k} z_{l k} \sum_{g}\left[\left(1-u_{l g}\right) v_{l g} \ln \left(\pi_{l 0}\right)+\left(1-u_{l g}\right)\left(1-v_{l g}\right) \ln \left(1-\pi_{l 0}\right)\right]$
$+\sum_{l} \sum_{k} z_{l k} \sum_{g}\left[v_{l g} \ln \left(g_{1}\right)+\left(1-v_{l g}\right) \ln \left(g_{0}\right)\right]$
$+\sum_{d} \sum_{k} z_{d k} \ln \left(\psi_{k}^{m e t}\right)+\sum_{d} \sum_{k} z_{d k} \sum_{g}\left[u_{d g} \ln \left(\omega_{k g}^{m e t}\right)+\left(1-u_{d g}\right) \ln \left(1-\omega_{k g}^{m e t}\right)\right]$
$+\sum_{d} \sum_{k} z_{d k} \sum_{g}\left[u_{d g} m_{d g} \ln \left(\pi_{d 1}\right)+u_{d g}\left(1-m_{d g}\right) \ln \left(1-\pi_{d 1}\right)\right]$
$+\sum_{d} \sum_{k} z_{d k} \sum_{g}\left[\left(1-u_{d g}\right) m_{d g} \ln \left(\pi_{d 0}\right)+\left(1-u_{d g}\right)\left(1-m_{d g}\right) \ln \left(1-\pi_{d 0}\right)\right]$
$+\sum_{d} \sum_{k} z_{d k} \sum_{g}\left[m_{d g} \ln \left(h_{1}\right)+\left(1-m_{d g}\right) \ln \left(h_{0}\right)\right]$
$+\sum_{k} \ln \left(\psi_{k}^{a c c}\right)+\sum_{k} \ln \left(\psi_{k}^{r n a}\right)+\sum_{k} \ln \left(\psi_{k}^{m e t}\right)$
$+\sum_{i}\left[\left(\alpha_{a c c}-1\right) \ln \left(\pi_{i 1}\right)+\left(\beta_{a c c}-1\right) \ln \left(1-\pi_{i 1}\right)\right]+\sum_{l}\left[-\ln \left(1-\pi_{l 0}\right)\right]+\sum_{d}\left[-\ln \left(\pi_{d 0}\right)\right]$
$+\sum_{k} \sum_{g}\left[\left(\alpha_{1}-1\right) \ln \left(\omega_{k g}^{r n a}\right)+\left(\beta_{1}-1\right) \ln \left(1-\omega_{k g}^{r n a}\right)\right]$
$+\sum_{k} \sum_{g}\left\{\left(\mu_{k g}^{a c c} \phi^{a c c}-1\right) \ln \left(\omega_{k g}^{a c c}\right)+\left(\phi^{a c c}-\mu_{k g}^{a c c} \phi^{a c c}-1\right) \ln \left(1-\omega_{k g}^{a c c}\right)-\ln \left[\operatorname{Beta}\left(\mu_{k g}^{a c c} \phi^{a c c}, \phi^{a c c}-\mu_{k g}^{a c c} \phi^{a c c}\right)\right]\right\}$
$+\sum_{k} \sum_{g}\left\{\left(\mu_{k g}^{m e t} \phi^{m e t}-1\right) \ln \left(\omega_{k g}^{m e t}\right)+\left(\phi^{m e t}-\mu_{k g}^{m e t} \phi^{m e t}-1\right) \ln \left(1-\omega_{k g}^{m e t}\right)-\ln \left[\operatorname{Bet} a\left(\mu_{k g}^{m e t} \phi^{m e t}, \phi^{m e t}-\mu_{k g}^{m e t} \phi^{m e t}\right)\right]\right\}$
$+C$,
where $\mu_{k g}^{a c c}=\frac{1}{1+e^{-f\left(\omega_{k g}^{T n a}\right)}}, \mu_{k g}^{m e t}=\frac{1}{1+e^{-g\left(\omega_{k g}^{T n a}\right)}}$, and \boldsymbol{C} is a constant that does not depend on the param-
eters.

1.3 Expectations in E-Step

- scCAS data

$$
\begin{aligned}
& \mathbb{E}_{o l d}\left(z_{i k}\right) \propto \psi_{k}^{a c c} \prod_{g}\left\{\left[\omega_{k g}^{a c c}\left(\pi_{i 1} f_{1}+\left(1-\pi_{i 1}\right) f_{0}\right)\right]+\left[\left(1-\omega_{k g}^{a c c}\right) f_{0}\right]\right\} \\
& \mathbb{E}_{\text {old }}\left(z_{i k} u_{i g}\right)=\frac{\omega_{k g}^{a c c}\left(\pi_{i 1} f_{1}+\left(1-\pi_{i 1}\right) f_{0}\right)}{\omega_{k g}^{a c c}\left(\pi_{i 1} f_{1}+\left(1-\pi_{i 1}\right) f_{0}\right)+\left(1-\omega_{k g}^{a c c}\right) f_{0}} * P_{o l d}\left(z_{i k}=1\right) \\
& \mathbb{E}_{\text {old }}\left(z_{i k} u_{i g} o_{i g}\right)=\frac{\pi_{i 1} f_{1}}{\pi_{i 1} f_{1}+\left(1-\pi_{i 1}\right) f_{0}} * P_{\text {old }}\left(z_{i k}=1, u_{i g}=1\right)
\end{aligned}
$$

