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1 Data acquisition

For our analyses, we use the Genomics of Drug Sensitivity in Cancer (GDSC) cancer cell
line panel (Iorio et al., 2016) to obtain information on the sensitivity of cancer cell lines
to drugs as well as the molecular and genetic characteristics of the cell lines. To annotate
the genetic data with pre-existing knowledge on sensitivity to the cancer drugs as well
as oncogenicity information of specific alterations, we leverage the information from
several databases: COSMIC (Tate et al., 2019), CIViC (Griffith et al., 2017), OncoKB
(Chakravarty et al., 2017), and the Cancer Genome Interpreter (CGI) (Tamborero et al.,
2018). In addition to that, we use the IntOGen cancer driver gene list (Gonzalez-Perez
et al., 2013) and a list by Sanchez-Vega et al. (Sanchez-Vega et al., 2018) to reduce the
number of genes and thereby focus mainly on cancer-associated ones.
In the following, we will describe how we obtained the data.

1.1 Cancer cell line data

We downloaded the pre-processed mutation (whole exome sequencing with Agilent Sure-
SelectXT Human All Exon 50Mb bait set), copy number variation (Affymetrix SNP6.0
Array), gene expression (Affymetrix Human Genome U219 Array), and drug sensitivity
data (GDSC1 compounds: Syto60 and resazurin assay, GDSC2 compounds: CellTiter-
Glo assay) from the GDSC website. In particular, we use the drug data (IC50 values)
from release 8.0, which are divided into two database subsets depending on the used
assay type (GDSC1: Syto60 and resazurin assay, GDSC2: CellTiterGlo), the gene ex-
pression data from release 7.0, and the mutation and copy number data from release
6.1. Please refer to the respective documentation on the website to obtain information
on how this data was pre-processed.

1.2 Annotation data

The data from the GDSC database is very high-dimensional since it contains genome-
wide measurements on various omics-types. As a consequence, the search for influential
aberrations becomes difficult using statistical learning, a problem that is known as the

1



curse of dimensionality in computer science. To counteract this issue, dimension reduc-
tion or feature selection can be applied to the data before application of a particular
statistical learning method or as part of the method. We decided to do a literature-driven
feature selection before we start the analyses with our method. To this end, we employ
the IntOGen driver gene list from release 2016.5 for filtering the genes from the gene
expression and mutation data. For filtering the genes from the copy number variation
data, we use a list from the supplementary material of Sanchez-Vega et al. (Sanchez-Vega
et al., 2018). We annotate the alterations that are present in the remaining mutation and
copy number data with oncogenicity information from CIViC (release 01-Oct-2018), On-
coKB (version v1.16), and CGI (version 2018/01/17), and with sensitivity information
from COSMIC (version v86), CIViC, OncoKB, and CGI.

2 Data processing

All the data described above is used to construct the input matrices and output vectors
for the 41 investigated drugs (cf. Table 1). For each drug, we consider only cell lines that
have full information status on all used data sets, i.e. drug response, gene expression,
mutations, and copy number variations. For each drug, we only use the drug response
data belonging to either the GDSC1 or GDSC2 database since we want to ensure that
different assays do not disturb the analysis. If there is drug information in GDSC1 and
GDSC2, we decided to use the newer GDSC2 database if there is a sufficient number of
cell lines (> 700) available (cf. Table 1).
Note that in general, we focused on the analysis of mTOR-inhibitors. However, since
there is an unfavourable ratio between sensitive and resistant cell lines, we additionally
analyzed the four drugs CX-5461, NSC319726, Niraparib, and Talazoparib, which are
the drugs with the highest number of sensitive cell lines in GDSC1 and GDSC2 (see
Figure 1 and Figure 2).

2.1 Identifier mapping

To avoid inconsistencies between the used gene identifiers of the different data sources,
we mapped the genes from the IntOGen cancer driver list, the genes from the copy
number driver list by Sanchez-Vega et al. and all genes from CIViC, OncoKB, CGI and
COSMIC to human official gene symbols. The genes from the GDSC data were not
mapped since they were given as human official gene symbols.

2.2 Input matrix and output vector generation

For our ILP formulation, we need binarized input and output features. In the follow-
ing, we will describe how we obtained them by using all of the data sets described before.

