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1.1 Joint likelihood

• scCAS data

P (X,U i.,Oi.,Zi.|ψacc,ωacc,πi)

=
∏
i

∏
k

{
ψacc
k ∗

∏
g

[
ωacc
kg (πi1f1)

oig((1− πi1)f0)1−oig
]uig ∗

[
(1− ωacc

kg )f0
]1−uig

}zik

.

• scRNA-Seq data

P (Y ,U l.,V l.,Z l.|ψrna,ωrna,πl) =
∏
l

∏
k

[ψrna
k ∗A]zlk ,

A =
∏
g

{
ωrna
kg [πl1g1]

vlg ∗ [(1− πl1)g0]1−vlg
}ulg ∗

{
(1− ωrna

kg ) [πl0g1]
vlg ∗ [(1− πl0)g0]1−vlg

}1−ulg .

• sc-methylation data

P (T ,U d.,M d.,Zd.|ψmet,ωmet,πd) =
∏
d

∏
k

[ψmet
k ∗B]zdk ,

B =
∏
g

{
ωmet
kg (πd1h1)

mdg ∗ [(1− πd1)h0]1−mdg
}udg ∗

{
(1− ωmet

kg )(πd0h1)
mdg ∗ [(1− πd0)h0]1−mdg

}1−udg .

∗Corresponding author: zhixianglin@cuhk.edu.hk
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1.2 Q-function

Let Γ denote the missing data, and let Φ denote the parameters. the Q-function is Q(Φ|Φold) =
Eold(ln(P (Φ,Γ|obs.))), where the expectation is over Γ under distribution P (Γ|Φold, obs.) := P old(Γ).

ln(P (Φ,Γ|obs.))

=
∑
i

∑
k

zikln(ψacc
k ) +

∑
i

∑
k

zik
∑
g

[
uigln(ωacc

kg ) + (1− uig)ln(1− ωacc
kg )
]

+
∑
i

∑
k

zik
∑
g

[uigoigln(πi1) + uig(1− oig)ln(1− πi1) + uigoigln(f1) + (1− uigoig)ln(f0)]

+
∑
l

∑
k

zlkln(ψrna
k ) +

∑
l

∑
k

zlk
∑
g

[
ulgln(ωrna

kg ) + (1− ulg)ln(1− ωrna
kg )

]
+
∑
l

∑
k

zlk
∑
g

[ulgvlgln(πl1) + ulg(1− vlg)ln(1− πl1)]

+
∑
l

∑
k

zlk
∑
g

[(1− ulg)vlgln(πl0) + (1− ulg)(1− vlg)ln(1− πl0)]

+
∑
l

∑
k

zlk
∑
g

[vlgln(g1) + (1− vlg)ln(g0)]

+
∑
d

∑
k

zdkln(ψmet
k ) +

∑
d

∑
k

zdk
∑
g

[
udgln(ωmet

kg ) + (1− udg)ln(1− ωmet
kg )

]
+
∑
d

∑
k

zdk
∑
g

[udgmdgln(πd1) + udg(1−mdg)ln(1− πd1)]

+
∑
d

∑
k

zdk
∑
g

[(1− udg)mdgln(πd0) + (1− udg)(1−mdg)ln(1− πd0)]

+
∑
d

∑
k

zdk
∑
g

[mdgln(h1) + (1−mdg)ln(h0)]

+
∑
k

ln(ψacc
k ) +

∑
k

ln(ψrna
k ) +

∑
k

ln(ψmet
k )

+
∑
i

[(αacc − 1)ln(πi1) + (βacc − 1)ln(1− πi1)] +
∑
l

[−ln(1− πl0)] +
∑
d

[−ln(πd0)]

+
∑
k

∑
g

[
(α1 − 1)ln(ωrna

kg ) + (β1 − 1)ln(1− ωrna
kg )

]
+
∑
k

∑
g

{
(µacc

kg φ
acc − 1)ln(ωacc

kg ) + (φacc − µacc
kg φ

acc − 1)ln(1− ωacc
kg )− ln

[
Beta(µacc

kg φ
acc, φacc − µacc

kg φ
acc)
]}

+
∑
k

∑
g

{
(µmet

kg φ
met − 1)ln(ωmet

kg ) + (φmet − µmet
kg φ

met − 1)ln(1− ωmet
kg )− ln

[
Beta(µmet

kg φ
met, φmet − µmet

kg φ
met)

]}
+C,

where µacc
kg = 1

1+e
−f(ωrna

kg
) , µ

met
kg = 1

1+e
−g(ωrna

kg
) , and C is a constant that does not depend on the param-
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eters.