- scRNA-Seq data

$$
\begin{aligned}
& \mathbb{E}_{\text {old }}\left(z_{l k}\right) \propto \psi_{k}^{r n a} \prod_{g}\left\{\omega_{k g}^{r n a}\left[\pi_{l 1} g_{1}+\left(1-\pi_{l 1}\right) g_{0}\right]+\left(1-\omega_{k g}^{r n a}\right)\left[\pi_{l 0} g_{1}+\left(1-\pi_{l 0}\right) g_{0}\right]\right\}, \\
& \mathbb{E}_{\text {old }}\left(z_{l k} u_{l g}\right)=\frac{\omega_{k g}^{r n a}\left[\pi_{l 1} g_{1}+\left(1-\pi_{l 1}\right) g_{0}\right]}{\omega_{k g}^{r n a}\left[\pi_{l 1} g_{1}+\left(1-\pi_{l 1}\right) g_{0}\right]+\left(1-\omega_{k g}^{r r a}\right)\left[\pi_{l 0} g_{1}+\left(1-\pi_{l 0}\right) g_{0}\right]} * P_{o l d}\left(z_{l k}=1\right), \\
& \mathbb{E}_{\text {old }}\left(z_{l k}\left(1-u_{l g}\right)\right)=\mathbb{E}_{\text {old }}\left(z_{l k}\right)-\mathbb{E}_{\text {old }}\left(z_{l k} u_{l g}\right) \\
& \mathbb{E}_{\text {old }}\left(z_{l k} u_{l g} v_{l g}\right)=\frac{\pi_{l 1} g_{1}}{\pi_{l 1} g_{1}+\left(1-\pi_{l 1}\right) g_{0}} * P_{\text {old }}\left(z_{l k}=1, u_{l g}=1\right), \\
& \mathbb{E}_{\text {old }}\left(z_{l k}\left(1-u_{l g}\right) v_{l g}\right)=\frac{\pi_{l o} g_{1}}{\pi_{l 0} g_{1}+\left(1-\pi_{l 0}\right) g_{0}} * P_{\text {old }}\left(z_{l k}=1, u_{l g}=0\right), \\
& \mathbb{E}_{\text {old }}\left(z_{l k} v_{l g}\right)=\mathbb{E}_{\text {old }}\left(z_{l k} u_{l g} v_{l g}\right)+\mathbb{E}_{\text {old }}\left(z_{l k}\left(1-u_{l g}\right) v_{l g}\right) .
\end{aligned}
$$

- sc-methylation data

$$
\begin{aligned}
& \mathbb{E}_{o l d}\left(z_{d k}\right) \propto \psi_{k}^{m e t} \prod_{g}\left\{\omega_{k g}^{m e t}\left[\pi_{d 1} h_{1}+\left(1-\pi_{d 1}\right) h_{0}\right]+\left(1-\omega_{k g}^{m e t}\right)\left[\pi_{d 0} h_{1}+\left(1-\pi_{d 0}\right) h_{0}\right]\right\} \\
& \mathbb{E}_{\text {old }}\left(z_{d k} u_{d g}\right)=\frac{\omega_{k g}^{m e t}\left[\pi_{d 1} h_{1}+\left(1-\pi_{d 1}\right) h_{0}\right]}{\omega_{k g}^{m e t}\left[\pi_{d 1} h_{1}+\left(1-\pi_{d 1}\right) h_{0}\right]+\left(1-\omega_{k g}^{m e t}\right)\left[\pi_{d 0} h_{1}+\left(1-\pi_{d 0}\right) h_{0}\right]} * P_{o l d}\left(z_{d k}=1\right), \\
& \mathbb{E}_{o l d}\left(z_{d k}\left(1-u_{d g}\right)\right)=\mathbb{E}_{o l d}\left(z_{d k}\right)-\mathbb{E}_{o l d}\left(z_{d k} u_{d g}\right), \\
& \mathbb{E}_{\text {old }}\left(z_{d k} u_{d g} m_{d g}\right)=\frac{\pi_{d 1} h_{1}}{\pi_{d 1} h_{1}+\left(1-\pi_{d 1}\right) h_{0}} * P_{o l d}\left(z_{d k}=1, u_{d g}=1\right) \\
& \mathbb{E}_{\text {old }}\left(z_{d k}\left(1-u_{d g}\right) m_{d g}\right)=\frac{\pi_{d 0} h_{1}}{\pi_{d 0} h_{1}+\left(1-\pi_{d 0}\right) h_{0}} * P_{o l d}\left(z_{d k}=1, u_{d g}=0\right), \\
& \mathbb{E}_{\text {old }}\left(z_{d k} m_{d g}\right)=\mathbb{E}_{\text {old }}\left(z_{d k} u_{d g} m_{d g}\right)+\mathbb{E}_{\text {old }}\left(z_{d k}\left(1-u_{d g}\right) m_{d g}\right)
\end{aligned}
$$

1.4 Simulation scheme

We generated three different types of simulated data $\boldsymbol{x}, \boldsymbol{y}$ and \boldsymbol{t} following the model assumption. In the simulated data, the sample sizes $n_{x}=900, n_{y}=1100$, and $n_{t}=1000$. The number of features $p=1000$. The numbers of clusters $K_{x}=K_{y}=K_{t}=3 . f\left(\omega_{k g}^{y}\right)=\eta+\gamma \omega_{k g}^{y}+\tau\left(\omega_{k g}^{y}\right)^{2}=-1+7 \omega_{k g}^{y}-2\left(\omega_{k g}^{y}\right)^{2}$, $g\left(\omega_{k g}^{y}\right)=\delta+\theta \omega_{k g}^{y}=-2+5 \omega_{k g}^{y}, \phi^{x}=10$ and $\phi^{t}=10$. The followings are the simulation scheme:
A. Generate $\boldsymbol{\omega}^{y}$

For $g=1, \ldots, 150$:
$\omega_{k g}^{y} \sim\left[\begin{array}{ccc}(1, \ldots, 50) & (51, \ldots, 100) & (101, \ldots, 150) \\ \omega & 0.5 & 1-\omega \\ 0.5 & 1-\omega & \omega \\ 1-\omega & \omega & 0.5\end{array}\right]$

We set $\omega=0.8$.
For $g=151, \ldots, 1000$:
$\omega_{k g}^{y} \sim \begin{cases}\operatorname{Beta}(\alpha=2, \beta=2), & \text { for } k=1 \\ \omega_{1 g}^{y}, & \text { for } k=2,3\end{cases}$
To summarize, we set the first 150 features to be differential and for the remaining $151, \ldots, p$ features, we set $\omega_{k g}^{y}$ to be the same across different clusters k.
B. Generate $\boldsymbol{\omega}^{x}$ and $\boldsymbol{\omega}^{t}$.

