Supplementary Material to wQFM: Highly Accurate Genome-scale Species Tree Estimation from Weighted Quartets

Mahim Mahbub ${ }^{1, \dagger}$, Zahin Wahab ${ }^{1, \dagger}$, Rezwana Reaz ${ }^{1, \uparrow, *}$, M. Saifur Rahman ${ }^{1}$, and Md. Shamsuzzoha Bayzid ${ }^{1,{ }^{*}}$
${ }^{1}$ Department of Computer Science and Engineering Bangladesh University of Engineering and Technology Dhaka-1205, Bangladesh
${ }^{\dagger}$ These authors contributed equally to this work
*Corresponding author: shams_bayzid@cse.buet.ac.bd, rimpi@cse.buet.ac.bd

Contents

1 Overview 2
2 Datasets 2
3 Additional Results 2
3.1 Results on 11-taxon simulated dataset 2
3.2 Results on 101-taxon simulated dataset 4
3.3 Results on avian biological dataset: Exon, Intron and UCE trees 4
3.4 Results on mammalian biological dataset 6
3.5 Results on angiosperm dataset 7
4 Impact of using weighted quartets: comparison between wQFM and QFM 8
5 Quartet scores 12
6 Running time 17
7 Wilcoxon Signed-Rank Test 19

1 Overview

These supplementary materials present additional details about the datasets analyzed in this study (Sec. 2), results on simulated and real biological datasets (Sec. 3), running time information (Sec. 6), and also additional tables and figures (Secs. 5 and 7). We also present a comparison between QFM and wQFM, showing the positive impact of including weights in estimating trees by amalgamating quartets (Sec. 4).

2 Datasets

The 37-taxon mammalian simulated dataset was simulated by taking the species tree estimated by MP-EST on the biological dataset studied in Song et al. [1. This species tree had branch lengths in coalescent units, which we used to produce a set of gene trees under the coalescent model. Thus, the model tree has an ILS level based on a coalescent analysis of the biological mammalian dataset, and other properties of the simulation that are set to reflect the biological sequences they studied. We explored the impact of varying numbers of genes ($25-800$), varying amounts of gene tree estimation error (i.e., the amount of phylogenetic signal by varying the sequence length for the markers: 250bp - 1500bp). In both cases, the levels of ILS were varied (shorter branches increases ILS) by multiplying or dividing all internal branch lengths in the model species tree by two. Thus, we have three model conditions that are referred to as 1X (moderate ILS), 0.5 X (high ILS) and 2X (low ILS). The 48-taxon avian simulated dataset is based on the species tree estimated using MP-EST on the avian dataset of [2], and was simulated by following a similar procedure as the mammalian dataset. Similar to the mammalian dataset, it has three different ILS levels (1X, 0.5x and 2X), albeit the ILS levels are higher than the mammalian dataset (i.e., more discordance between the true gene trees and the species tree).

We analyzed the high-ILS 11-taxon datasets from [3] (as the model condition with lower amount of ILS is very easy to analyze [4) which varies in the number of genes and amount of gene tree estimation error. 15-taxon datasets contain a high level of ILS and vary in sequence lengths and numbers of genes. Thus, the simulated datasets provide a wide range of challenging and practical model conditions in which we explore the performance of wQFM.

3 Additional Results

3.1 Results on 11-taxon simulated dataset

The performance of various methods on 11-taxon high-ILS dataset with varying numbers of estimated and true gene trees is shown in Fig. S1. On this dataset, wQFM, ASTRAL and wQMC achived comparable tree accuracy with no statistically significant difference.

As was expected, the accuracy of these methods improved with the increase in the number of genes and they returned highly accurate species trees when true gene trees were used (even with only 25 genes).

(a) Analysis of estimated gene trees
(b) Analysis of true gene trees

Figure S1: Comparison of ASTRAL, wQFM and wQMC on 11-taxon high-ILS dataset. We varied the number of genes (5 genes to 100 genes) for both estimated and true gene trees. We show the average RF rates with standard errors over 20 replicates.

3.2 Results on 101-taxon simulated dataset

We show average RF rates of wQFM, ASTRAL and wQMC on 50 replicates of 101-taxon dataset with 1000 true gene trees (see Fig. S2). All of these methods produced highly accurate trees with around $1.3 \% \sim 3.1 \%$ tree error. wQFM was the most accurate method followed by ASTRAL. The difference between wQFM and ASTRAL was very small and was not statistically significant. However, the improvement of wQFM over wQMC was statistically significant.

Figure S2: Comparison of ASTRAL, wQFM and wQMC on 101-taxon dataset. We show average RF rates with standard error bars over 50 replicates.

3.3 Results on avian biological dataset: Exon, Intron and UCE trees

We estimated species trees on 8,251 exon, 2,516 intron and 3,679 UCE gene trees from [2] using wQFM, ASTRAL and wQMC. Fig. 53 shows the trees estimated by different methods.