1.3 Expectations in E-Step

• scCAS data

Eold(zik) ∝ ψacc
k

∏
g

{[
ωacc
kg (πi1f1 + (1− πi1)f0)

]
+
[
(1− ωacc

kg )f0
]}
,

Eold(zikuig) =
ωacc
kg (πi1f1 + (1− πi1)f0)

ωacc
kg (πi1f1 + (1− πi1)f0) + (1− ωacc

kg )f0
∗ Pold(zik = 1),

Eold(zikuigoig) =
πi1f1

πi1f1 + (1− πi1)f0
∗ Pold(zik = 1, uig = 1).

• scRNA-Seq data

Eold(zlk) ∝ ψrna
k

∏
g

{
ωrna
kg [πl1g1 + (1− πl1)g0] + (1− ωrna

kg ) [πl0g1 + (1− πl0)g0]
}
,

Eold(zlkulg) =
ωrna
kg [πl1g1 + (1− πl1)g0]

ωrna
kg [πl1g1 + (1− πl1)g0] + (1− ωrna

kg ) [πl0g1 + (1− πl0)g0]
∗ Pold(zlk = 1),

Eold(zlk(1− ulg)) = Eold(zlk)− Eold(zlkulg),

Eold(zlkulgvlg) =
πl1g1

πl1g1 + (1− πl1)g0
∗ Pold(zlk = 1, ulg = 1),

Eold(zlk(1− ulg)vlg) =
πl0g1

πl0g1 + (1− πl0)g0
∗ Pold(zlk = 1, ulg = 0),

Eold(zlkvlg) = Eold(zlkulgvlg) + Eold(zlk(1− ulg)vlg).

• sc-methylation data

Eold(zdk) ∝ ψmet
k

∏
g

{
ωmet
kg [πd1h1 + (1− πd1)h0] + (1− ωmet

kg ) [πd0h1 + (1− πd0)h0]
}
,

Eold(zdkudg) =
ωmet
kg [πd1h1 + (1− πd1)h0]

ωmet
kg [πd1h1 + (1− πd1)h0] + (1− ωmet

kg ) [πd0h1 + (1− πd0)h0]
∗ Pold(zdk = 1),

Eold(zdk(1− udg)) = Eold(zdk)− Eold(zdkudg),

Eold(zdkudgmdg) =
πd1h1

πd1h1 + (1− πd1)h0
∗ Pold(zdk = 1, udg = 1),

Eold(zdk(1− udg)mdg) =
πd0h1

πd0h1 + (1− πd0)h0
∗ Pold(zdk = 1, udg = 0),

Eold(zdkmdg) = Eold(zdkudgmdg) + Eold(zdk(1− udg)mdg).
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1.4 Simulation scheme

We generated three different types of simulated data x, y and t following the model assumption. In the
simulated data, the sample sizes nx = 900, ny = 1100, and nt = 1000. The number of features p = 1000.
The numbers of clusters Kx = Ky = Kt = 3. f(ωy

kg) = η + γωy
kg + τ(ωy

kg)
2 = −1 + 7ωy

kg − 2(ωy
kg)

2,
g(ωy

kg) = δ + θωy
kg = −2 + 5ωy

kg, φ
x = 10 and φt = 10. The followings are the simulation scheme:

A. Generate ωy

For g = 1, ..., 150:

ωy
kg ∼

(1, . . . , 50) (51, . . . , 100) (101, . . . , 150)[ ]ω 0.5 1− ω
0.5 1− ω ω

1− ω ω 0.5

We set ω = 0.8.

For g = 151, ..., 1000:

ωy
kg ∼

{
Beta (α = 2, β = 2), for k = 1

ωy
1g, for k = 2, 3

To summarize, we set the first 150 features to be differential and for the remaining 151, . . . , p
features, we set ωy

kg to be the same across different clusters k.

B. Generate ωx and ωt.

For g = 1, ..., 150:
ωx
kg ∼ Beta (µx

kg = 1

1+e
−f(ω

y
kg

)
, φx), for k = 1, 2, 3

For g = 151, ..., 1000:

ωx
kg ∼

{
Beta (µx

kg = 1

1+e
−f(ω

y
1g)
, φx), for k = 1

ωx
1g, for k = 2, 3

For g = 1, ..., 150:
ωt
kg ∼ Beta (µt

kg = 1

1+e
−g(ω

y
kg

)
, φt), for k = 1, 2, 3

For g = 151, ..., 1000:

ωt
kg ∼

{
Beta (µt

kg = 1

1+e
−g(ω

y
1g)
, φt), for k = 1

ωt
1g, for k = 2, 3

C. Generate zx, zy and zt. The cluster labels are generated with equal probability, P (z. = 1) =
P (z. = 2) = P (z. = 3) = 1

3
.