For $g=1, \ldots, 150$:
$\omega_{k g}^{x} \sim \operatorname{Beta}\left(\mu_{k g}^{x}=\frac{1}{1+e^{-f\left(\omega_{k g}^{y}\right)}}, \phi^{x}\right)$, for $k=1,2,3$
For $g=151, \ldots, 1000$:
$\omega_{k g}^{x} \sim \begin{cases}\operatorname{Beta}\left(\mu_{k g}^{x}=\frac{1}{1+e^{-f\left(\omega_{1 g}^{y}\right)}}, \phi^{x}\right), & \text { for } k=1 \\ \omega_{1 g}^{x}, & \text { for } k=2,3\end{cases}$
For $g=1, \ldots, 150$:
$\omega_{k g}^{t} \sim \operatorname{Beta}\left(\mu_{k g}^{t}=\frac{1}{1+e^{-g\left(\omega_{k g}^{y}\right)}}, \phi^{t}\right)$, for $k=1,2,3$
For $g=151, \ldots, 1000$:
$\omega_{k g}^{t} \sim \begin{cases}\operatorname{Beta}\left(\mu_{k g}^{t}=\frac{1}{1+e^{-g\left(\omega_{1 g}^{y}\right)}}, \phi^{t}\right), & \text { for } k=1 \\ \omega_{1 g}^{t}, & \text { for } k=2,3\end{cases}$
C. Generate $\boldsymbol{z}^{x}, \boldsymbol{z}^{y}$ and \boldsymbol{z}^{t}. The cluster labels are generated with equal probability, $P(\boldsymbol{z} .=1)=$ $P(\boldsymbol{z} .=2)=P(\boldsymbol{z} .=3)=\frac{1}{3}$.
D. Data type 1: \boldsymbol{x}

- Generate \boldsymbol{u}^{x}. We generate $u_{i g}$ from $\operatorname{Bernoulli}\left(\omega_{k g}^{x}\right)$ if $z_{i k}=1$.
- Generate \boldsymbol{o}^{x}. We generate $o_{i g}$ from $\operatorname{Bernoulli}\left(\pi_{i 1}\right)$ if $u_{i g}=1$, and set $o_{i g}=0$ if $u_{i g}=0$. We set $\pi_{i 1}=0.2$ for $i=1, \cdots, n_{x}$.
- Generate \boldsymbol{x}. We generate $x_{i g}=1$ if $o_{i g}=1$, and generate $x_{i g}=0$ if $o_{i g}=0$.
E. Data type 2: y
- Generate \boldsymbol{u}^{y}. We generate $u_{l g}$ from $\operatorname{Bernoulli}\left(\omega_{k g}^{y}\right)$ if $z_{l k}=1$.
- Generate \boldsymbol{v}^{y}. We generate $v_{l g}$ from Bernoulli $\left(\pi_{l 1}\right)$ if $u_{l g}=1$, and from $\operatorname{Bernoulli}\left(\pi_{l 0}\right)$ if $u_{l g}=0$. We set $\pi_{l 1}=0.7, \pi_{l 0}=0.3$ for $l=1, \cdots, n_{y}$.
- Generate \boldsymbol{y}. We generate $y_{l g}$ from Gamma(shape $=7$, scale $=0.5$) if $v_{l g}=1$, and generate $y_{l g}$ from Gamma $($ shape $=1$, scale $=1)$ if $v_{l g}=0$.
F. Data type 3: \boldsymbol{t}
- Generate \boldsymbol{u}^{t}. We generate $u_{d g}$ from $\operatorname{Bernoulli}\left(\omega_{k g}^{t}\right)$ if $z_{d k}=1$.
- Generate \boldsymbol{m}^{t}. We generate $m_{d g}$ from $\operatorname{Bernoulli}\left(\pi_{d 1}\right)$ if $u_{d g}=1$, and from $\operatorname{Bernoulli}\left(\pi_{d 0}\right)$ if $u_{d g}=0$. We set $\pi_{d 1}=0.4, \pi_{d 0}=0.7$ for $d=1, \cdots, n_{t}$.
- Generate \boldsymbol{t}. We generate $t_{d g}$ from $\operatorname{Beta}(\alpha=0.5, \beta=0.5)$ if $m_{d g}=1$, and generate $t_{d g}$ from $\operatorname{Beta}(\alpha=1, \beta=10)$ if $m_{d g}=0$.

We set different parameter values for the four additional simulation settings mentioned in Section 4 as following:
(1) Simulation setting 1: imbalanced dataset, where the numbers of cells, n_{x}, n_{y}, and n_{t} are different across modalities (Table S.1). Data is generated as described above, but we set $n_{x}=1000, n_{y}=2000$, and $n_{t}=500$.
(2) Simulation setting 2: unequal number of clusters, where the numbers of clusters in the three modalities, K_{x}, K_{y}, K_{t} are different (Table S.2). Data is generated as described above, but we applied following scheme to generate $\boldsymbol{\omega}^{y}$ and $\boldsymbol{\psi}_{x}, \boldsymbol{\psi}_{y}, \boldsymbol{\psi}_{t}$ so that $K_{x}=3, K_{y}=7, K_{t}=5$.
A. Generate $\boldsymbol{\omega}^{y}$