Figure S3: Estimated trees on exon, intron and UCE gene trees. Two branch support (BS) values are shown: the first value (without parentheses) is based on site-only MLBS and the second value (with parentheses) is quartet based local posterior probability (multiplied by 100). All BS values are 100% except where noted.

3.4 Results on mammalian biological dataset

Figure S4 shows the trees produced by wQFM, ASTRAL and wQMC on the mammalian dataset.

Figure S4: Analyses of the mammalian dataset using ASTRAL, wQFM and wQMC. All of these methods reconstructed the same topology. Two branch support values are shown: the values without parentheses are based on site-only MLBS and the values with parentheses are quartet based local posterior probabilities (multiplied by 100). For each of these two types of support, we show the BS for three methods (wQMF, ASTRAL and wQMC) in the following order: wQFM/ASTRAL/wQMC. All BS values are 100% except where noted.

3.5 Results on angiosperm dataset

Our analyses with ASTRAL, wQFM and wQMC support the placement of Amborella as sister to water lilies (i.e., Nymphaeales) and rest of the angiosperms (see Fig. S5). This placement of Amborella is congruent to the CA-ML analysis in Xi et al. [5] and other molecular studies [6, 7, 8]. An alternate hypothesis, which supports a clade containing Amborella plus water lilies that is sister to all other angiosperms, has also been observed [5, 9, 10]. wQFM and wQMC differ from ASTRAL on a single edge (the placement of Sapindales (Citrus)).

Figure S5: Analyses of the angiosperm dataset using ASTRAL, wQFM and wQMC. All of these methods support the placement of Amborella alone as sister to all other extant angiosperms. Two branch support (BS) values are shown: the first value (without parentheses) is based on site-only MLBS and the second value (with parentheses) is quartet based local posterior probability (multiplied by 100). All BS values are 100% except where noted.

4 Impact of using weighted quartets: comparison between wQFM and QFM

A direct comparison between wQFM and QFM using all possible quartets (weighted quartets for wQFM and unweighted quartet for QFM) sampled from the input set of gene trees is not meaningful. This is because using all possible $3\binom{n}{4}$ quartets without any weight as input and seeking a tree by maximizing the number of consistent quartets will just produce a random tree. Therefore, when using the unweighted setting - for each set of four taxa - the dominant quartets out of the three alternate quartet topologies are usually used [11]. In this study, we consider the support/weight for quartet tree $a b \mid c d$ to be the number of the trees in \mathcal{G} that induce $a b \mid c d$ on set a, b, c, d. Therefore, for a set of four taxa a, b, c, d, the dominant quartet (out of three possible quartets: $a b|c d, a c| b d$, and $b c \mid a d)$ is defined to be the quartet with the highest weight. In order to show the efficacy of the weighted setting, we compare the following three variants of quartet amalgamation.

1. wQFM-all: wQFM with all possible weighted quartets.
2. wQFM-best: wQFM with weighted best (dominant) quartets. That means, $\binom{n}{4}$ best weighted quartets (one quartet for each set of four taxa) are used instead of $3\binom{n}{4}$ possible weighted quartets.
3. QFM-best: QFM with unweighted best (dominant) quartets (one quartet for each set of four taxa).

Figures S6f S 8 show the comparison among these three variants on various simulated datasets. These results show the superiority of weighted setting over the unweighted setting as, in most of the cases, wQFM with all possible weighted quartets outperformed the other two variants. Moreover, wQFM with weighted best quartets outperformed QFM with unweighted best quartets in many of the model conditions on these datasets - another evidence that assigning weights to the quartets can improve phylogenetic analyses.

(a) Analysis on 100 genes

(b) Analysis on 1000 genes

Figure S6: Comparison of wQFM and QFM on 15-taxon dataset. We show the average RF rates over 10 replicates.

Figure S7: Comparison of wQFM and QFM on 37-taxon simulated dataset over 20 replicates per model condition. (a) The level of ILS was varied from 0.5X (highest) to 2 X (lowest) amount, keeping the sequence length fixed at 500 bp and the number of genes at 200; (b) The sequence length was varied from 250bp to 1500 bp , keeping the number of genes fixed at 200, and ILS at 1X (moderate ILS); (c) The number of genes was varied from 25 g to 800 g , with 500 bp sequence length and moderate (1X) ILS.

Figure S8: Comparison of wQFM and QFM on 11-taxon high-ILS dataset. We show the average RF rates over 20 replicates.

5 Quartet scores

Tables S1S6 show the quartet scores of different methods on various simulated (11-, 15-, 37-, 48- and 101-taxon dataset) and biological datasets. For each model condition across various datasets, average quartet scores, average total weight of weighted quartets in the input gene tree, and average normalized quartets scores are shown for wQFM, wQMC and ASTRAL.