D. Data type 1: x

• Generate ux. We generate uig from Bernoulli(ωx
kg) if zik = 1.
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• Generate ox. We generate oig from Bernoulli(πi1) if uig = 1, and set oig = 0 if uig = 0. We
set πi1 = 0.2 for i = 1, · · · , nx.

• Generate x. We generate xig = 1 if oig = 1, and generate xig = 0 if oig = 0.

E. Data type 2: y

• Generate uy. We generate ulg from Bernoulli(ωy
kg) if zlk = 1.

• Generate vy. We generate vlg from Bernoulli(πl1) if ulg = 1, and from Bernoulli(πl0) if
ulg = 0. We set πl1 = 0.7, πl0 = 0.3 for l = 1, · · · , ny.

• Generate y. We generate ylg from Gamma(shape = 7, scale = 0.5) if vlg = 1, and generate ylg
from Gamma(shape = 1, scale = 1) if vlg = 0.

F. Data type 3: t

• Generate ut. We generate udg from Bernoulli(ωt
kg) if zdk = 1.

• Generate mt. We generate mdg from Bernoulli(πd1) if udg = 1, and from Bernoulli(πd0) if
udg = 0. We set πd1 = 0.4, πd0 = 0.7 for d = 1, · · · , nt.

• Generate t. We generate tdg from Beta(α = 0.5, β = 0.5) if mdg = 1, and generate tdg from
Beta(α = 1, β = 10) if mdg = 0.

We set different parameter values for the four additional simulation settings mentioned in Section 4 as
following:

(1) Simulation setting 1: imbalanced dataset, where the numbers of cells, nx, ny, and nt are different
across modalities (Table S.1). Data is generated as described above, but we set nx = 1000, ny = 2000,
and nt = 500.

(2) Simulation setting 2: unequal number of clusters, where the numbers of clusters in the three
modalities, Kx, Ky, Kt are different (Table S.2). Data is generated as described above, but we applied
following scheme to generate ωy and ψx,ψy,ψt so that Kx = 3, Ky = 7, Kt = 5.

A. Generate ωy

For g = 1, ..., 350:

ωy
kg ∼

(1, . . . , 50) (51, . . . , 100) (101, . . . , 150) (151, . . . , 200) (201, . . . , 250) (251, . . . , 300) (301, . . . , 350)



0.800 0.733 0.533 0.500 0.467 0.267 0.200

0.733 0.533 0.500 0.467 0.267 0.200 0.800

0.533 0.500 0.467 0.267 0.200 0.800 0.733

0.500 0.467 0.267 0.200 0.800 0.733 0.533

0.467 0.267 0.200 0.800 0.733 0.533 0.500

0.267 0.200 0.800 0.733 0.533 0.500 0.567

0.200 0.800 0.733 0.533 0.500 0.467 0.267
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For g = 351, ..., 1000:

ωy
kg ∼

{
Beta (α = 2, β = 2), for k = 1

ωy
1g, for k = 2, . . . , 7

B. Generate ωx and ωt.

For g = 1, ..., 350:
ωx
kg ∼ Beta (µx

kg = 1

1+e
−f(ω

y
kg

)
, φx), for k = 1, . . . , 7

For g = 351, ..., 1000:

ωx
kg ∼

{
Beta (µx

kg = 1

1+e
−f(ω

y
1g)
, φx), for k = 1

ωx
1g, for k = 2, . . . , 7

For g = 1, ..., 350:
ωt
kg ∼ Beta (µt

kg = 1

1+e
−g(ω

y
kg

)
, φt), for k = 1, . . . , 7

For g = 351, ..., 1000:

ωt
kg ∼

{
Beta (µt

kg = 1

1+e
−g(ω

y
1g)
, φt), for k = 1

ωt
1g, for k = 2, . . . , 7

C. Generate zx, zy and zt. The cluster labels are generated by ψx = (0, 1
3
, 1
3
, 1
3
, 0, 0, 0), ψy =

(1
7
, 1
7
, 1
7
, 1
7
, 1
7
, 1
7
, 1
7
), and ψt = (0, 0, 1

5
, 1
5
, 1
5
, 1
5
, 1
5
) so that Kx = 3, Ky = 7, Kt = 5.

The remaining steps are the same as described above.