For $g=1, \ldots, 350$:

$$
\omega_{k g}^{y} \sim\left[\begin{array}{ccccccc}
(1, \ldots, 50) & (51, \ldots, 100) & (101, \ldots, 150) & (151, \ldots, 200) & (201, \ldots, 250) & (251, \ldots, 300) & (301, \ldots, 350) \\
0.800 & 0.733 & 0.533 & 0.500 & 0.467 & 0.267 & 0.200 \\
0.733 & 0.533 & 0.500 & 0.467 & 0.267 & 0.200 & 0.800 \\
0.533 & 0.500 & 0.467 & 0.267 & 0.200 & 0.800 & 0.733 \\
0.500 & 0.467 & 0.267 & 0.200 & 0.800 & 0.733 & 0.533 \\
0.467 & 0.267 & 0.200 & 0.800 & 0.733 & 0.533 & 0.500 \\
0.267 & 0.200 & 0.800 & 0.733 & 0.533 & 0.500 & 0.567 \\
0.200 & 0.800 & 0.733 & 0.533 & 0.500 & 0.467 & 0.267
\end{array}\right]
$$

For $g=351, \ldots, 1000$:
$\omega_{k g}^{y} \sim \begin{cases}\operatorname{Beta}(\alpha=2, \beta=2), & \text { for } k=1 \\ \omega_{1 g}^{y}, & \text { for } k=2, \ldots, 7\end{cases}$
B. Generate $\boldsymbol{\omega}^{x}$ and $\boldsymbol{\omega}^{t}$.

For $g=1, \ldots, 350$:
$\omega_{k g}^{x} \sim \operatorname{Beta}\left(\mu_{k g}^{x}=\frac{1}{1+e^{-f\left(\omega_{k g}^{y}\right)}}, \phi^{x}\right)$, for $k=1, \ldots, 7$
For $g=351, \ldots, 1000$:
$\omega_{k g}^{x} \sim \begin{cases}\operatorname{Beta}\left(\mu_{k g}^{x}=\frac{1}{1+e^{-f\left(\omega_{1 g}^{y}\right)}}, \phi^{x}\right), & \text { for } k=1 \\ \omega_{1 g}^{x}, & \text { for } k=2, \ldots, 7\end{cases}$
For $g=1, \ldots, 350$:
$\omega_{k g}^{t} \sim \operatorname{Beta}\left(\mu_{k g}^{t}=\frac{1}{1+e^{-g\left(\omega_{k g}^{y}\right)}}, \phi^{t}\right)$, for $k=1, \ldots, 7$
For $g=351, \ldots, 1000$:
$\omega_{k g}^{t} \sim \begin{cases}\operatorname{Beta}\left(\mu_{k g}^{t}=\frac{1}{1+e^{-g\left(\omega_{1 g}^{U}\right)}}, \phi^{t}\right), & \text { for } k=1 \\ \omega_{1 g}^{t}, & \text { for } k=2, \ldots, 7\end{cases}$
C. Generate $\boldsymbol{z}^{x}, \boldsymbol{z}^{y}$ and \boldsymbol{z}^{t}. The cluster labels are generated by $\boldsymbol{\psi}_{x}=\left(0, \frac{1}{3}, \frac{1}{3}, \frac{1}{3}, 0,0,0\right), \boldsymbol{\psi}_{y}=$ $\left(\frac{1}{7}, \frac{1}{7}, \frac{1}{7}, \frac{1}{7}, \frac{1}{7}, \frac{1}{7}, \frac{1}{7}\right)$, and $\boldsymbol{\psi}_{t}=\left(0,0, \frac{1}{5}, \frac{1}{5}, \frac{1}{5}, \frac{1}{5}, \frac{1}{5}\right)$ so that $K_{x}=3, K_{y}=7, K_{t}=5$.

The remaining steps are the same as described above.
(3) Simulation setting 3: imbalanced cluster sizes, where the proportions of different cell types in the three modalities, $\boldsymbol{\psi}_{x}, \boldsymbol{\psi}_{y}, \boldsymbol{\psi}_{t}$ are different (Table S.3). Data is generated as described above, but we set $\boldsymbol{\psi}_{x}=(0.3,0.1,0.6), \boldsymbol{\psi}_{y}=(0.6,0.3,0.1), \boldsymbol{\psi}_{t}=(0.6,0.1,0.3)$. There are rare cell types $(10 \%$ of the cells $)$ in the three modalities.
(4) Simulation setting 4: smaller number of features (Table S.4). Data is generated as described above, but we set $p=500$.

2 Supplementary Figures

2.1 Histograms for two real data applications

Figure S.1: Histograms for Application 1 (Left) and Appliation 2 (Right) scCAS data (Upper), scRNASeq data (Middle) and sc-methylation data(Lower).

2.2 Determination of number of clusters K for real data applications

We applied the Silhouette method [1] mentioned in Section 2.9 on the two real data applications to determine K before we apply scAMACE. The result for real application 1 is presented in Figure S.2: $\hat{K}=2$ is chosen for the three single-cell datasets, where the true number of cell types is 2 . The results for real data application 2 are presented in Figure S.3. There are five cell types in scRNA-Seq data [2], including astrocytes, oligodendrocytes, and three subtypes of neurons. There are three cell types in sci-ATAC-Seq data [3], including astrocytes, oligodendrocytes, and excitatory neurons CPN. And there are three cell types in sc-methylation dataset [4], including three subtypes of neurons. In the three datasets, the optimal numbers of clusters chosen by the Silhoutte method $(\hat{K}=2)$ tend to be smaller than the numbers of cell types, which is likely due to the similarity of the neuronal subtypes. We chose $K=5$ when we implement scAMACE, instead of the suggested $\hat{K}=2$ by the Silhoutte method.

Figure S.2: Average Silhouette width v.s. K for Application 1, K562 and GM12878 cells: scATAC-Seq (Left), scRNA-Seq (Middle), and sc-methylation data (Right).

Figure S.3: Average Silhouette width v.s. K for Application 2, mouse neocortex data: sci-ATAC-Seq (Left), scRNA-Seq (Middle), and sc-methylation data (Right).