Table S1: Quartet scores on 15-taxon dataset. We show average (over 20 replicates) quartet scores (sum of the weights of the satisfied quartets) of various methods, total weight of the quartets in the input gene trees, and their respective ratios.

Model Condition	Tree	Quartet score	Total weight (input quartets)	Proportion (\%)
100gene-100bp	Model Tree	69307.4	136500.0	50.775
	wQFM	69776.6	136500.0	51.118
	wQMC	69930.0	136500.0	51.231
	ASTRAL	69933.8	136500.0	51.234
100gene-1000bp	Model Tree	82099.2	136500.0	60.146
	wQFM	82129.1	136500.0	60.168
	wQMC	82166.1	136500.0	60.195
	ASTRAL	82166.6	136500.0	60.195
100gene-true	Model Tree	84634.9	136500.0	62.004
	wQFM	84634.9	136500.0	62.004
	wQMC	84634.9	136500.0	62.004
	ASTRAL	84634.9	136500.0	62.004
1000gene-100bp	Model Tree	690268.0	1365000.0	50.569
	wQFM	692949.2	1365000.0	50.766
	wQMC	693656.1	1365000.0	50.817
	ASTRAL	693656.1	1365000.0	50.817
1000gene-1000bp	Model Tree	817937.3	1365000.0	59.922
	wQFM	817993.9	1365000.0	59.926
	wQMC	818022.2	1365000.0	59.928
	ASTRAL	818022.2	1365000.0	59.928
1000gene-true	Model Tree	844184.3	1365000.0	61.845
	wQFM	844184.3	1365000.0	61.845
	wQMC	844184.3	1365000.0	61.845
	ASTRAL	844184.3	1365000.0	61.845

Table S2: Quartet scores on 37-taxon mammalian simulated dataset. We show average (over 20 replicates) quartet scores (sum of the weights of the satisfied quartets) of the true and estimated trees, total weight of the quartets in the input gene trees, and their respective ratios. Various model conditions are defined by different ILS levels (1X, $0.5 \mathrm{X}, 2 \mathrm{X}$), numbers of genes ($100 \mathrm{~g}, 200 \mathrm{~g}$, etc.) and sequence lengths (500b, 100b, etc.).

Model Condition	Tree	Quartet score	Total weight (input quartets)	Proportion (\%)
1X-100g-500b	$\begin{gathered} \text { Model Tree } \\ \text { wQFM } \\ \text { wQMC } \\ \text { ASTRAL } \end{gathered}$	$\begin{aligned} & \hline 5630260.55 \\ & 5635762.55 \\ & 5636032.85 \\ & 5636032.85 \\ & \hline \hline \end{aligned}$	$\begin{aligned} & \hline 6604500.0 \\ & 6604500.0 \\ & 6604500.0 \\ & 6604500.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 85.249 \\ & 85.332 \\ & 85.336 \\ & 85.336 \\ & \hline \end{aligned}$
1X-200g-1000b	Model Tree wQFM wQMC ASTRAL	11584969.95 11586354.60 11586641.45 11586641.45	13209000.0 13209000.0 13209000.0 13209000.0	87.705 87.716 87.718 87.718
1X-200g-1500b	$\begin{gathered} \hline \hline \text { Model Tree } \\ \text { wQFM } \\ \text { wQMC } \\ \text { ASTRAL } \end{gathered}$	11657249.90 11658311.05 11658432.55 11658445.25	13209000.0 13209000.0 13209000.0 13209000.0	$\begin{aligned} & \hline 88.252 \\ & 88.260 \\ & 88.261 \\ & 88.261 \end{aligned}$
1X-200g-250b	Model Tree wQFM wQMC ASTRAL	$\begin{aligned} & \hline \hline 10557321.60 \\ & 10560454.40 \\ & 10561734.40 \\ & 10561825.45 \end{aligned}$	13209000.0 13209000.0 13209000.0 13209000.0	$\begin{aligned} & \hline \hline 79.925 \\ & 79.949 \\ & 79.959 \\ & 79.959 \end{aligned}$
1X-200g-true	Model Tree wQFM wQMC ASTRAL	11744078.75 11746076.85 11746177.35 11746203.50	13209000.0 13209000.0 13209000.0 13209000.0	$\begin{aligned} & \hline 88.910 \\ & 88.925 \\ & 88.926 \\ & 88.926 \end{aligned}$
1X-25g-500b	Model Tree wQFM wQMC ASTRAL	1410250.70 1414398.50 1414450.05 1414559.25	1651125.0 1651125.0 1651125.0 1651125.0	85.412 85.663 85.666 85.672
1X-400g-500b	Model Tree wQFM wQMC ASTRAL	22531906.20 22534417.70 22534424.55 22534424.55	$\begin{aligned} & \hline \hline 26418000.0 \\ & 26418000.0 \\ & 26418000.0 \\ & 26418000.0 \end{aligned}$	$\begin{aligned} & \hline 85.290 \\ & 85.299 \\ & 85.300 \\ & 85.300 \end{aligned}$
1X-50g-500b	Model Tree wQFM wQMC ASTRAL	$\begin{aligned} & \hline \hline 2816708.35 \\ & 2820640.95 \\ & 2820892.25 \\ & 2821123.85 \end{aligned}$	3302250.0 3302250.0 3302250.0 3302250.0	85.297 85.416 85.423 85.430
1X-800g-500b	Model Tree wQFM wQMC ASTRAL	45096639.80 45096858.95 45096874.45 45096874.45	52836000.0 52836000.0 52836000.0 52836000.0	85.352 85.353 85.353 85.353
0.5X-200g-500b	Model Tree wQFM wQMC ASTRAL	10003929.55 10006593.65 10006510.55 10007425.55	13209000.0 13209000.0 13209000.0 13209000.0	75.736 75.756 75.755 75.762
2X-200g-500b	Model Tree wQFM wQMC ASTRAL	11943759.05 11944408.40 11944654.40 11944654.40	13205697.75 13205697.75 13205697.75 13205697.75	$\begin{aligned} & \hline \hline 90.444 \\ & 90.449 \\ & 90.451 \\ & 90.451 \end{aligned}$
1X-200g-500b	Model Tree wQFM wQMC ASTRAL	11266716.15 11270240.85 11270657.55 11270657.55	13209000.0 13209000.0 13209000.0 13209000.0	$\begin{aligned} & \hline \hline 85.296 \\ & 85.322 \\ & 85.326 \\ & 85.326 \end{aligned}$