(3) Simulation setting 3: imbalanced cluster sizes, where the proportions of different cell types in the
three modalities, ψx, ψy, ψt are different (Table S.3). Data is generated as described above, but we set
ψx = (0.3, 0.1, 0.6),ψy = (0.6, 0.3, 0.1),ψt = (0.6, 0.1, 0.3). There are rare cell types (10% of the cells) in
the three modalities.

(4) Simulation setting 4: smaller number of features (Table S.4). Data is generated as described
above, but we set p = 500.
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2 Supplementary Figures

2.1 Histograms for two real data applications

Figure S.1: Histograms for Application 1 (Left) and Appliation 2 (Right) scCAS data (Upper), scRNA-
Seq data (Middle) and sc-methylation data(Lower).
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2.2 Determination of number of clusters K for real data applications

We applied the Silhouette method [1] mentioned in Section 2.9 on the two real data applications to
determine K before we apply scAMACE. The result for real application 1 is presented in Figure S.2:
K̂ = 2 is chosen for the three single-cell datasets, where the true number of cell types is 2. The results
for real data application 2 are presented in Figure S.3. There are five cell types in scRNA-Seq data [2],
including astrocytes, oligodendrocytes, and three subtypes of neurons. There are three cell types in sci-
ATAC-Seq data [3], including astrocytes, oligodendrocytes, and excitatory neurons CPN. And there are
three cell types in sc-methylation dataset [4], including three subtypes of neurons. In the three datasets,
the optimal numbers of clusters chosen by the Silhoutte method (K̂ = 2) tend to be smaller than the
numbers of cell types, which is likely due to the similarity of the neuronal subtypes. We chose K = 5
when we implement scAMACE, instead of the suggested K̂ = 2 by the Silhoutte method.

Figure S.2: Average Silhouette width v.s. K for Application 1, K562 and GM12878 cells: scATAC-Seq
(Left), scRNA-Seq (Middle), and sc-methylation data (Right).
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Figure S.3: Average Silhouette width v.s. K for Application 2, mouse neocortex data: sci-ATAC-Seq
(Left), scRNA-Seq (Middle), and sc-methylation data (Right).
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2.3 Empirical distribution of ω

To assess whether the linear and quadratic models work well, we performed the following steps. We
first obtain ω̂acc

kg , ω̂rna
kg , ω̂met

kg as described in Section 2.6 by setting K = 1 and fitting the model on the
three modalities separately. We plotted the distributions of ω̂rna

kg v.s. ω̂acc
kg and ω̂rna

kg v.s. ω̂met
kg for the

two real data applications in the left panels in Figures S.4 and S.5, respectively. For better visualization
on how ω̂acc

kg and ω̂met
kg change with ω̂rna

kg , we plotted the boxplots of ω̂acc
kg and ω̂met

kg in different ranges of
ω̂rna
kg . We estimated {η, γ, τ, δ, θ, φacc, φmet} by beta regression [5] using ω̂acc

kg , ω̂rna
kg , ω̂met

kg . Using ω̂rna
kg and

{η̂, γ̂, τ̂ , δ̂, θ̂, φ̂acc, φ̂met}, we then generated ωacc
kg and ωmet

kg by random sampling following the quadratic
and linear models. The distributions of the generated ωacc

kg and ωmet
kg are plotted in the right panels in

Figures S.4 and S.5, respectively. In comparison of the generated values (left panels in Figures S.4 and
S.5) with the estimated ω̂acc

kg and ω̂met
kg (right panels in Figures S.4 and S.5), we can see that the linear

and quadratic models capture the trends on how ω̂acc
kg and ω̂met

kg changes with ω̂rna
kg .
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Figure S.4: Application 1: Distribution of ω̂rna
kg v.s. ω̂acc

kg where ω̂rna
kg and ω̂acc

kg are obtained by setting
K = 1 and fitting the model on scRNA-Seq data and scCAS data seperately (Top left); Distribution of
ω̂rna
kg v.s. generated ωacc

kg by random sampling from the quadratic model with {η̂, γ̂, τ̂ , φ̂acc} and ω̂rna
kg (Top

right). Distribution of ω̂rna
kg v.s. ω̂met

kg where ω̂rna
kg and ω̂met

kg are obtained by setting K = 1 and fitting the
model on scRNA-Seq data and sc-methylation data seperately (Bottom left); Distribution of ω̂rna

kg v.s.