2.3 Empirical distribution of $\boldsymbol{\omega}$

To assess whether the linear and quadratic models work well, we performed the following steps. We first obtain $\hat{\omega}_{k g}^{a c c}, \hat{\omega}_{k g}^{r n a}, \hat{\omega}_{k g}^{\text {met }}$ as described in Section 2.6 by setting $K=1$ and fitting the model on the three modalities separately. We plotted the distributions of $\hat{\omega}_{k g}^{r n a}$ v.s. $\hat{\omega}_{k g}^{a c c}$ and $\hat{\omega}_{k g}^{r n a}$ v.s. $\hat{\omega}_{k g}^{m e t}$ for the two real data applications in the left panels in Figures S. 4 and S.5, respectively. For better visualization on how $\hat{\omega}_{k g}^{a c c}$ and $\hat{\omega}_{k g}^{m e t}$ change with $\hat{\omega}_{k g}^{r n a}$, we plotted the boxplots of $\hat{\omega}_{k g}^{a c c}$ and $\hat{\omega}_{k g}^{m e t}$ in different ranges of $\hat{\omega}_{k g}^{r n a}$. We estimated $\left\{\eta, \gamma, \tau, \delta, \theta, \phi^{a c c}, \phi^{m e t}\right\}$ by beta regression [5] using $\hat{\omega}_{k g}^{a c c}, \hat{\omega}_{k g}^{r n a}, \hat{\omega}_{k g}^{\text {met }}$. Using $\hat{\omega}_{k g}^{r n a}$ and $\left\{\hat{\eta}, \hat{\gamma}, \hat{\tau}, \hat{\delta}, \hat{\theta}, \hat{\phi}^{a c c}, \hat{\phi}^{m e t}\right\}$, we then generated $\omega_{k g}^{a c c}$ and $\omega_{k g}^{m e t}$ by random sampling following the quadratic and linear models. The distributions of the generated $\omega_{k g}^{a c c}$ and $\omega_{k g}^{\text {met }}$ are plotted in the right panels in Figures S. 4 and S.5, respectively. In comparison of the generated values (left panels in Figures S. 4 and S.5) with the estimated $\hat{\omega}_{k g}^{a c c}$ and $\hat{\omega}_{k g}^{m e t}$ (right panels in Figures S. 4 and S.5), we can see that the linear and quadratic models capture the trends on how $\hat{\omega}_{k g}^{a c c}$ and $\hat{\omega}_{k g}^{\text {met }}$ changes with $\hat{\omega}_{k g}^{r n a}$.

Figure S.4: Application 1: Distribution of $\hat{\omega}_{k g}^{r n a}$ v.s. $\hat{\omega}_{k g}^{a c c}$ where $\hat{\omega}_{k g}^{r n a}$ and $\hat{\omega}_{k g}^{a c c}$ are obtained by setting $K=1$ and fitting the model on scRNA-Seq data and scCAS data seperately (Top left); Distribution of $\hat{\omega}_{k g}^{r n a}$ v.s. generated $\omega_{k g}^{a c c}$ by random sampling from the quadratic model with $\left\{\hat{\eta}, \hat{\gamma}, \hat{\tau}, \hat{\phi}^{a c c}\right\}$ and $\hat{\omega}_{k g}^{r n a}$ (Top right). Distribution of $\hat{\omega}_{k g}^{r n a}$ v.s. $\hat{\omega}_{k g}^{m e t}$ where $\hat{\omega}_{k g}^{r n a}$ and $\hat{\omega}_{k g}^{\text {met }}$ are obtained by setting $K=1$ and fitting the model on scRNA-Seq data and sc-methylation data seperately (Bottom left); Distribution of $\hat{\omega}_{k g}^{r n a}$ v.s. generated $\omega_{k g}^{\text {met }}$ by random sampling from the linear model with $\left\{\hat{\delta}, \hat{\theta}, \hat{\phi}^{m e t}\right\}$ and $\hat{\omega}_{k g}^{\text {rna }}$ (Bottom right). The estimated values $\hat{\eta}=-1.190, \hat{\gamma}=4.376, \hat{\tau}=-3.036, \hat{\phi}^{a c c}=2.684, \hat{\delta}=0.117, \hat{\theta}=0.731, \hat{\phi}^{m e t}=3.186$.

Figure S.5: Application 2: Distribution of $\hat{\omega}_{k g}^{r n a}$ v.s. $\hat{\omega}_{k g}^{a c c}$ where $\hat{\omega}_{k g}^{r n a}$ and $\hat{\omega}_{k g}^{a c c}$ are obtained by setting $K=1$ and fitting the model on scRNA-Seq data and scCAS data seperately (Top left); Distribution of $\hat{\omega}_{k g}^{r n a}$ v.s. generated $\omega_{k g}^{a c c}$ by random sampling from the quadratic model with $\left\{\hat{\eta}, \hat{\gamma}, \hat{\tau}, \hat{\phi}^{a c c}\right\}$ and $\hat{\omega}_{k g}^{r n a}$ (Top right). Distribution of $\hat{\omega}_{k g}^{r n a}$ v.s. $\hat{\omega}_{k g}^{m e t}$ where $\hat{\omega}_{k g}^{r n a}$ and $\hat{\omega}_{k g}^{\text {met }}$ are obtained by setting $K=1$ and fitting the model on scRNA-Seq data and sc-methylation data seperately (Bottom left); Distribution of $\hat{\omega}_{k g}^{r n a}$ v.s. generated $\omega_{k g}^{\text {met }}$ by random sampling from the linear model with $\left\{\hat{\delta}, \hat{\theta}, \hat{\phi}^{m e t}\right\}$ and $\hat{\omega}_{k g}^{r n a}$ (Bottom right). The estimated values $\hat{\eta}=-2.713, \hat{\gamma}=4.334, \hat{\tau}=-2.826, \hat{\phi}^{a c c}=4.799, \hat{\delta}=-0.735, \hat{\theta}=2.008, \hat{\phi}^{\text {met }}=0.804$.

3 Supplementary Tables

Table S.1: Simulation setting 1: imbalanced datasets across the three modalities. Data is generated as described in Section 4, but we set the numbers of cells in the three modalities, n_{x}, n_{y}, and n_{t} to be different. Mean and sd (in parentheses) of purity, rand index, adjusted rand index (ARI) and normalized mutual information (NMI) for 50 independent runs are shown.