Output vector The output vector specifies for each cell line whether it is sensitive
(1) or resistant (0) to a specific drug. To this end, the given logarithmized IC50 values
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Figure 1: This figure depicts the fraction of sensitive cell lines for each drug using the
data from GDSC1. Drugs that are tested on more than 700 cell lines are
colored in red, otherwise the drug is colored in black.
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Figure 2: This figure depicts the fraction of sensitive cell lines for each drug using the
data from GDSC2. Drugs that are tested on more than 700 cell lines are
colored in red, otherwise the drug is colored in black.
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from the GDSC database need to be binarized. This binarization was accomplished us-
ing the procedure described in Knijnenburg et al., 2016 using a custom R-script. Briefly
summarized, the distribution of resistant cell lines for each drug is estimated from the
given IC50 values. Depending on the shape of this distribution, a drug-specific binariza-
tion threshold is determined. This threshold is then used as a dividing line between the
sensitive and resistant cell lines. We used the parameter settings for the threshold iden-
tification as described in the supplementary documentation of Iorio et al., 2016, which
can be found on the GDSC website. The calculated thresholds for all 41 drugs are given
in Table 2.
In addition to providing a possibility to divide the cell lines into sensitive and resistant
ones, these thresholds can also be employed to retain some of the continuous informa-
tion from the IC50 values in the binarized data. More specifically, the distance from a
threshold is used as an importance measure for the cell lines in the final ILP formulation
such that more weight is placed on cell lines further away from the threshold.

Input matrices Generally, the input matrices for the different drugs contain fea-
tures for mutation, copy number variation, and gene expression data. The input matrix
represents a collection of binary feature vectors. It specifies for each cell line and fea-
ture, whether the cell line is affected by a specific aberration (1) or not (0). Depending
on whether there is a priori knowledge on biomarkers for drug sensitivity or resistance
available, different input matrices can be constructed. We will now first describe how
a matrix is constructed for drugs without available a priori knowledge (e.g. AZD8055,
Omipalisib, Voxtalisib, NSC319726, and Niraparib). Afterwards, we will explain how we
can calculate matrices for the other drugs (e.g. Rapamycin, Temsirolimus, Dactolisib,
CX-5461, and Talazoparib). The number of available cell lines and used features for all
41 the drugs can be found in Table 3.

Gene expression features If there are replicate measurements for a particular cell line,
we keep only the first measurement given. Then, we filter the genes of the gene ex-
pression data using the IntOGen cancer driver gene list. For each gene from the list,
we define two feature vectors: one feature vector that indicates whether a gene is up-
regulated in a sample (1) or not (0) and one feature vector that indicates whether a gene
is down-regulated in a sample (1) or not (0). We binarized the gene expression values
through calculation of a gene-wise z-score and then taking the upper and lower 5% of
samples of the assumed distribution (z-score threshold +/- 1.68). Note that we used
only the training data to obtain the distribution parameters for the z-score and re-use
these to binarize the test data.

Mutation features The mutation data is given as specific point mutations of genes
within the cell lines. However, using all single point mutations as features in a matrix
would lead to a sparse, high dimensional matrix, which poses a problem to statistical
learning methods. Therefore, we decided to filter the genes and then annotate the re-
maining mutations in order to define composite features that represent this annotation.
In particular, we use four composite features per gene: oncogenic gain-of-function, onco-
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genic loss-of-function, neutral, and status unknown.
We filter the genes from the mutation data using the IntOGen cancer driver gene list.
Then we use the oncogenicity information from CIViC, oncoKB, and CGI to annotate the
alterations of the filtered gene list. In particular, we annotate each alteration with one
of the four states: oncogenic gain-of-function, oncogenic loss-of-function, neutral, and
status unknown. Then, for each gene, all alterations with the same state are merged
into one composite feature. This composite feature is 1 iff the respective feature for any
of the merged alterations was 1. Otherwise, the composite feature is 0.
Since we consider frameshift and truncating mutations as more severe than missense
mutations, we additionally consider these as extra composite features if they are not
already included in the respective gain-of-function or loss-of-function composite feature
for a gene.

Copy number features Similar to the gene expression and the mutation data, we first
filter the genes from the copy number data using the list by Sanchez-Vega et al. (Sanchez-
Vega et al., 2018). Afterwards, we consider two features per remaining gene of the filtered
list: CNV loss and CNV gain. The copy number data was given on transcript level and
we summarize the information on gene level. This means that we neglect all genes that
have conflicting transcript level copy number information, i.e. one transcript has a copy
number gain while another transcript of the same gene is affected by a copy number loss.