generated ωmet
kg by random sampling from the linear model with {δ̂, θ̂, φ̂met} and ω̂rna

kg (Bottom right). The

estimated values η̂ = −1.190, γ̂ = 4.376, τ̂ = −3.036, φ̂acc = 2.684, δ̂ = 0.117, θ̂ = 0.731, φ̂met = 3.186.
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Figure S.5: Application 2: Distribution of ω̂rna
kg v.s. ω̂acc

kg where ω̂rna
kg and ω̂acc

kg are obtained by setting
K = 1 and fitting the model on scRNA-Seq data and scCAS data seperately (Top left); Distribution of
ω̂rna
kg v.s. generated ωacc

kg by random sampling from the quadratic model with {η̂, γ̂, τ̂ , φ̂acc} and ω̂rna
kg (Top

right). Distribution of ω̂rna
kg v.s. ω̂met

kg where ω̂rna
kg and ω̂met

kg are obtained by setting K = 1 and fitting the
model on scRNA-Seq data and sc-methylation data seperately (Bottom left); Distribution of ω̂rna

kg v.s.

generated ωmet
kg by random sampling from the linear model with {δ̂, θ̂, φ̂met} and ω̂rna

kg (Bottom right). The

estimated values η̂ = −2.713, γ̂ = 4.334, τ̂ = −2.826, φ̂acc = 4.799, δ̂ = −0.735, θ̂ = 2.008, φ̂met = 0.804.
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3 Supplementary Tables

Table S.1: Simulation setting 1: imbalanced datasets across the three modalities. Data is generated as
described in Section 4, but we set the numbers of cells in the three modalities, nx, ny, and nt to be
different. Mean and sd (in parentheses) of purity, rand index, adjusted rand index (ARI) and normalized
mutual information (NMI) for 50 independent runs are shown.

nx = 1000
ny = 2000
nt = 500

Data type Purity Rand Index ARI NMI

scAMACE (joint)
x 0.697(0.022) 0.688(0.017) 0.299(0.037) 0.254(0.031)
y 0.911(0.006) 0.890(0.007) 0.752(0.016) 0.673(0.017)
t 0.705(0.025) 0.693(0.019) 0.311(0.043) 0.268(0.035)

scAMACE (seperate)
x 0.658(0.023) 0.661(0.015) 0.239(0.034) 0.203(0.029)
y 0.872(0.008) 0.846(0.008) 0.652(0.018) 0.572(0.018)
t 0.650(0.031) 0.655(0.019) 0.227(0.043) 0.196(0.036)

K-Means
x 0.382(0.019) 0.558(0.003) 0.007(0.007) 0.008(0.006)
y 0.811(0.011) 0.784(0.010) 0.514(0.023) 0.442(0.021)
t 0.394(0.024) 0.559(0.005) 0.009(0.009) 0.011(0.009)

Hierarchical Clustering
x 0.358(0.008) 0.493(0.045) 0.001(0.001) 0.002(0.002)
y 0.356(0.007) 0.526(0.023) 0.001(0.001) 0.002(0.001)
t 0.372(0.014) 0.524(0.033) 0.002(0.002) 0.005(0.004)

Spectral Clustering
x 0.390(0.022) 0.560(0.004) 0.011(0.009) 0.012(0.009)
y 0.806(0.010) 0.779(0.010) 0.503(0.021) 0.431(0.019)
t 0.399(0.025) 0.560(0.005) 0.010(0.010) 0.013(0.009)

Table S.2: Simulation setting 2: unequal number of clusters across the three modalities. Data is generated
as described in Section 4, but we set the numbers of clusters in the three modalities, Kx, Ky, Kt to be
different. Mean and sd (in parentheses) of purity, rand index, adjusted rand index (ARI) and normalized
mutual information (NMI) for 50 independent runs are shown.

Kx = 3
Ky = 7
Kt = 5

Data type Purity Rand Index ARI NMI

scAMACE (joint)
x 0.727(0.023) 0.714(0.017) 0.353(0.039) 0.291(0.032)
y 0.775(0.015) 0.889(0.006) 0.549(0.024) 0.559(0.022)
t 0.628(0.019) 0.773(0.008) 0.325(0.076) 0.291(0.020)

scAMACE (seperate)
x 0.717(0.020) 0.705(0.014) 0.322(0.033) 0.231(0.024)
y 0.710(0.018) 0.864(0.007) 0.446(0.027) 0.466(0.026)
t 0.591(0.017) 0.762(0.006) 0.241(0.020) 0.236(0.018)

K-Means
x 0.416(0.027) 0.566(0.008) 0.285(0.016) 0.024(0.016)
y 0.282(0.024) 0.767(0.004) 0.050(0.016) 0.079(0.020)
t 0.276(0.016) 0.684(0.002) 0.190(0.008) 0.023(0.008)

