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MERIDA: Methodological comparison to

LOBICO

1 Data preparation

The idea of MERIDA (MEthod for Rule Identification with multi-omics DAta) is based
on the LOBICO method by Knijnenburg et al. (Knijnenburg et al., 2016). In this
supplement, we provide a comparison of both approaches with regard to data preparation
and ILP formulation. In particular, we highlight methodological commonalities and
differences between the two methods. A general overview of the two methods is given
in Figure 1.
Both MERIDA and LOBICO rely on binarized input and output data to generate logic
formulas that can be used to predict the sensitivity of a cell line to a drug. The input
for both methods can consist of arbitrary binary cell line features, e.g. one feature can
represent the presence/absence of a specific mutation or the up-/down-regulation of
expression in one gene. The output specifies for each cell line whether it is regarded
as sensitive (1) or resistant (0) to a certain compound. However, the sensitivity data
in the GDSC is given as logarithmized IC50 values, which are inherently continuous.
Therefore, some thresholding procedure is needed to obtain binary values. To guarantee
comparability of our approach to the approach by Knijnenburg et al., we generate these
thresholds by applying the same procedure as described by Knijnenburg et al. to binarize
the drug response data. This procedure results in an IC50 threshold for each drug
that divides the cell lines into sensitive and resistant ones. MERIDA and LOBICO
also use this threshold in their respective objective functions to obtain cell line specific
weights that depend on the distance of IC50 values from the threshold. In general, it
would also be interesting to use information from databases that store clinically relevant
concentration values to define such thresholds, e.g. as given in Liston and Davis, 2017.
Generally, any logical model similar to LOBICO or MERIDA can enable the inclusion of
a priori knowledge. However, to the best of our knowledge, this is not yet implemented for
LOBICO. In order to enable the inclusion of a priori knowledge into the MERIDA model,
we leveraged information from various well-known cancer-related databases: COSMIC
(Tate et al., 2019), CIViC (Griffith et al., 2017), OncoKB (Chakravarty et al., 2017), and
the Cancer Genome Interpreter (CGI) (Tamborero et al., 2018). Using these databases,
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the contained biomarkers can be utilized to annotate if a particular alteration present
in a cell line has previously been shown to be predictive of a positive or negative drug
response. Furthermore, we used these databases to extensively annotate the oncogenicity
status (e.g. gain / loss of function) for mutation-based input features. This additional
knowledge facilitates the interpretation of the logic rules derived by our model. Details
on the inclusion of a priori knowledge into the model input are discussed in the main
manuscript as well as in Supplement S1.

2 ILP formulation

Figure 1 depicts a comparison of the ILP formulations for MERIDA and LOBICO. Both
methods rely on Boolean logic to obtain a rule that describes the sensitivity to a partic-
ular drug. It can be seen that this rule is derived by combining features through logical
AND and OR gates.
As stated in the objective function, LOBICO and MERIDA are formulated as a mini-
mization problem that punishes false positive predictions (first term) and rewards true
positives (second term).
The LOBICO formulation yields logic rules in disjunctive normal form (DNF), which
allows the synthesis of any Boolean function from the ILP. A logical formula in DNF is a
disjunction (i.e. logical OR connection) between conjunctions (i.e. logical AND connec-
tions) of literals. In LOBICO, K terms, t1, ..., tK are generated through conjunction of
the input feature vectors or their negation (sp and s′p). The resulting K terms are then
combined through disjunction to obtain the final prediction vector y′. Consequently,
LOBICO relies on two hyperparameters: K, which is the number of terms, and M,
which represents the number of elements (literals) per term. These parameters have to
be determined in a tuning procedure such as cross validation.
While the LOBICO formulation does not restrict the resulting logical rules to a spe-
cific type of Boolean function, fitting such a flexible model is costly and may become
computationally infeasible as K and M increase. For most of the drugs investigated in
this publication we were not able to fit a LOBICO model with M = 2 and K = 2 in a
reasonable amount of time (see Supplement S2). We terminated the training process, if
the duration of fitting a single model in the cross validation exceeded six hours.
In MERIDA, the logical formula assumes a more restricted form consisting of only two
terms, one term (s) that represents the collection of sensitivity-associated features (ai)
and the other one (r) representing the collection of resistance-associated features (bi).
Within each term, input features are connected through disjunction. The final prediction
is obtained through conjunction of the sensitivity-associated term with the negation of
the resistance-associated term and results in the prediction vector y′. The assumption
behind this architecture is that a cell line is only sensitive to a drug if a sensitivity-
associated but no resistance-associated alteration is present. As the shape of the logical
rule is predefined in MERIDA, the space of possible solutions for the ILP is restricted
in comparison to LOBICO such that more features can be included in the input and
larger models can be build. In addition, we use only one hyperparameter M, which

