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Sup Fig 1: Characteristics of simulated data; A) Simulated phylogeny of samples B) Number 
of simulated germline and somatic variants per sample C) Variant allele frequency distribution 
of simulated variants per sample D) Distance to nearest variant in each sample. 
  



 
Sup Figure 2: Performance of workflows using simulated data: A) Precision and B) Recall of 
Mutect2, FreeBayes and Strelka2, run in single tumour-normal paired and joint calling 
configurations. 
  



 

 
Supp Figure 3: Variant allele frequencies (VAF) of variants detected by joint sample analysis; 
A) VAF distribution of true positive variants additionally detected by Strelka2pass B) and 
FreeBayesSomatic C) VAF distribution of false positive variants additionally detected by 
FreeBayesSomatic D) and Strelka2pass E) VAF distribution of false negatives not called by 
FreeBayesSomatic F) and Strelka2pass. 



 
Sup Fig. 4: Performance of individual steps in the Strelka2pass workflow using the simulated 
data: A) Precision and B) Recall of tumour-normal paired analysis, two-pass step without 
refiltering (supplying variants from all tumour-normal pairs for evaluation) and two-pass step 
with refiltering (the final workflow). 
  



Supp Figure 5: Summary of variant filters assigned by Mutect2; The counts for each filter 
type are denoted by black boxplots with white circles depicting the median values. The fitted 
distribution of variant counts outlines each boxplot; A) Counts of filter assignments for false 
negative variants and B) true negative variants called by Mutect2 C) Filter assignment for all 
variants reported for sequenced patient data sequenced with WGS or D) WES. 



 
Sup Fig. 6: Assessing the performance of different workflows using tumour samples with 
different evolutionary relationships in the simulated data; A) Simulated phylogeny highlighting 
two samples with high evolutionary distance (sim-a and sim-j) where MRCA denotes the most 
recent common ancestor. B) Precision and C) Recall estimates of FreeBayes and Strelka, run 
in individual tumour-normal paired and joint calling configurations using two (sim-a and sim-
j), three (sim-a, sim-g and sim-j), five (sim-a, sim-c, sim-f, sim-h and sim-j) and all ten tumour 
samples D) Simulated phylogeny highlighting two samples with low evolutionary distance 
(sim-a and sim-b). E) Precision and F) Recall estimates for FreeBayes and Strelka run in 
individual tumour-normal paired and joint calling configurations. The plots compare the 
performance of these workflows when using two evolutionary distant samples (sim-a and sim-
j), two evolutionary close samples (sim-a and sim-b) and all ten tumour samples. 
  



 
Sup. Fig. 7: Correlation of variant allele frequencies (VAF) from WES and WGS data against 
targeted amplicon sequencing VAF values with fitted violin plots of each individual 
distribution. Grey background shows 95% confidence interval for the fit of the linear model 
(dotted line)  
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Sup Fig. 8: Performance of the different workflows using clinical samples from eight cancer 
patients: A) Number of variants called by Strelka2 run in the tumour-normal paired (grey) 
and joint calling configurations, which have been validated by targeted amplicon sequencing 
(TAS). The same for C) FreeBayes and E) Mutect2 workflows. Precision of tumour-normal 
paired and joint analysis of TAS validated clinical data for B) Strelka2, D) FreeBayes and F) 
Mutect2; Sup. Table 1 provides the sample naming map to the original publications.  



 
Sup. Fig. 9: Correlation between cellularity and proportion of variants found only with joint 
calling using FreeBayesSomatic. Grey background shows 95% confidence interval for fit of 
linear model (dotted line) 
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Sup. Fig. 10: Improvement in recall using FreeBayesSomatic and Strelka2pass over Mutect2 
in the clinical samples. 
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Supp Figure 11: Performance of ensemble variant calling strategies. A) Precision and B) 
Recall of variant detection using the joint multi-sample calling of each tool separately and 
compared to using Majority-vote ensemble calling (variant is called by at least two callers), 
Freeka2 (variant is called by both FreeBayesSomatic and Strelka2pass) and Superset (variant 
is called by either FreeBayesSomatic or Strelka2pass) for the simulated dataset D) Number of 
TAS validated variants found in the clinical samples with Majority-vote and Superset 
methods and the corresponding D) Precision estimates. 
 