Hierarchical Clustering
x 0.363(0.012) 0.485(0.050) 0.372(0.062) 0.003(0.002)
y 0.188(0.006) 0.704(0.038) 0.002(0.001) 0.012(0.003)
t 0.240(0.009) 0.637(0.029) 0.215(0.024) 0.007(0.002)

Spectral Clustering
x 0.434(0.031) 0.573(0.010) 0.292(0.017) 0.039(0.022)
y 0.323(0.022) 0.774(0.004) 0.079(0.014) 0.121(0.018)
t 0.295(0.019) 0.688(0.003) 0.197(0.009) 0.036(0.010)
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Table S.3: Simulation setting 3: imbalanced cluster sizes across the three modalities. Data is generated
as described in Section 4, but we set the proportions different cell types across the three modalities, ψx,
ψy, and ψt to be different. Mean and sd (in parentheses) of purity, rand index, adjusted rand index
(ARI) and normalized mutual information (NMI) for 50 independent runs are shown.

ψx = (0.3, 0.1, 0.6)
ψy = (0.6, 0.3, 0.1)
ψt = (0.6, 0.1, 0.3)

Data type Purity Rand Index ARI NMI

scAMACE (joint)
x 0.732(0.023) 0.680(0.023) 0.350(0.047) 0.238(0.034)
y 0.908(0.010) 0.872(0.013) 0.743(0.026) 0.603(0.030)
t 0.756(0.017) 0.689(0.017) 0.376(0.034) 0.243(0.030)

scAMACE (seperate)
x 0.729(0.025) 0.673(0.024) 0.336(0.050) 0.222(0.038)
y 0.870(0.012) 0.823(0.015) 0.644(0.030) 0.499(0.029)
t 0.729(0.017) 0.665(0.015) 0.326(0.031) 0.208(0.026)

K-Means
x 0.601(0.016) 0.516(0.006) 0.007(0.006) 0.008(0.006)
y 0.769(0.021) 0.625(0.016) 0.230(0.031) 0.198(0.028)
t 0.598(0.015) 0.519(0.007) 0.011(0.001) 0.011(0.008)

Hierarchical Clustering
x 0.601(0.016) 0.500(0.012) 0.007(0.007) 0.002(0.002)
y 0.600(0.014) 0.505(0.008) 0.006(0.005) 0.003(0.002)
t 0.598(0.015) 0.506(0.010) 0.008(0.008) 0.003(0.002)

Spectral Clustering
x 0.601(0.016) 0.519(0.007) 0.011(0.010) 0.011(0.008)
y 0.754(0.034) 0.620(0.017) 0.220(0.031) 0.189(0.026)
t 0.601(0.017) 0.525(0.009) 0.022(0.015) 0.021(0.013)

Table S.4: Simulation setting 4: smaller number of features. Data is generated as described in Section 4,
but we set the number of features p to be smaller. Mean and sd (in parentheses) of purity, rand index,
adjusted rand index (ARI) and normalized mutual information (NMI) for 50 independent runs are shown.

p = 500

Data type Purity Rand Index ARI NMI

scAMACE (joint)
x 0.557(0.029) 0.605(0.013) 0.115(0.029) 0.101(0.025)
y 0.770(0.012) 0.746(0.010) 0.429(0.023) 0.368(0.020)
t 0.564(0.024) 0.603(0.014) 0.120(0.025) 0.107(0.020)

scAMACE (seperate)
x 0.507(0.027) 0.585(0.010) 0.070(0.022) 0.063(0.0198)
y 0.658(0.021) 0.660(0.014) 0.238(0.030) 0.205(0.025)
t 0.511(0.023) 0.581(0.011) 0.072(0.019) 0.065(0.016)

K-Means
x 0.373(0.013) 0.557(0.002) 0.003(0.004) 0.005(0.004)
y 0.461(0.045) 0.577(0.013) 0.049(0.028) 0.045(0.024)
t 0.377(0.017) 0.557(0.002) 0.005(0.005) 0.006(0.004)

Hierarchical Clustering
x 0.359(0.010) 0.472(0.045) 0.001(0.001) 0.003(0.002)
y 0.359(0.009) 0.501(0.038) 0.001(0.001) 0.002(0.002)
t 0.360(0.010) 0.527(0.023) 0.001(0.001) 0.002(0.001)

Spectral Clustering
x 0.374(0.015) 0.557(0.002) 0.004(0.004) 0.005(0.004)
y 0.501(0.052) 0.591(0.015) 0.079(0.034) 0.072(0.028)
t 0.379(0.002) 0.558(0.002) 0.004(0.004) 0.006(0.004)
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Table S.5: Clustering tables for K562, GM12878 scRNA-Seq, scATAC-Seq and sc-methylation data before
and after the transformation on sc-methylation data.