		Data type	Purity	Rand Index	ARI	NMI
$\begin{aligned} & n_{x}=1000 \\ & n_{y}=2000 \\ & n_{t}=500 \end{aligned}$	scAMACE (joint)	\boldsymbol{x}	0.697(0.022)	0.688(0.017)	0.299(0.037)	0.254(0.031)
		y	0.911(0.006)	0.890(0.007)	0.752(0.016)	0.673(0.017)
		t	0.705(0.025)	0.693(0.019)	0.311(0.043)	0.268(0.035)
	scAMACE (seperate)	\boldsymbol{x}	0.658(0.023)	0.661(0.015)	0.239(0.034)	0.203(0.029)
		y	0.872(0.008)	0.846(0.008)	0.652(0.018)	0.572(0.018)
		t	0.650(0.031)	0.655(0.019)	0.227(0.043)	0.196(0.036)
	K-Means	\boldsymbol{x}	0.382(0.019)	0.558(0.003)	0.007(0.007)	0.008(0.006)
		y	0.811(0.011)	0.784(0.010)	0.514(0.023)	0.442(0.021)
		t	0.394(0.024)	0.559(0.005)	0.009(0.009)	0.011(0.009)
	Hierarchical Clustering	\boldsymbol{x}	0.358(0.008)	0.493(0.045)	0.001(0.001)	0.002(0.002)
		y	0.356(0.007)	0.526(0.023)	0.001(0.001)	0.002(0.001)
		t	0.372(0.014)	0.524(0.033)	0.002(0.002)	0.005(0.004)
	Spectral Clustering	\boldsymbol{x}	0.390(0.022)	0.560(0.004)	0.011(0.009)	0.012(0.009)
		y	0.806(0.010)	0.779(0.010)	0.503(0.021)	0.431(0.019)
		t	0.399(0.025)	0.560(0.005)	0.010(0.010)	0.013(0.009)

Table S.2: Simulation setting 2: unequal number of clusters across the three modalities. Data is generated as described in Section 4, but we set the numbers of clusters in the three modalities, K_{x}, K_{y}, K_{t} to be different. Mean and sd (in parentheses) of purity, rand index, adjusted rand index (ARI) and normalized mutual information (NMI) for 50 independent runs are shown.

		Data type	Purity	Rand Index	ARI	NMI
$\begin{aligned} & K_{x}=3 \\ & K_{y}=7 \\ & K_{t}=5 \end{aligned}$	scAMACE (joint)	\boldsymbol{x}	0.727(0.023)	0.714(0.017)	0.353(0.039)	0.291(0.032)
		\boldsymbol{y}	0.775(0.015)	0.889(0.006)	0.549(0.024)	0.559(0.022)
		t	0.628(0.019)	0.773(0.008)	0.325(0.076)	0.291(0.020)
	scAMACE (seperate)	\boldsymbol{x}	0.717(0.020)	0.705(0.014)	0.322(0.033)	0.231(0.024)
		y	0.710(0.018)	0.864(0.007)	0.446(0.027)	0.466(0.026)
		t	0.591(0.017)	0.762(0.006)	0.241(0.020)	0.236(0.018)
	K-Means	x	0.416(0.027)	0.566(0.008)	0.285(0.016)	0.024(0.016)
		\boldsymbol{y}	0.282(0.024)	0.767(0.004)	0.050(0.016)	0.079(0.020)
		t	0.276(0.016)	0.684(0.002)	0.190(0.008)	0.023(0.008)
	Hierarchical Clustering	\boldsymbol{x}	0.363(0.012)	0.485(0.050)	0.372(0.062)	0.003(0.002)
		y	0.188(0.006)	0.704(0.038)	0.002(0.001)	0.012(0.003)
		t	0.240(0.009)	0.637(0.029)	0.215(0.024)	0.007(0.002)
	Spectral Clustering	\boldsymbol{x}	0.434(0.031)	0.573(0.010)	0.292(0.017)	0.039(0.022)
		y	0.323(0.022)	0.774(0.004)	0.079(0.014)	0.121(0.018)
		t	0.295(0.019)	0.688(0.003)	0.197(0.009)	0.036(0.010)

Table S.3: Simulation setting 3: imbalanced cluster sizes across the three modalities. Data is generated as described in Section 4, but we set the proportions different cell types across the three modalities, $\boldsymbol{\psi}_{x}$, $\boldsymbol{\psi}_{y}$, and $\boldsymbol{\psi}_{t}$ to be different. Mean and sd (in parentheses) of purity, rand index, adjusted rand index (ARI) and normalized mutual information (NMI) for 50 independent runs are shown.

Table S.4: Simulation setting 4: smaller number of features. Data is generated as described in Section 4, but we set the number of features p to be smaller. Mean and sd (in parentheses) of purity, rand index, adjusted rand index (ARI) and normalized mutual information (NMI) for 50 independent runs are shown.

		Data type	Purity	Rand Index	ARI	NMI
$p=500$	scAMACE (joint)	\boldsymbol{x}	0.557(0.029)	0.605(0.013)	0.115(0.029)	0.101(0.025)
		y	$0.770(0.012)$	0.746(0.010)	0.429(0.023)	0.368(0.020)
		t	0.564(0.024)	0.603(0.014)	0.120(0.025)	0.107(0.020)
	scAMACE (seperate)	\boldsymbol{x}	0.507(0.027)	0.585(0.010)	0.070(0.022)	0.063(0.0198)
		y	0.658(0.021)	0.660(0.014)	0.238(0.030)	0.205(0.025)
		t	0.511(0.023)	0.581(0.011)	0.072(0.019)	0.065(0.016)
	K-Means	x	0.373(0.013)	0.557(0.002)	0.003(0.004)	0.005(0.004)
		y	0.461(0.045)	0.577(0.013)	0.049(0.028)	0.045(0.024)
		t	0.377(0.017)	0.557(0.002)	0.005(0.005)	0.006(0.004)
	Hierarchical Clustering	\boldsymbol{x}	0.359(0.010)	0.472(0.045)	0.001(0.001)	0.003(0.002)
		y	0.359(0.009)	0.501(0.038)	0.001(0.001)	0.002(0.002)
		t	0.360(0.010)	0.527(0.023)	0.001(0.001)	0.002(0.001)
	Spectral Clustering	\boldsymbol{x}	0.374(0.015)	0.557(0.002)	0.004(0.004)	0.005(0.004)
		y	0.501(0.052)	0.591(0.015)	0.079(0.034)	0.072(0.028)
		t	0.379(0.002)	0.558(0.002)	0.004(0.004)	0.006(0.004)

