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Abstract

Motivation: Tumour heterogeneity is being increasingly recognised as an important characteristic of
cancer and as a determinant of prognosis and treatment outcome. Emerging spatial transcriptomics data
hold the potential to further our understanding of tumour heterogeneity and its implications. However,
existing statistical tools are not sufficiently powerful to capture heterogeneity in the complex setting of
spatial molecular biology.
Results: We provide a statistical solution, the HeTerogeneity Average index (HTA), specifically designed
to handle the multivariate nature of spatial transcriptomics. We prove that HTA has an approximately
normal distribution, therefore lending itself to efficient statistical assessment and inference. We first
demonstrate that HTA accurately reflects the level of heterogeneity in simulated data. We then use HTA
to analyse heterogeneity in two cancer spatial transcriptomics datasets: spatial RNA sequencing by 10x
Genomics and spatial transcriptomics inferred from H&E. Finally, we demonstrate that HTA also applies
to 3D spatial data using brain MRI. In spatial RNA sequencing we use a known combination of molecular
traits to assert that HTA aligns with the expected outcome for this combination. We also show that HTA
captures immune-cell infiltration at multiple resolutions. In digital pathology we show how HTA can be used
in survival analysis and demonstrate that high levels of heterogeneity may be linked to poor survival. In
brain MRI we show that HTA differentiates between normal ageing, Alzheimer’s disease and two tumours.
HTA also extends beyond molecular biology and medical imaging, and can be applied to many domains,
including GIS.

1 Supplementary Material

1.1 Supplementary Note S1 - HTA Monotonicity Proof

In this section we prove that HTA monotonically decreases with grid
refinement. We first provide several definitions: regions of a trait-
combination matrix, HTI and HTA. We begin the proof by showing
that HTA ≤ HTI for any given trait-combination matrix. We then use

this result along with Gibbs’ inequality to prove that HTA monotonically
decreases with grid refinement.

1.1.1 Definitions
Let M be a matrix. Let C be the number of non-empty trait combinations
that may be observed in M . Let the value of cell (i, j) in M indicate
which trait combination is present at the corresponding spatial location
in the sample (or ’none’ otherwise). Then we call M a trait-combination
matrix. For example, M ’s entries may each represent a single barcode in
spatial RNA-sequencing or a single tile in digital pathology.
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Definition (region of matrix) Denote by M
∣∣
G

the set of non-empty (not
all ’none’) sub-matrices obtained by applying grid G on M :
M
∣∣
G

= {M1,M2, ...,MR}, where R is the total number of non-empty
sub-matrices. Then the region Mr of M is the r-th non-empty sub-matrix
inM

∣∣
G

. The number of entries in regionMr that are not ’none’ is denoted
by nr .

Definition (HTI) We will mainly use the following definition of HTI,
which, as explained below, is equivalent to the definition provided in the
main text:

HTI(M) := −
R∑

r=1

C∑
c=1

nrc

n
log

R∑
r=1

nrc

n
(1)

where nrc is the number of cells (i, j) ∈ Mr indicating combination c,
and n is the total number of cells (i, j) ∈ M with at least one trait. Note
that

∑C
c=1

nrc
nr

= 1.
To see that this is equivalent to the definition of HTI provided in the

main text:

HTI = −
C∑

c=1

qc logC(qc) (2)

we note that qc, the proportion of spatial positions for which exactly all
traits in combination c manifest, can be re-written as a function of the
number of samples observed in each region:

qc =

R∑
r=1

nrc

n

which give us:

HTI(M) = −
C∑

c=1

R∑
r=1

nrc

n
log

R∑
r=1

nrc

n

and we can interchange the sums to obtain Equation 1.

Definition (HTA) Let M
∣∣
G

= {M1,M2, ...,MR} be the set of regions
obtained by applying grid G on some trait-combination matrix M . Let
{n1, n2, ..., nR} be the corresponding number of entries in each region
that are not ’none’. Then we define:

HTA(M
∣∣
G
) :=

R∑
r=1

nr

n
HTI(Mr) =

R∑
r=1

nr

n

(
−

C∑
c=1

nrc

nr
log

nrc

nr

)
(3)

where the last equality follows the definition of HTI in Equation 2, when
applied to the matrix Mr .