Table S3: Quartet scores on 48-taxon simulated avian dataset with sequence length of 500 bp . We show average (over 20 replicates) quartet scores (sum of the weights of the satisfied quartets) of the true and estimated trees, total weight of the quartets in the input gene trees, and their respective ratios. Various model conditions are defined by different ILS levels (1X, 0.5X, 2X), numbers of genes (100g, 200g, etc.) but by keeping the sequence length fixed to 500 bp .

Model Condition	Tree	Quartet score	Total weight (input quartets)	Proportion (\%)
0.5X-1000g-500b	Model Tree wQFM wQMC ASTRAL	$\begin{aligned} & 110526512.90 \\ & 110590453.55 \\ & 109888348.30 \\ & 110583148.55 \end{aligned}$	$\begin{aligned} & 194580000.0 \\ & 194580000.0 \\ & 194580000.0 \\ & 194580000.0 \end{aligned}$	$\begin{aligned} & 56.803 \\ & 56.835 \\ & 56.475 \\ & 56.832 \end{aligned}$
1X-1000g-500b	Model Tree wQFM wQMC ASTRAL	122945091.00 122994498.35 122865927.30 123024937.95	194580000.0 194580000.0 194580000.0 194580000.0	63.185 63.21 63.144 63.226
2X-1000g-500b	Model Tree wQFM wQMC ASTRAL	131567523.05 131619669.80 131457328.10 131631393.90	$\begin{aligned} & \hline \hline 194580000.0 \\ & 194580000.0 \\ & 194580000.0 \\ & 194580000.0 \end{aligned}$	67.616 67.643 67.56 67.649
1X-50g-500b	$\begin{gathered} \text { Model Tree } \\ \text { wQFM } \\ \text { wQMC } \\ \text { ASTRAL } \end{gathered}$	6109255.45 6191081.00 6209354.00 6204883.70	$\begin{aligned} & \hline 9729000.0 \\ & 9729000.0 \\ & 9729000.0 \\ & 9729000.0 \end{aligned}$	$\begin{aligned} & \hline \hline 62.794 \\ & 63.635 \\ & 63.823 \\ & 63.777 \end{aligned}$
1X-100g-500b	Model Tree wQFM wQMC ASTRAL	12250259.15 12324222.00 12342740.10 12349310.60	19458000.0 19458000.0 19458000.0 19458000.0	62.957 63.338 63.433 63.466
1X-200g-500b	Model Tree wQFM wQMC ASTRAL	$\begin{aligned} & \hline \hline 24553380.50 \\ & 24606333.80 \\ & 24618794.95 \\ & 24632823.80 \end{aligned}$	38916000.0 38916000.0 38916000.0 38916000.0	63.093 63.229 63.261 63.297
1X-500g-500b	Model Tree wQFM wQMC ASTRAL	$\begin{aligned} & \hline \hline 61438944.15 \\ & 61489325.10 \\ & 61440254.85 \\ & 61528828.05 \end{aligned}$	97290000.0 97290000.0 97290000.0 97290000.0	$\begin{aligned} & \hline \hline 63.150 \\ & 63.202 \\ & 63.152 \\ & 63.243 \end{aligned}$

Table S4: Quartet scores on 48-taxon simulated avian dataset with true gene trees. We show average (over 20 replicates) quartet scores (sum of the weights of the satisfied quartets) of the true and estimated trees, total weight of the quartets in the input gene trees, and their respective ratios. Various model conditions are defined by different ILS levels (1X, 0.5X, 2X) and numbers of genes (100g, 200g, etc.).