For the drugs with a priori knowledge, we also construct one matrix as described
above. In addition to that, we build a matrix with the a priori knowledge. To this end,
we additionally define composite features that represent the sensitivity information on
specific alterations from the CIViC, OncoKB, CGI and COSMIC databases. In partic-
ular, there exist four putative composite features: sensitive (alteration is predictive of
positive drug response), not sensitive (alteration has been shown not to be predictive for
a positive drug response), resistant (alteration is predictive of negative drug response),
not resistant (alteration has been shown not to be predictive for a negative drug re-
sponse). To obtain the composite features in general, we first annotate the mutation
and copy number alterations with a sensitivity-associated state: sensitive, not sensitive,
resistant, not resistant, and status unknown. Then we merge all alterations with the
same state into one binary feature representing iff at least one of the alterations is present
(1) or not (0). However, for the five drugs that we investigated in the main manuscript,
only alterations associated with drug sensitivity are present in the GDSC cell line data
(see Table 4, Table 5, Table 6, Table 7, and Table 8). Hence, there exists only one
composite feature (sensitive) for these drugs. For two of the other drugs in our data set,
also additional states are present (Table 10, Table 12).
If an alteration is annotated with a sensitivity- or resistance-associated state except sta-
tus unknown, then this annotation is prioritized over the oncogenicity-associated annota-
tion. As a consequence, these alterations are present in the respective composite feature
of sensitivity/resistance information but not in the composite feature for the oncogenicity
information. Note that if the databases state that ‘oncogenic loss-of-function mutations’
or ‘oncogenic gain-of-function mutations’ are responsible for the sensitivity or resistance

6



towards a drug, we take all mutations of the respective gene with a matching oncogenic-
ity label and add them to the composite features. If the databases state that ‘truncating
mutations’ or ‘frameshift mutations’ are responsible for the sensitivity or resistance to-
wards a drug, we use the additional annotation by the GDSC data set to determine
whether a mutation is truncating or induces a frameshift and also add them to the
composite feature.
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Table 1: This table depicts the number of available cell lines (drug response only) for
each drug in GDSC1 and GDSC2.

Drug name GDSC1 GDSC2

Rapamycin 359 745
Temsirolimus 930 –
AZD8055 937 96
Dactolisib 934 753
Omipalisib 921 –
Voxtalisib 926 –
CX-5461 913 –
NSC319726 880 –
Niraparib – 729
Talazoparib 912 750
AS605240 916 –
AT7867 926 –
GSK690693 912 –
GSK1059615 912 –
IC-87114 920 –
Idelalisib 921 –
OSI-027 907 265
PF-4708671 932 49
PIK-93 918 –
Pilaralisib 926 –
Torin-2 878 –
WYE-125132 912 –
YM201636 919 –
ZSTK474 918 –
Apitolisib 913 –
Alpelisib – 805
AZD8186 – 753
MK-2206 903 772
Pictilisib 936 (883) 767
Taselisib – 806
CZC24832 – 729
Buparlisib – 753
Afuresertib – 752
Ipatasertib – 753
GNE-317 – 739
AMG-319 – 748
LJI308 – 746
AKT inhibitor VII 920 (885) –
AZD6482 918 (884) 48
Uprosertib – 745 (736)
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Table 2: For each drug, this table lists the drug-specific IC50 binarization threshold that
was calculated using a procedure described by Knijnenburg et al. (Knijnenburg
et al., 2016)