1.1.2 Proving HTA monotonically decreases with grid refinement
Note that this is similar to the fact that:

H(Y |X) ≤ H(Y )

for random variables X and Y .
Below we provide a proof that specifically applies to our case. We first

prove thatHTA(M
∣∣
G
) ≤ HTI(M) and then use this to prove that HTA

monotonically decreases with grid refinement.

Proving HTA(M
∣∣
G
) ≤ HTI(M)

The proof uses Gibb’s inequality, which states the following:
Let P = p1, p2, . . . , pn and Q = q1, q2, . . . , qn be two different

probability distributions. Then:

−
n∑

i=1

pi log pi ≤ −
n∑

i=1

pi log qi

Proposition 1. HTA(M
∣∣
G
) ≤ HTI(M)

We would like to show that:

R∑
r=1

nr

n

(
−

C∑
c=1

nrc

nr
log

nrc

nr

)
≤ −

R∑
r=1

C∑
c=1

nrc

n
log

R∑
r=1

nrc

n

Proof. If the inequality holds for each of the r terms individually, then
we are done. Therefore, it is sufficient to show that for all r we have:

nr

n

(
−

C∑
c=1

nrc

nr
log

nrc

nr

)
≤ −

C∑
c=1

nrc

n
log

R∑
r=1

nrc

n

Multiplying by n
nr

we can see that this is true iff:

−
C∑

c=1

nrc

nr
log

nrc

nr
≤
(
−

C∑
c=1

nrc

n
log

R∑
r=1

nrc

n

)
n

nr

(note that since empty regions are removed nr 6= 0).
which give us:

−
C∑

c=1

nrc

nr
log

nrc

nr
≤

C∑
c=1

nrc

nr
log

R∑
r=1

nrc

n

Setting:

pc =
nrc

nr
qc =

R∑
r=1

nrc

n

we can see Gibbs’ conditions hold (see Lemma 1.2 to see why qc constitute
a probability distribution), and therefore so does Gibbs’ inequality.
Therefore:

HTA(M
∣∣
G
) ≤ HTI(M).

1.1.3 Proving HTA monotonically decreases with grid refinement
Definition 1.1. (Finer grid)

Let G and Gf be two grids on M . We say that Gf is finer than G if for
all r, Mr ∈ G is precisely the union of regions {Mrk}k=1...K ∈ Gf .
In this case we write: Gf < G.

Theorem 1.1. (HTA monotonically decreases with grid refinement)
Let G and Gf be two grids on M , where Gf ≤ G. Then:

HTA(M
∣∣
Gf ) ≤ HTA(M

∣∣
G
)

Proof. Let Mr be a region in G and let {Mrk}k=1...K be the set of
regions in Gf whose union is precisely Mr . Since Mr is a also a matrix,
we can view {Mrk}k=1...K as regions of Mr obtained by applying the
relevant part of the grid Gf to Mr , denoted Gf

r .
Then we know from Proposition 1 that:

HTA(Mr

∣∣
G

f
r
) ≤ HTI(Mr)

But this is true for all regions Mr . Therefore this still holds if we
multiply by nr

n
(a constant per r) and sum over all regions:

R∑
r=1

nr

n
HTA(Mr

∣∣
G

f
r
) ≤

R∑
r=1

nr

n
HTI(Mr) (4)

Expanding the left term we obtain:
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R∑
r=1

nr

n
HTA(Mr

∣∣
G

f
r
) =

R∑
r=1

nr

n

K∑
k=1

nrk

nr
HTI(Mrk)

=

R∑
r=1

K∑
k=1

nrk

n
HTI(Mrk)

= HTA(M
∣∣
Gf )

where the last equality is since we are summing over all regions in M
∣∣
Gf .

The right term of Eq. 4 is simply HTA(M
∣∣
G
), by definition.