Model Condition	Tree	Quartet score	Total weight (input quartets)	Proportion (\%)
0.5X-1000g-true	Model Tree wQFM wQMC ASTRAL	$\begin{aligned} & 119669366.65 \\ & 119694341.30 \\ & 119579409.30 \\ & 119700568.10 \end{aligned}$	$\begin{aligned} & 194580000.0 \\ & 194580000.0 \\ & 194580000.0 \\ & 194580000.0 \end{aligned}$	$\begin{aligned} & \hline 61.501 \\ & 61.514 \\ & 61.455 \\ & 61.517 \end{aligned}$
1X-1000g-true	Model Tree wQFM wQMC ASTRAL	136107789.65 136103523.40 135951451.45 136134360.40	194580000.0 194580000.0 194580000.0 194580000.0	69.950 69.947 69.869 69.963
2X-1000g-true	Model Tree wQFM wQMC ASTRAL	148466575.75 148487134.80 148409168.15 148498766.90	194580000.0 194580000.0 194580000.0 194580000.0	76.301 76.312 76.272 76.318
1X-50g-true	Model Tree wQFM wQMC ASTRAL	6789683.00 6839237.20 6853615.75 6861504.80	$\begin{aligned} & \hline \hline 9729000.0 \\ & 9729000.0 \\ & 9729000.0 \\ & 9729000.0 \end{aligned}$	$\begin{aligned} & \hline \hline 69.788 \\ & 70.297 \\ & 70.445 \\ & 70.526 \end{aligned}$
1X-100g-true	Model Tree wQFM wQMC ASTRAL	13610324.80 13664518.95 13659704.75 13675471.15	$\begin{aligned} & \hline 19458000.0 \\ & 19458000.0 \\ & 19458000.0 \\ & 19458000.0 \end{aligned}$	69.947 70.226 70.201 70.282
1X-200g-true	Model Tree wQFM wQMC ASTRAL	$\begin{aligned} & \hline 27229536.95 \\ & 27270064.25 \\ & 27242135.85 \\ & 27287354.90 \end{aligned}$	$\begin{aligned} & \hline 38916000.0 \\ & 38916000.0 \\ & 38916000.0 \\ & 38916000.0 \end{aligned}$	$\begin{aligned} & \hline 69.970 \\ & 70.074 \\ & 70.002 \\ & 70.119 \end{aligned}$
1X-500g-true	Model Tree wQFM wQMC ASTRAL	$\begin{aligned} & \hline 68033826.75 \\ & 68055804.00 \\ & 67981642.70 \\ & 68078813.70 \end{aligned}$	97290000.0 97290000.0 97290000.0 97290000.0	$\begin{aligned} & \hline \hline 69.929 \\ & 69.951 \\ & 69.875 \\ & 69.975 \end{aligned}$

Table S5: Quartet scores on 11-taxon dataset. We show average (over 20 replicates) quartet scores (sum of the weights of the satisfied quartets) of the true and estimated trees, total weight of the quartets in the input gene trees, and their respective ratios.

Model Condition	Tree	Quartet score	Total weight (input quartets)	Proportion (\%)
estimated-5genes	Model Tree	1321.30	1650.0	80.079
	wQFM	1354.90	1650.0	82.115
	wQMC	1355.05	1650.0	82.124
	ASTRAL	1357.40	1650.0	82.267
estimated-15genes	Model Tree	4042.90	4950.0	81.675
	wQFM	4067.15	4950.0	82.165
	wQMC	4068.25	4950.0	82.187
	ASTRAL	4068.25	4950.0	82.187
estimated-25genes	Model Tree	6679.45	8250.0	80.963
	wQFM	6693.30	8250.0	81.131
	wQMC	6695.40	8250.0	81.156
	ASTRAL	6695.40	8250.0	81.156
estimated-50genes	Model Tree	13362.85	16500.0	80.987
	wQFM	13383.00	16500.0	81.109
	wQMC	13383.10	16500.0	81.110
	ASTRAL	13383.10	16500.0	81.110
estimated-100genes	Model Tree	26686.55	33000.0	80.868
	wQFM	26703.60	33000.0	80.920
	wQMC	26702.05	33000.0	80.915
	ASTRAL	26705.40	33000.0	80.925
true-5genes	Model Tree	1528.00	1650.0	92.606
	wQFM	1536.80	1650.0	93.139
	wQMC	1536.80	1650.0	93.139
	ASTRAL	1536.80	1650.0	93.139
true-15genes	Model Tree	4619.50	4950.0	93.323
	wQFM	4637.90	4950.0	93.695
	wQMC	4637.90	4950.0	93.695
	ASTRAL	4637.90	4950.0	93.695
true-25genes	Model Tree	7708.25	8250.0	93.433
	wQFM	7708.45	8250.0	93.436
	wQMC	7708.45	8250.0	93.436
	ASTRAL	7708.45	8250.0	93.436
true-50genes	Model Tree	15412.55	16500.0	93.409
	wQFM	15412.55	16500.0	93.409
	wQMC	15412.55	16500.0	93.409
	ASTRAL	15412.55	16500.0	93.409
true-100genes	Model Tree	30844.25	33000.0	93.467
	wQFM	30844.25	33000.0	93.467
	wQMC	30844.25	33000.0	93.467
	ASTRAL	30844.25	33000.0	93.467