Drug name Threshold

Rapamycin (GDSC2) -4.25
Temsirolimus (GDSC1) -3.48
AZD8055 (GDSC1) -1.19
Dactolisib (GDSC2) -3.39
Omipalisib (GDSC1) -3.87
Voxtalisib (GDSC1) 2.98
CX-5461 (GDSC1) 3.57
NSC319726 (GDSC1) -2.83
Niraparib (GDSC2) 4.03
Talazoparib (GDSC2) 2.55
Afuresertib (GDSC2) 0.74
Alpelisib (GDSC2) 1.59
AMG-319 (GDSC2) 3.40
Apitolisib (GDSC1) -1.55
AS605240 (GDSC1) 1.25
AT13148 (GDSC2) 1.44
AT7867 (GDSC1) 1.32
AZD8186 (GDSC2) 1.72
Buparlisib (GDSC2) -0.04
CZC24832 (GDSC2) 3.84
GNE-317 (GDSC2) -1.03
GSK1059615 (GDSC1) -1.67
GSK690693 (GDSC1) 3.46
IC-87114 (GDSC1) 4.37
Idelalisib (GDSC1) 2.91
Ipatasertib (GDSC2) 2.58
LJI308 (GDSC2) 3.77
MK-2206 (GDSC2) 1.04
OSI-027 (GDSC1) -2.26
PF-4708671 (GDSC1) 2.66
Pictilisib (GDSC2) -0.09
PIK-93 (GDSC1) 1.13
Pilaralisib (GDSC1) 2.00
Taselisib (GDSC2) -0.09
Torin-2 (GDSC1) -3.48
WYE-125132 (GDSC1) -3.15
YM201636 (GDSC1) 0.58
ZSTK474 (GDSC1) -1.21
AKT inhibitor VIII (GDSC1 screen 228) 0.77
AZD6482 (GDSC1 screen 1066) 0.74
Uprosertib (GDSC2 screen 2106) 0.58
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Table 3: This table depicts the dimensions of the input matrices for the different drugs
(i.e. excluding the test set cell lines) with and without a priori knowledge. The
corresponding database is written in brackets behind the drug name.

Drug name Input matrix (a priori) Input matrix (without a priori)

Rapamycin (GDSC2) Cell lines: 588, Features: 1474 Cell lines: 588, Features: 1480
Temsirolimus (GDSC1) Cell lines: 723, Features: 1500 Cell lines: 723, Features: 1502
AZD8055 (GDSC1) – Cell lines: 730, Features: 1502
Dactolisib (GDSC2) Cell lines: 594, Features: 1481 Cell lines: 594, Features: 1480
Omipalisib (GDSC1) – Cell lines: 714, Features: 1504
Voxtalisib (GDSC1) – Cell lines: 897, Features: 1501
CX-5461 (GDSC1) Cell lines: 708, Features: 1500 Cell lines: 708, Features: 1501
NSC319726 (GDSC1) – Cell lines: 684, Features: 1491
Talazoparib (GDSC2) Cell lines: 591, Features: 1479 Cell lines: 591, Features: 1480
Niraparib (GDSC2) – Cell lines: 579, Features: 1482
Afuresertib (GDSC2) – Cell lines: 593, Features: 1475
Alpelisib (GDSC2) Cell lines: 636 , Features: 1481 Cell lines: 636 , Features: 1481
AMG-319 (GDSC2) – Cell lines: 589, Features: 1473
Apitolisib (GDSC1) Cell lines: 708, Features: 1497 Cell lines: 708, Features: 1496
AS605240 (GDSC1) – Cell lines: 709, Features: 1504
AT13148 (GDSC2) – Cell lines: 589, Features: 1476
AT7867 (GDSC1) – Cell lines: 718, Features: 1502
AZD8186 (GDSC2) Cell lines: 594, Features: 1474 Cell lines: 594, Features: 1474
Buparlisib (GDSC2) – Cell lines: 594, Features: 1474
CZC24832 (GDSC2) – Cell lines: 579, Features: 1476
GNE-317 (GDSC2) – Cell lines: 583, Features: 1471
GSK1059615 (GDSC1) – Cell lines: 710, Features: 1498
GSK690693 (GDSC1) – Cell lines: 711, Features: 1504
IC-87114 (GDSC1) – Cell lines: 714, Features: 1505
Idelalisib (GDSC1) – Cell lines: 715, Features: 1504
Ipatasertib (GDSC2) – Cell lines: 594, Features: 1474
LJI308 (GDSC2) – Cell lines: 589, Features: 1477
MK-2206 (GDSC2) Cell lines: 609, Features: 1480 Cell lines: 609, Features: 1479
OSI-027 (GDSC1) – Cell lines: 704, Features: 1505
PF-4708671 (GDSC1) – Cell lines: 727, Features: 1500
Pictilisib (GDSC2) Cell lines: 606, Features: 1477 Cell lines: 606, Features: 1478
PIK-93 (GDSC1) – Cell lines: 711, Features: 1502
Pilaralisib (GDSC1) – Cell lines: 718, Features: 1502
Taselisib (GDSC2) Cell lines: 636, Features: 1481 Cell lines: 636, Features: 1481
Torin-2 (GDSC1) – Cell lines: 681, Features: 1490
WYE-125132 (GDSC1) – Cell lines: 709, Features: 1500
YM201636 (GDSC1) – Cell lines: 712, Features: 1502
ZSTK474 (GDSC1) – Cell lines: 711, Features: 1503
AKT inhibitor VIII (GDSC1 228) – Cell lines: 715, Features: 1503
AZD6482 (GDSC1 1066) – Cell lines: 716, Features: 1499
Uprosertib (GDSC2 2106) – Cell lines: 589, Features: 1477
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Table 4: This table depicts all biomarkers used as a priori knowledge for Rapamycin.