Combining this observation with the above expansion of the left term,
Eq. 4 becomes:

HTA(M
∣∣
Gf ) ≤ HTA(M

∣∣
G
)

Lemma 1.2. (Gibbs’ conditions hold)

Proof. We set:

pc =
nrc

nr
qc =

R∑
r=1

nrc

n

We know that
∑C

c=1 pc = 1 (since
∑C

c=1 nrc = nr). It remains to
show:

∑C
c=1 qc = 1.

C∑
c=1

qc =
C∑

c=1

R∑
r=1

nrc

n
=

R∑
r=1

C∑
c=1

nrc

n
=

R∑
r=1

nr

n
= 1

1.2 Supplementary Note S2 - 10x Visium Data

• Sample identifier: Human Breast Cancer (Block A Section 1) Spatial
Gene Expression Dataset by Space Ranger 1.1.0

• Link: https://support.10xgenomics.com/spatial-gene-expression/datasets/
1.1.0/V1_Breast_Cancer_Block_A_Section_1

• Files:
"Feature / cell matrix (filtered)"
"Spatial imaging data"

1.3 Supplementary Note S3 - MRI

All MRI slices, such as those observed in Figure 1 were obtained from
The Human Brain Atlas from the following links and slice numbers,
for both PD-weighted and T2-weighted sequences. Note that ’Metastatic
bronchogenic carcinoma’ has different slice numbers since slice numbers
do not necessarily correspond to the same brain regions in different
subjects.

• Normal ageing:
http://www.med.harvard.edu/aanlib/cases/case36/mr1/029.html
Slices: 32,34,36

• Alzheimer’s disease:
http://www.med.harvard.edu/aanlib/cases/case40/mr2/041.html
Slices: 32,34,36

• Glioma:
http://www.med.harvard.edu/aanlib/cases/case1/mr1/026.html
Slices: 32,34,36

• Metastatic bronchogenic carcinoma:
http://www.med.harvard.edu/aanlib/cases/case28/mr2/013.html
Slices: 09,11,13.

Normal  
ageing

Glioma

Fig. 1. An example of the raw MRI slices. This figure shows the three PD-weighted slices
used in the analysis of normal ageing and glioma.

1.4 Supplementary Note S4

Fig. 2. Heterogeneity map for the three traits: ESR1, GATA3 and FOXA1, along with the
full legend. Each color represents the manifestation of a different trait combination.

1.5 Supplementary Note S5

US census data was obtained from the US Census Bureau website, under:
Race and Ethnicity - County:

https://covid19.census.gov/datasets/

ace8fa8bea514d07a3139e4657b3cd9c_0

No pre-processing was applied.

1.6 Supplementary Note S6

List of genes per pathway
List of genes per pathway can be obtained from:

• https://www.gsea-msigdb.org/gsea/msigdb/cards/<NAME>
where NAME is one of the aforementioned pathway names.

GSVA package
GSVA package documentation can be found at:

• https://www.bioconductor.org/packages/release/bioc/vignettes/GSVA/inst/doc/GSVA.pdf
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A B

BC BD

Fig. 3. Aggregating traits into meta-traits. In A-B, meta-traits are the following immune
pathways: BIOCARTA_CYTOKINE_PATHWAY, BIOCARTA_TCR_PATHWAY,
BIOCARTA_BCR_PATHWAY. Each pathway’s enrichment values in each Visium spot
was computed using the Bioconducters’ GSVA package, and then binarized using the
median threshold, as described in the main text for similar analyses. In C-D meta-traits
are the cluster IDs obtained from 10X Genomics’ Loupe Browser when selecting K-means
with k = 10. (A), (C) represent a sample from the corresponding null models, while (B),
(D) represent the actual data. The tissue is the same breast cancer tissue used in the main
text.

1.7 Supplementary Note S7

A1 A2

B1 B2

Fig. 4. In A1 each of the two traits had a probability of 0.5 of manifesting in each of the
(x, y) positions. In B1, trait 1 had a probability of 0.9 of manifesting in each of the (x, y)

positions, whereas trait 2 had a probability of 0.1. The corresponding distributions under
the null model (random uniform permutations) are described in A2 and B2, respectively. In
A1 HTA is higher than in B1, but the p-value is lower than in B1.