Table S6: Quartet scores on 101-taxon simulated dataset. We show average (over 50 replicates) quartet scores (sum of the weights of the satisfied quartets) of the true and estimated trees, total weight of the quartets in the input gene trees, and their respective ratios.

Model Condition	Tree	Quartet score	Total weight (input quartets)	Proportion $(\%)$
1X-1000g-true	Model Tree	2732512131.34	4082925000.0	66.925
	wQFM	2732660047.02	4082925000.0	66.929
	wQMC	2728234405.08	4082925000.0	66.821
	ASTRAL	2732767772.08	4082925000.0	66.932

Table S7: Quartet scores of various methods on biological datasets. We show the quartet scores (sum of the weights of the satisfied quartets) of various methods, total weight of the quartets in the input gene trees, and their respective ratios.

Dataset	Method	Quartet score	Total weight (input quartets)	Proportion of total weight (\%)
Amniota_aa	wQFM	83,604	1,25,412	66.66
	wQMC	83,604		66.66
	ASTRAL	83,604		66.66
Amniota_nt	wQFM	97,890	1,25,412	78.06
	wQMC	97,890		78.06
	ASTRAL	97,890		78.06
Mammal	wQFM	2,55,26,915	2,80,03,080	91.16
	wQMC	2,55,26,915		91.16
	ASTRAL	2,55,26,915		91.16
Avian	wQFM	1,22,87,19,113	2,46,21,11,516	49.91
	wQMC	1,22,35,78,787		49.70
	ASTRAL	1,23,19,92,828		50.04
Angiosperm	wQFM	1,15,51,819	1,44,99,592	79.67
	wQMC	1,15,51,948		79.67
	ASTRAL	1,15,53,053		79.68

6 Running time

We performed the experiments on a Linux machine with 8 GB RAM and i7 2.50 GHz processor. We ran the exact version of ASTRAL-III (version: 5.7.3) on smaller datasets ($11 \sim 15$ taxa), and used the heuristic version to analyze larger datasets. For wQFM and wQMC, we report the running time for amalgamating the weighted quartets (given as input), which excludes the time for computing the weighted quartets. We used a custom script for generating weighted quartets, by computing the frequency of each quartet, from a collection of gene trees. However, weight/confidence of a quartet can be generated in different ways, e.g., using the quartet frequency (as used in this study), likelihood of a quartet, and various algebraic and statistical approaches. Thus, the time required to generate weighted quartets may differ depending on what types of weights are being used.

For smaller datasets, these three methods wQFM, wQMC and ASTRAL took very small amounts of time. Both wQFM and wQMC took only a fraction of a second for 11 and 15 -taxon datasets. ASTRAL also took around a second to analyze 11 -taxon datasets. For 15 -taxon datasets however, it took ASTRAL (exact version) 1 to ~ 12 min (depending on various numbers of genes), which is much longer than wQFM and wQMC. Note that, since the input to wQFM and wQMC are weighted quartets embedded in the input gene trees, their running times are not much sensitive to the number of genes.

For 37-taxon dataset, heuristic version of ASTRAL was used, which led to much smaller running times per replicates, ranging from 2 to 6 s . The running time of ASTRAL decrease from 6 s to 2 s as we decrease the level of ILS from higher ILS (0.5 X) to lower ILS (2X). This decrease in running time may be due to the fact that as the amount of discordance (due to ILS) decreases in the gene trees, the number of bipartitions in the gene trees also decrease. This leads to a smaller search space for ASTRAL (heuristic version) to explore. ASTRAL took around 1 s (on 50 genes) to 10 s (on 800 genes) to analyze various numbers of genes. wQMC was the fastest method which took only a second to analyze a single replicate of this dataset. wQFM was also fast, taking only 4 12 s .