2



 
Layer 1

Selection

 
Layer 2

Intermediate level summary

 
Layer 3
Output

a1
⋮
aP

b1
⋮
bP

∨⋮

⋮ ∨

s

r

=
s1
⋮
sN

=
r1
⋮
rN

∧
∧

y′ 1
⋮
y′ N

¬
¬

sn ≤ ∑fi∈Gn
ai ≤ |Gn | ⋅ sn, ∀cn ∈ C

rn ≤ ∑fi∈Gn
bi ≤ |Gn | ⋅ rn, ∀cn ∈ C

0 ≤ sn + (1 − rn) − 2 ⋅ y′ n ≤ 1, ∀cn ∈ Cai + bi ≤ 1, ∀fi ∈ F

∑
fi∈F

ai + bi ≤ M

(1)

(2)

(3)

(4)

(5)

A priori 
biomarker 
knowledge

∧s1K, …, sPK

⋮ ⋮
s11, …, sP1

∧

s′ 1K , …, s′ 
PK

s′ 11, …, s′ 
P1

⋮ ⋮

⋮ ⋮
t1

tK

=

=
t1K
⋮

tNK

⋮
⋮

∨
∨

y′ 1
⋮
y′ 

N

t11
⋮

tN1

LOBICO

spk + s′ 
pk ≤ 1, ∀fi ∈ F, ∀k ∈ {1,…, K}

∑P
p=1 (spk + s′ 

pk) ≤ M, ∀k ∈ {1,…, K}
∀k ∈ {1,…, K }, ∀cn ∈ C

P ⋅ tnk ≤ z ≤ tnk + P − 1 y′ 
n ≤ ∑K

k=1 tnk ≤ K ⋅ y′ 
n, ∀cn ∈ C

MERIDA

s.t.

(1)

(2)

(3) (4)

min ∑∀cn:yn=0
wn ⋅ y′ n − ∑∀cn:yn=1

wn ⋅ y′ n

z = ∑∀p:xnp=1 (1 − s′ 
pk) + ∑∀p:xnp=0 (1 − spk)

s.t.
min ∑∀cn:yn=0

wn ⋅ y′ n − ∑∀cn:yn=1
wn ⋅ y′ n

Figure 1: This figure depicts a summary of the ILP formulations for MERIDA and LO-
BICO including objective function and constraints. Here, F = {f1, . . . , fP }
represents the set of features and C = {c1, . . . , cN} the set of cell lines. Both
methods combine their respective selection variables via logical AND and OR
gates to the final prediction.
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denotes the total number of features to be selected for the logic rule. Consequently, the
computational cost for hyperparameter tuning, e.g. through cross validation, is reduced
compared to LOBICO.
Another factor that impacts runtime is the function that is used to weight cell lines in
the objective function. While cell lines in the original LOBICO ILP are weighted based
on the absolute distance of IC50 values from the binarization threshold, MERIDA also
considers quadratic and cubic absolute distances. In our analyses, the quadratic and cu-
bic weight functions improved the runtime of both MERIDA and LOBICO considerably,
while selecting very similar features (cf. main text and Supplement S2). Adapting the
weight function additionally allows putting more emphasis on cell lines that are further
away from the threshold in model training.
An extension of MERIDA over LOBICO is the inclusion of a priori knowledge in form of
known sensitivity-/resistance-related biomarkers into the model. We tested this feature
extensively using various well-established cancer-related databases (CIViC, OncoKB,
CGI, and COSMIC). While a priori knowledge can also be included into LOBICO, it is
currently not implemented. Compared to MERIDA, integrating features as sensitivity-
/resistance-related can be less practicable for LOBICO, as its ILP formulation comprises
multiple terms in which a priori knowledge could be integrated, while MERIDA only uses
two terms with predefined meaning. As a consequence, models with large values of K
and M are probably needed for drugs with a lot of predictive biomarkers, which is cur-
rently prohibited by the high runtime of LOBICO.
In MERIDA, prior knowledge is added to the input matrix as additional features (for
a detailed description see Supplement S1). The ILP then sets the specific variable for
that feature to the predefined value, e.g. if a feature fi is predictive of drug response,
the corresponding variable ai is set to 1. Note that a priori knowledge can not only be
obtained from databases but also through iterative application of MERIDA, i.e. features
detected in previous runs can be integrated as prior knowledge into the next run. This
iterative application is permitted through the reduced runtime of MERIDA compared
to LOBICO. Additionally, this iterative process can ensure that strong predictors stay
part of the model.
Lastly, Knijnenburg et al. describe how LOBICO is able to ensure a minimum prediction
sensitivity and specificity by adding two additional constraints to the ILP formulation.
These constraints can also be easily integrated into our ILP formulation. However, we
did not investigate the effects of such minimum requirement thresholds on prediction.
Instead of adding constraints to the ILP for emphasizing sensitivity or specificity, the
objective function can be modified, e.g. by incorporating a factor α ∈ [0, 1]

max α · (
∑

∀cn:yn=1

wn · y′n −
∑

∀cn:yn=1

wn · (1− y′n))

+

(1− α) · (
∑

∀cn:yn=0

wn · (1− y′n)−
∑

∀cn:yn=0

wn · y′n) (1)

However, this would introduce an additional tuning parameter.
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