Table S.5: Clustering tables for K562, GM12878 scRNA-Seq, scATAC-Seq and sc-methylation data before and after the transformation on sc-methylation data.

		scAMACE (joint)						scAMACE (seperate)					
		Before transformation			After transformation			Before transformation			After transformation		
		1	2	ARI									
scATAC-Seq	GM12878	368	5	0.958	368	5	0.958	254	119	0.192	254	119	0.192
	K562	6	660		6	660		171	495		171	495	
scRNA-Seq	GM12878	128	0	1.000	128	0	1.000	128	0	1.000	128	0	1.000
	K562	0	73		0	73		0	73		0	73	
sc-methyl	GM12878		19	0.000	16	3	0.628		19	0.000	7	12	0.260
	K562		11		0	11			11		11	0	

Table S.6: Clustering tables for the mouse neocortex scRNA-Seq, sci-ATAC-Seq, and sc-methylation data before and after the transformation on sc-methylation data.

		scAMACE (joint)											
		Before transformation						After transformation					
		1	2	3	4	5	ARI	1	2	3	4	5	ARI
sci-ATAC-Seq	Astro	550	0		1		0.998	550	0		1		0.998
	Ex. neurons CPN	0	1391		0			0	1391		0		
	Oligo	0	1		457			0	1		457		
scRNA-Seq	Astro	368	0	0	0	0	0.997	368	0	0	0	0	0.997
	L4	0	1401	0	0	0		0	1401	0	0	0	
	L6 CT	0	0	960	0	0		0	0	960	0	0	
	Oligo	25	0	0	66	0		25	0	0	66	0	
	Pvalb	0	0	0	0	1337		0	0	0	0	1337	
sc-methyl	L4					412	0.000		411	1	0	0	0.932
	L6-2					729			20	703	6	0	
	Pvalb					154			0	0	1	153	
		scAMACE (seperate)											
		Before transformation						After transformation					
		1	2	3	4	5	ARI	1	2	3	4	5	ARI
sci-ATAC-Seq	Astro	550	0	1			0.998	550	0	1			0.998
	Ex. neurons CPN	1	1390	0				1	1390	0			
	Oligo	0	0	458				0	0	458			
scRNA-Seq	Astro	368	0	0	0	0	0.997	368	0	0	0	0	0.997
	L4	0	1401	0	0	0		0	1401	0	0	0	
	L6 CT	0	0	960	0	0		0	0	960	0	0	
	Oligo	27	0	0	64	0		27	0	0	64	0	
	Pvalb	0	0	0	0	1337		0	0	0	0	1337	
sc-methyl	L4	412					0.000	412					0.000
	L6-2	729						729					
	Pvalb	154						154					

Table S.7: Supplementary clustering tables for K562, GM12878 scRNA-Seq, scATAC-Seq and scmethylation data.

		LIGER					scMC			
		1	2	3	4	5	1	2	3	4
scATAC-Seq	GM12878	2	346	24	1	0	353			
	K562	649	0	15	0	2	611			
scRNA-Seq	GM12878	2	1	30	95	0	13		115	0
	K562	0	0	9	0	64	11		0	62
sc-methyl	GM12878			19				19		
	K562			11				11		

Table S.8: Supplementary comparison of the performance of different methods on the K562, GM12878 dataset by adjusted rand index (ARI).

	LIGER	scMC
scATAC-Seq	0.918	0.000
scRNA-Seq	0.603	0.771
sc-methyl	0.000	0.000

Table S.9: Supplementary clustering tables for the mouse neocortex scRNA-Seq, sci-ATAC-Seq, and sc-methylation data.

Table S.10: Supplementary comparison of the performance of different methods on the mouse neocorex dataset by adjusted rand index (ARI).

	LIGER	scMC
sci-ATAC-Seq	0.052	0.019
scRNA-Seq	0.099	0.145
sc-methyl	0.031	0.001

Table S.11: Summary of the computation time by scAMACE and other clustering methods for Application 1. The unit of measurement is second. We implemented scAMACE (jointly on the three datastes, and seperately on the three datasets) by R and Python, run in 200 iterations. Seurat V3, scMC and LIGER are run in R by the downloaded R packages. Unless specified, all methods are implemented on one 3.4 GHz Intel Xeon Gold CPU.

scAMACE (joint) by R	scAMACE (seperate) by R
153.348	$91.200(\mathrm{scATAC}-\mathrm{Seq})+21.619(\mathrm{scRNA}-$ Seq) $+3.282(\mathrm{sc}-\mathrm{methyl})=116.101$
scAMACE (joint) by Python	scAMACE (seperate) by Python
19.731	$7.519(\mathrm{scATAC-Seq})+1.957(\mathrm{scRNA}-$ Seq) $+0.881(\mathrm{sc}-\mathrm{methyl})=10.357$
scAMACE (joint) by Python (using GPU)	scAMACE (seperate) by Python (using GPU)
7.640	1.971(scATAC-Seq) $+0.671(\mathrm{scRNA}$-Seq) $+0.364(\mathrm{sc}-\mathrm{methyl})=3.006$
Seurat V3 (scATAC-Seq+scRNA-Seq)	scMC(scATAC-Seq+scRNA-Seq+sc-methyl)
30.689	52.391
LIGER(scRNA-Seq+sc-methyl)	LIGER(scATAC-Seq+scRNA-Seq+sc-methyl)
23.100	73.788