On 48-taxon simulated avian dataset, wQMC took around 2 s . ASTRAL's running time ranges from 6 to 150 s , depending on various numbers of genes and ILS levels. wQFM took around $15-100$ s per replicate on this avian simulated dataset. The most significant difference in running times was observed on the avian biological dataset with 14 K gene trees, where ASTRAL took around 32 hours to run. wQMC and wQFM, on the other hand, finished within 2 and 20 s , respectively. This is due to the fact that ASTRAL's running time increases as we increase the number of genes (hence the number of unique bipartitions), but wQMC and wQFM takes as input a set of weighted quartets and thus their running times are not sensitive to the number of genes. On a relatively larger dataset with 101 taxa, the running time of wQFM ranges from 25 to 40 min . ASTRAL and wQMC were much faster, taking around $2-3 \mathrm{~min}$ and 5 s , respectively.

Note that the running time results for wQFM and wQMC observed here may not scale to relatively larger data sets with hundreds or thousands of taxa as the number of quartets grow rapidly as we increase the number of taxa (there are $3\binom{n}{4}$ possible quartets on n taxa). Moreover, enumerating induced quartets in the input gene trees to compute gene tree frequency based weights is time consuming. For example, generating weighted quartets on 37 -, 48- and 101-taxon data sets using our custom script takes 4 - 120s (for $25-800$ genes), 50 s to ~ 4 hours (for $50-14,446$ genes), $2.5-3$ hours (1000 genes) respectively. Note that generating weighted quartets from different gene trees can be done in parallel and hence, given a sufficient number of processors, the running time of enumerating quartets will not increase as we increase the number of genes. For example, generating weighted quartets in a gene tree of the avian dataset with 48 taxa takes only $1-2 \mathrm{~s}$ while it takes around 4 hours ($14,400 \mathrm{~s}$) when we sequentially consider 14,446 trees, which can be substantially reduced by using multiple processors. Moreover, wQFM is a divide-and-conquer based algorithm and the divide steps (on the set of taxa) are independent of each other (i.e., embarrassingly parallel). Therefore, the running time of wQFM can be substantially improved by implementing an efficient multi-threaded version (similar to ASTRAL-MP [12]).

7 Wilcoxon Signed-Rank Test

Tables S 8 and S 9 show the p-values using the Wilcoxon signed-rank test (with $\alpha=0.05$) on various model conditions of 11-, 15-, 37-, 48- and 101-taxon datasets, comparing the RF rates obtained by wQFM with those of wQMC and ASTRAL, respectively.

Table S8: Statistical significance of the differences in RF rates between wQFM and wQMC on 11-, 15-, 37-, 48- and 101-taxon datasets. The p-values indicating statistically significant differences (i.e., $p \leq 0.05$) are shown in bold.

Dataset	Model condition			p-value
	No. of genes	Sequence len.	ILS Level	
11-taxon	5 g	true	high	0.9569
	15 g	true	high	0.1573
	5 g	estimated	high	0.5498
	15 g	estimated	high	1.0
	25 g	estimated	high	0.5637
	50 g	estimated	high	0.3173
	100 g	estimated	high	0.3173
15-taxon	100 g	100 bp	high	0.047
	100 g	1000 bp	high	0.8154
	1000 g	100 bp	high	0.0109
	1000 g	1000 bp	high	0.1573
37-taxon	25 g	500 bp	1X	0.5772
	50 g	500 bp	1X	0.4659
	100 g	500 bp	1X	0.3766
	200 g	500 bp	1X	0.3192
	200 g	500 bp	0.5 X	0.0272
	200 g	500 bp	2X	0.3173
	400 g	500 bp	1X	0.1573
	800 g	500 bp	1X	0.3173
	200 g	250 bp	1X	0.0065
	200 g	1000 bp	1X	0.1573
	200 g	1500 bp	1X	0.1651
	200 g	true	1X	0.1797
48-taxon	1000 g	500 bp	0.5X	0.0001
	1000 g	500 bp	1X	0.0001
	1000 g	500 bp	2X	0.0001
	1000 g	true	0.5X	0.0001
	1000 g	true	1X	0.0005
	1000 g	true	2X	0.0147
	50 g	500 bp	1X	0.0002
	100 g	500 bp	1X	0.0002
	200 g	500 bp	1X	0.0003
	500 g	500 bp	1X	0.0001
	50	true	1X	0.0002
	100	true	1X	0.0002
	200	true	1X	0.0002
	500	true	1X	0.0007
101-taxon	1000 g	true	1X	$\ll 10^{-4}$

Table S9: Statistical significance of the differences in RF rates between wQFM and ASTRAL on 11-, 15-, 37-, 48- and 101-taxon datasets. The p-values indicating statistically significant differences (i.e., $p \leq 0.05$) are shown in bold.