scAMACE (joint) scAMACE (seperate)
Before transformation After transformation Before transformation After transformation
1 2 ARI 1 2 ARI 1 2 ARI 1 2 ARI

scATAC-Seq GM12878 368 5 0.958 368 5 0.958 254 119 0.192 254 119 0.192
K562 6 660 6 660 171 495 171 495

scRNA-Seq GM12878 128 0 1.000 128 0 1.000 128 0 1.000 128 0 1.000
K562 0 73 0 73 0 73 0 73

sc-methyl GM12878 19 0.000 16 3 0.628 19 0.000 7 12 0.260
K562 11 0 11 11 11 0

Table S.6: Clustering tables for the mouse neocortex scRNA-Seq, sci-ATAC-Seq, and sc-methylation data
before and after the transformation on sc-methylation data.

scAMACE (joint)
Before transformation After transformation

1 2 3 4 5 ARI 1 2 3 4 5 ARI
sci-ATAC-Seq Astro 550 0 1 0.998 550 0 1 0.998

Ex. neurons CPN 0 1391 0 0 1391 0
Oligo 0 1 457 0 1 457

scRNA-Seq Astro 368 0 0 0 0 0.997 368 0 0 0 0 0.997
L4 0 1401 0 0 0 0 1401 0 0 0

L6 CT 0 0 960 0 0 0 0 960 0 0
Oligo 25 0 0 66 0 25 0 0 66 0
Pvalb 0 0 0 0 1337 0 0 0 0 1337

sc-methyl L4 412 0.000 411 1 0 0 0.932
L6-2 729 20 703 6 0
Pvalb 154 0 0 1 153

scAMACE (seperate)
Before transformation After transformation

1 2 3 4 5 ARI 1 2 3 4 5 ARI
sci-ATAC-Seq Astro 550 0 1 0.998 550 0 1 0.998

Ex. neurons CPN 1 1390 0 1 1390 0
Oligo 0 0 458 0 0 458

scRNA-Seq Astro 368 0 0 0 0 0.997 368 0 0 0 0 0.997
L4 0 1401 0 0 0 0 1401 0 0 0

L6 CT 0 0 960 0 0 0 0 960 0 0
Oligo 27 0 0 64 0 27 0 0 64 0
Pvalb 0 0 0 0 1337 0 0 0 0 1337

sc-methyl L4 412 0.000 412 0.000
L6-2 729 729
Pvalb 154 154
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Table S.7: Supplementary clustering tables for K562, GM12878 scRNA-Seq, scATAC-Seq and sc-
methylation data.

LIGER scMC
1 2 3 4 5 1 2 3 4

scATAC-Seq GM12878 2 346 24 1 0 353
K562 649 0 15 0 2 611

scRNA-Seq GM12878 2 1 30 95 0 13 115 0
K562 0 0 9 0 64 11 0 62

sc-methyl GM12878 19 19
K562 11 11

Table S.8: Supplementary comparison of the performance of different methods on the K562, GM12878
dataset by adjusted rand index (ARI).

LIGER scMC
scATAC-Seq 0.918 0.000
scRNA-Seq 0.603 0.771
sc-methyl 0.000 0.000
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Table S.9: Supplementary clustering tables for the mouse neocortex scRNA-Seq, sci-ATAC-Seq, and
sc-methylation data.

LIGER
1 2 3 4 5 6 7 8 9 10 11 12

sci-ATAC-Seq Astro 145 184 31 58 12 34 16 10 37 6 0
Ex. neurons CPN 582 112 194 135 51 58 87 36 49 3 7

Oligo 156 62 51 64 45 25 14 3 13 17 0
scRNA-Seq Astro 49 250 5 27 5 5 0 8 16 3 0

L4 1153 82 66 1 13 16 13 14 5 38 0
L6 CT 791 17 52 3 40 5 6 27 0 12 7
Oligo 41 25 3 3 0 0 2 1 7 9 0
Pvalb 1078 24 78 3 8 6 9 36 1 22 72

sc-methyl L4 137 328 23 174 3 3 6 1 3 6 3 3
L6-2 68 223 18 95 1 1 1 0 3 2 0 0
Pvalb 79 27 2 41 2 0 0 0 0 0 1 2

scMC
1 2 3 4 5 6 7

sci-ATAC-Seq Astro 8 1 7 326 52 23 133
Ex. neurons CPN 103 18 27 836 164 29 212

Oligo 13 2 10 226 86 16 105
scRNA-Seq Astro 0 362 4 1 1

L4 1 1 1362 0 37
L6 CT 0 0 959 0 1
Oligo 0 14 58 1 18
Pvalb 1 0 1331 0 5

sc-methyl L4 1 689
L6-2 0 412
Pvalb 0 154

Table S.10: Supplementary comparison of the performance of different methods on the mouse neocorex
dataset by adjusted rand index (ARI).