Table S.12: Summary of the computation time by scAMACE and other clustering methods for Application 2. The unit of measurement is second. We implemented scAMACE (jointly on the three datastes, and seperately on the three datasets) by R and Python, run in 200 iterations. Seurat V3, scMC and LIGER are run in R by the downloaded R packages. Unless specified, all methods are implemented on one 3.4 GHz Intel Xeon Gold CPU.

scAMACE (joint) by R	ScAMACE (seperate) by R
2317.787	249.891 (sci-ATAC-Seq) $+950.388(\mathrm{scRNA}-$ Seq) $+171.823(\mathrm{sc}-\mathrm{methyl})=1372.102$
scAMACE (seperate) by Python	
418.858	51.878 (sci-ATAC-Seq) $+217.728($ scRNA-Seq) $+25.994(\mathrm{sc}-\mathrm{methyl})=295.6$
scAMACE (joint) by Python (using GPU)	scAMACE (seperate) by Python (using GPU)
69.652	7.651 (sci-ATAC-Seq) +33.435 (scRNA-Seq) +4.161 (sc-methyl) $=45.247$
Seurat V3 (sci-ATAC-Seq+scRNA-Seq)	scMC(sci-ATAC-Seq+scRNA-Seq+sc-methyl)
116.688	372.323
LIGER(scRNA-Seq+sc-methyl)	LIGER(sci-ATAC-Seq+scRNA-Seq+sc-methyl)
1618.965	80.389

Table S.13: Summary of the computation time by scAMACE and other clustering methods using 30,000 bootstrap samples $\left(n_{\text {acc }}=n_{\text {rna }}=n_{m e t}=10,000\right)$ from Application 2. The unit of measurement is second. We implemented scAMACE (jointly on the three datastes, and seperately on the three datasets) by R and Python, run in 200 iterations. Seurat V3, scMC and LIGER are run in R by the downloaded R packages. Unless specified, all methods are implemented on one 3.4 GHz Intel Xeon Gold CPU.

scAMACE (joint) by R	scAMACE (seperate) by R
7663.651	1366.109 (sci-ATAC-Seq) +2570.669 (scRNA-Seq) $+1391.464(\mathrm{sc}-\mathrm{methyl})=5328.242$
scAMACE (joint) by Python	scAMACE (seperate) by Python
1534.631	307.066 (sci-ATAC-Seq) $+548.065(\mathrm{scRNA}-$ Seq) $+373.092(\mathrm{sc}-\mathrm{methyl})=1228.223$
scAMACE (joint) by Python (using GPU)	scAMACE (seperate) by Python (using GPU)
250.089	$64.549($ sci-ATAC-Seq) $+82.53(\mathrm{scRNA}-$ Seq) $+49.898(\mathrm{sc}-\mathrm{methyl})=196.977$
Seurat V3 (sci-ATAC-Seq+scRNA-Seq)	scMC(sci-ATAC-Seq+scRNA-Seq+sc-methyl)
290.640	3667.878
LIGER(scRNA-Seq+sc-methyl)	LIGER(sci-ATAC-Seq+scRNA-Seq+sc-methyl)
5319.259	555.574

References

[1] Leonard Kaufman and Peter J. Rousseeuw. Finding Groups in Data: An Introduction to Cluster Analysis. John Wiley, 1990.
[2] Bosiljka Tasic, Zizhen Yao, Lucas T. Graybuck, Kimberly A. Smith, Thuc Nghi Nguyen, Darren Bertagnolli, Jeff Goldy, Emma Garren, Michael N. Economo, Sarada Viswanathan, Osnat Penn, Trygve Bakken, Vilas Menon, Jeremy Miller, Olivia Fong, Karla E. Hirokawa, Kanan Lathia, Christine Rimorin, Michael Tieu, Rachael Larsen, Tamara Casper, Eliza Barkan, Matthew Kroll, Sheana Parry, Nadiya V. Shapovalova, Daniel Hirschstein, Julie Pendergraft, Heather A. Sullivan, Tae Kyung Kim, Aaron Szafer, Nick Dee, Peter Groblewski, Ian Wickersham, Ali Cetin, Julie A. Harris, Boaz P. Levi, Susan M. Sunkin, Linda Madisen, Tanya L. Daigle, Loren Looger, Amy Bernard, John Phillips, Ed Lein, Michael Hawrylycz, Karel Svoboda, Allan R. Jones, Christof Koch, and Hongkui Zeng. Shared and distinct transcriptomic cell types across neocortical areas. Nature, 563(7729):72-78, Nov 2018.
[3] Darren A. Cusanovich, Andrew J. Hill, Delasa Aghamirzaie, Riza M. Daza, Hannah A. Pliner, Joel B. Berletch, Galina N. Filippova, Xingfan Huang, Lena Christiansen, William S. DeWitt, Choli Lee, Samuel G. Regalado, David F. Read, Frank J. Steemers, Christine M. Disteche, Cole Trapnell, and Jay Shendure. A single-cell atlas of in vivo mammalian chromatin accessibility. Cell, 174(5):1309 1324.e18, 2018.
[4] Chongyuan Luo, Christopher L. Keown, Laurie Kurihara, Jingtian Zhou, Yupeng He, Junhao Li, Rosa Castanon, Jacinta Lucero, Joseph R. Nery, Justin P. Sandoval, Brian Bui, Terrence J. Sejnowski, Timothy T. Harkins, Eran A. Mukamel, M. Margarita Behrens, and Joseph R. Ecker. Singlecell methylomes identify neuronal subtypes and regulatory elements in mammalian cortex. Science, 357(6351):600-604, 2017.
[5] Ferrari Silvia and Cribari-Neto Francisco. Beta regression for modelling rates and proportions. Journal of Applied Statistics, 31(7):799-815, 2004.

[^0]: *Corresponding author: zhixianglin@cuhk.edu.hk