Dataset	Model condition			p-value
	No. of genes	Sequence len.	ILS Level	
11-taxon	5 g	true	high	0.4142
	15 g	true	high	0.1573
	5 g	estimated	high	0.5637
	15 g	estimated	high	1.0
	25 g	estimated	high	0.5637
	50 g	estimated	high	0.3173
	100 g	estimated	high	0.5637
15-taxon	100 g	100 bp	high	0.0472
	100 g	1000 bp	high	0.9121
	1000 g	100 bp	high	0.0109
	1000 g	1000 bp	high	0.1573
37-taxon	25 g	500 bp	1X	0.8315
	50 g	500 bp	1X	0.7827
	100 g	500 bp	1X	0.3766
	200 g	500 bp	1X	0.3192
	200 g	500 bp	0.5X	0.2076
	200 g	500 bp	2X	0.3173
	400 g	500 bp	1X	0.1573
	800 g	500 bp	1X	0.3173
	200 g	250 bp	1X	0.0423
	200 g	1000 bp	1X	0.1573
	200 g	1500 bp	1X	0.3173
	200 g	true	1X	0.3173
48-taxon	1000 g	500 bp	0.5X	0.0042
	1000 g	500 bp	1X	0.0127
	1000 g	500 bp	2X	0.3872
	1000 g	true	0.5X	0.6692
	1000 g	true	1X	0.5859
	1000 g	true	2X	0.5847
	50 g	500 bp	1X	0.1936
	100 g	500 bp	1X	0.1021
	200 g	500 bp	1X	0.0915
	500 g	500 bp	1X	0.0274
	50	true	1X	0.1356
	100	true	1X	0.0203
	200	true	1X	0.048
	500	true	1X	0.5292
101-taxon	1000 g	true	1X	0.3635

References

[1] Sen Song, Liang Liu, Scott V Edwards, and Shaoyuan Wu. Resolving conflict in eutherian mammal phylogeny using phylogenomics and the multispecies coalescent model. Proceedings of the National Academy of Sciences, 109(37):14942-14947, 2012.
[2] Erich D Jarvis, Siavash Mirarab, Andre J Aberer, Bo Li, Peter Houde, Cai Li, Simon YW Ho, Brant C Faircloth, Benoit Nabholz, Jason T Howard, et al. Wholegenome analyses resolve early branches in the tree of life of modern birds. Science, 346(6215):1320-1331, 2014.
[3] Y Chung and C Ané. Comparing two Bayesian methods for gene tree/species tree reconstruction: A simulation with incomplete lineage sorting and horizontal gene transfer. Systematic Biology, 60(3):261-275, 2011.
[4] Md Shamsuzzoha Bayzid and Tandy Warnow. Naive binning improves phylogenomic analyses. Bioinformatics, 29(18):2277-2284, 2013.
[5] Zhenxiang Xi, Liang Liu, Joshua S Rest, and Charles C Davis. Coalescent versus concatenation methods and the placement of amborella as sister to water lilies. Systematic Biology, 63(6):919-932, 2014.
[6] Norman J Wickett, Siavash Mirarab, Nam Nguyen, Tandy Warnow, Eric Carpenter, Naim Matasci, Saravanaraj Ayyampalayam, Michael S Barker, J Gordon Burleigh, Matthew A Gitzendanner, et al. Phylotranscriptomic analysis of the origin and early diversification of land plants. Proceedings of the National Academy of Sciences, 111(45):E4859-E4868, 2014.
[7] Ning Zhang, Liping Zeng, Hongyan Shan, and Hong Ma. Highly conserved low-copy nuclear genes as effective markers for phylogenetic analyses in angiosperms. New Phytologist, 195(4):923-937, 2012.
[8] Siavash Mirarab and Tandy Warnow. Astral-ii: coalescent-based species tree estimation with many hundreds of taxa and thousands of genes. Bioinformatics, 31(12):i44i52, 2015.
[9] Bryan T Drew, Brad R Ruhfel, Stephen A Smith, Michael J Moore, Barbara G Briggs, Matthew A Gitzendanner, Pamela S Soltis, and Douglas E Soltis. Another look at the root of the angiosperms reveals a familiar tale. Systematic Biology, 63(3):368-382, 2014.
[10] Vadim V Goremykin, Svetlana V Nikiforova, Patrick J Biggs, Bojian Zhong, Peter Delange, William Martin, Stefan Woetzel, Robin A Atherton, Patricia A Mclenachan, and Peter J Lockhart. The evolutionary root of flowering plants. Systematic Biology, 62(1):50-61, 2013.
[11] Julia Chifman and Laura Kubatko. Quartet from snp data under the coalescent model. Bioinformatics, 30(23):3317-3324, 2014.
[12] John Yin, Chao Zhang, and Siavash Mirarab. ASTRAL-MP: scaling ASTRAL to very large datasets using randomization and parallelization. Bioinformatics, 35(20):3961-3969, 2019.