LIGER scMC
sci-ATAC-Seq 0.052 0.019

scRNA-Seq 0.099 0.145
sc-methyl 0.031 0.001
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Table S.11: Summary of the computation time by scAMACE and other clustering methods for Application
1. The unit of measurement is second. We implemented scAMACE (jointly on the three datastes, and
seperately on the three datasets) by R and Python, run in 200 iterations. Seurat V3, scMC and LIGER
are run in R by the downloaded R packages. Unless specified, all methods are implemented on one
3.4GHz Intel Xeon Gold CPU.

scAMACE (joint) by R scAMACE (seperate) by R
153.348 91.200(scATAC-Seq)+21.619(scRNA-Seq)+3.282(sc-methyl)=116.101

scAMACE (joint) by Python scAMACE (seperate) by Python
19.731 7.519(scATAC-Seq)+1.957(scRNA-Seq)+0.881(sc-methyl)=10.357

scAMACE (joint) by Python (using GPU) scAMACE (seperate) by Python (using GPU)
7.640 1.971(scATAC-Seq)+0.671(scRNA-Seq)+0.364(sc-methyl)=3.006

Seurat V3 (scATAC-Seq+scRNA-Seq) scMC(scATAC-Seq+scRNA-Seq+sc-methyl)
30.689 52.391

LIGER(scRNA-Seq+sc-methyl) LIGER(scATAC-Seq+scRNA-Seq+sc-methyl)
23.100 73.788

Table S.12: Summary of the computation time by scAMACE and other clustering methods for Application
2. The unit of measurement is second. We implemented scAMACE (jointly on the three datastes, and
seperately on the three datasets) by R and Python, run in 200 iterations. Seurat V3, scMC and LIGER
are run in R by the downloaded R packages. Unless specified, all methods are implemented on one
3.4GHz Intel Xeon Gold CPU.

scAMACE (joint) by R scAMACE (seperate) by R
2317.787 249.891(sci-ATAC-Seq)+950.388(scRNA-Seq)+171.823(sc-methyl)=1372.102

scAMACE (joint) by Python scAMACE (seperate) by Python
418.858 51.878(sci-ATAC-Seq)+217.728(scRNA-Seq)+25.994(sc-methyl)=295.6

scAMACE (joint) by Python (using GPU) scAMACE (seperate) by Python (using GPU)
69.652 7.651(sci-ATAC-Seq)+33.435(scRNA-Seq)+4.161(sc-methyl)=45.247

Seurat V3 (sci-ATAC-Seq+scRNA-Seq) scMC(sci-ATAC-Seq+scRNA-Seq+sc-methyl)
116.688 372.323

LIGER(scRNA-Seq+sc-methyl) LIGER(sci-ATAC-Seq+scRNA-Seq+sc-methyl)
1618.965 80.389

Table S.13: Summary of the computation time by scAMACE and other clustering methods using 30,000
bootstrap samples (nacc = nrna = nmet = 10, 000) from Application 2. The unit of measurement is second.
We implemented scAMACE (jointly on the three datastes, and seperately on the three datasets) by R
and Python, run in 200 iterations. Seurat V3, scMC and LIGER are run in R by the downloaded R
packages. Unless specified, all methods are implemented on one 3.4GHz Intel Xeon Gold CPU.

scAMACE (joint) by R scAMACE (seperate) by R
7663.651 1366.109(sci-ATAC-Seq)+2570.669(scRNA-Seq)+1391.464(sc-methyl)=5328.242

scAMACE (joint) by Python scAMACE (seperate) by Python
1534.631 307.066(sci-ATAC-Seq)+548.065(scRNA-Seq)+373.092(sc-methyl)=1228.223

scAMACE (joint) by Python (using GPU) scAMACE (seperate) by Python (using GPU)
250.089 64.549(sci-ATAC-Seq)+82.53(scRNA-Seq)+49.898(sc-methyl)=196.977

Seurat V3 (sci-ATAC-Seq+scRNA-Seq) scMC(sci-ATAC-Seq+scRNA-Seq+sc-methyl)
290.640 3667.878

LIGER(scRNA-Seq+sc-methyl) LIGER(sci-ATAC-Seq+scRNA-Seq+sc-methyl)
5319.259 555.574
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