Feature name Association

PTEN truncating mutations sensitive
PTEN p.R173H sensitive
PTEN p.R130* sensitive
PTEN p.R233* sensitive
PTEN p.T167A sensitive
PTEN p.Y68H sensitive
PTEN p.D162H sensitive
PTEN p.K128N sensitive
PTEN p.C136R sensitive
PTEN p.Y155C sensitive
PTEN p.R130Q sensitive
PTEN p.F341V sensitive
PTEN p.Q298* sensitive
PTEN p.R173C sensitive
PTEN p.Y16* sensitive
PTEN p.L42R sensitive
PTEN p.W274* sensitive
PTEN p.R159S sensitive
PTEN p.D92H sensitive
PTEN p.G36R sensitive
PTEN p.R335* sensitive
PTEN p.R173P sensitive
PTEN p.C136Y sensitive
PTEN p.K128T sensitive
PTEN p.R130G sensitive
PTEN p.E307* sensitive
PTEN p.R47G sensitive
PTEN p.Q245* sensitive
PTEN CNV loss sensitive
FBXW7 truncating mutations sensitive
NF1 truncating mutations sensitive
NF1 p.R304* sensitive
NF1 p.R1204W sensitive
NF1 p.Y2285* sensitive
NF1 CNV loss sensitive
FBXW7 loss-of-function sensitive
TSC1 frameshift sensitive
PIK3CA p.E542K sensitive
STK11 CNV loss sensitive
FBXW7 CNV loss sensitive
MTOR p.C1483Y sensitive
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Table 5: This table depicts all biomarkers used as a priori knowledge for Temsirolimus.

Feature name Association

PTEN R130* sensitive
PTEN CNV loss sensitive
PIK3CA p.H1047R sensitive
ERBB2 gain-of-function sensitive
ERBB2 p.S310F sensitive
ERBB2 p.D277H sensitive
ERBB2 p.R678Q sensitive
ERBB2 p.S335C sensitive
ERBB2 p.L755S sensitive
ERBB2 p.T798I sensitive
ERBB2 p.V842I sensitive
ERBB2 p.S653C sensitive
ERBB2 CNV gain sensitive
PIK3CA p.E542K sensitive
AKT1 p.E17K sensitive

Table 6: This table depicts all biomarkers used as a priori knowledge for Dactolisib.

Feature name Association

PIK3CA p.H1047R sensitive

Table 7: This table depicts all biomarkers used as a priori knowledge for Talazoparib.

Feature name Association

BRCA1 loss-of-function mutations sensitive
BRCA1 truncating mutations sensitive
BRCA2 truncating mutations sensitive

Table 8: This table depicts all biomarkers used as a priori knowledge for CX-5461.

Feature name Association

BRCA1 loss-of-function mutations sensitive
BRCA1 truncating mutations sensitive
BRCA2 truncating mutations sensitive
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Table 9: This table depicts all biomarkers used as a priori knowledge for Apitolisib.

Feature name Association

PIK3CA p.E545K sensitive
PIK3CA p.E542K sensitive

Table 10: This table depicts all biomarkers used as a priori knowledge for Alpelisib.

Feature name Association

PIK3CA p.H1047R sensitive
PIK3CA CNV gain sensitive
PTEN CNV loss resistant

Table 11: This table depicts all biomarkers used as a priori knowledge for AZD8186.

Feature name Association

PTEN CNV loss sensitive

Table 12: This table depicts all biomarkers used as a priori knowledge for MK-2206.

Feature name Association

KRAS p.G12D sensitive
PIK3CA p.E545K sensitive
PTEN CNV loss sensitive
AKT1 p.E17K not sensitive

Table 13: This table depicts all biomarkers used as a priori knowledge for Pictilisib.

Feature name Association

BRAF p.V600E sensitive
PIK3CA p.E545K sensitive
ERBB2 CNV gain sensitive
PIK3CA CNV gain sensitive

Table 14: This table depicts all biomarkers used as a priori knowledge for Taselisib.

Feature name Association

PIK3CA p.H1047R sensitive
PIK3CA CNV gain sensitive
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