Sup Table 1: Sample naming map relating to previously published datasets. The first column 
contains sample names as they appear in this work, and the third column denotes how the 
samples are referred to in the original studies. Forth column shows the type of sequencing 
WES: whole-exome sequencing; WGS: whole genome sequencing 
 

SAMPLE NAME PUBLISHED STUDY ORIGINAL NAME SEQUENCING TYPE 
CA-A-1 

Solomon, et al. (2020) 

Case 1 Left liver 1 

WGS 

CA-A-2 Case 1 Right occipital 
CA-A-3 Case 1 Right liver 2 
CA-A-4 Case 1 Right pleura 
CA-A-5 Case 1 Left lower lung lobe 
CA-A-6 Case 1 Left liver 5 
CA-A-7 Case 1 Right liver 3 
CA-A-8 Case 1 Left liver 2 
CA-B-1 

Vergara, et al. (2021) 

CAS-B-21-L-LUNG 

WES 

CA-B-2 CAS-B-22-R-LUNG 
CA-B-3 CAS-B-14B37035-1B 
CA-B-4 CAS-B-Primary-1 
CA-B-5 CAS-B-15B08317-3A 
CA-B-6 CAS-B-14B37035-1C 
CA-C-1 CAS-A-FR07935894 

WGS 

CA-C-2 CAS-A-FR07935905 
CA-C-3 CAS-A-FR07935906 
CA-C-4 CAS-A-FR07935907 
CA-C-5 CAS-A-FR07935908 
CA-C-6 CAS-A-FR07935916 
CA-C-7 CAS-A-FR07935918 
CA-D-1 CAS-G-91-2 

WES 

CA-D-2 CAS-G-75 
CA-D-3 CAS-G-74 
CA-D-4 CAS-G-71 
CA-D-5 CAS-G-91 
CA-D-6 CAS-G-76 
CA-D-7 CAS-G-94 
CA-D-8 CAS-G-72 
CA-E-1 CAS-D-70 

WES 

CA-E-2 CAS-D-61-3 
CA-E-3 CAS-D-66 
CA-E-4 CAS-D-68 
CA-E-5 CAS-D-64 
CA-E-6 CAS-D-61-2 
CA-E-7 CAS-D-62 
CA-F-1 CAS-C-41 

WES 

CA-F-2 CAS-C-40-Fresh 
CA-F-3 CAS-C-37 
CA-F-4 CAS-C-44 
CA-F-5 CAS-C-42-Fresh 
CA-F-6 CAS-C-43-Fresh 
CA-F-7 CAS-C-46-Primary 
CA-G-1 CAS-F-FR07935922 

WGS 

CA-G-2 CAS-F-FR07935915 
CA-G-3 CAS-F-FR07935913 
CA-G-4 CAS-F-FR07935909 
CA-G-5 CAS-F-FR07935904 
CA-G-6 CAS-F-FR07935903 
CA-H-1 CAS-E-1 

WES 

CA-H-2 CAS-E-3 
CA-H-3 CAS-E-4 
CA-H-4 CAS-E-10 
CA-H-5 CAS-E-6 
CA-H-6 CAS-E-8 

  



Sup Table 2: Runtime of different workflows on simulated data; The runtimes were generated 
on the Peter MacCallum Cancer Centre HPC cluster with Intel(R) Xeon(R) CPU E5-2660 v3 
@ 2.60GHz. The times are displayed in single CPU runtime, but each workflow is highly 
parallelised, such that the user runtime is far lower. 
 

 Number of tumour samples used for joint calling 
Method 2 3 5 10 

FreeBayesSomatic 562h 811h 1185h 2292h 
Strelka2pass 310h 465h 776h 1552h 

Mutect2 - - - 28418h 
 



Supplementary methods 
Alignment of clinical data 
Detailed information on processing of the clinical sequencing datasets was published 
previously (Solomon, et al., 2020; Vergara, et al., 2021). Briefly, reads were aligned to 
GRCh38 for patient CAS-A and GRCh37 for patients CAS-B through CAS-H using BWA 
version 0.7.17 (Li and Durbin, 2009) allowing the use of alternative contigs. Reads were then 
marked as duplicates with Picard software (v2.17.3).  
 
Validation of clinical data 
Detailed information on targeted amplicon sequencing of patient samples can be found in the 
original publications (Solomon, et al., 2020; Vergara, et al., 2021). A SNV called in WES with 
any workflow was considered a true positive when the adjusted p-value calculated through an 
exact binomial test was lower than 0.05 on the TAS data. The probability of success for this 
test was estimated as the number of bases different from the reference divided by the total 
number of sequenced bases (0.001) and the number of trials was the read depth covering the 
variant. For indels, a variant was considered to be validated if either of the panel variant callers 
primal (in house) or canary (Doig, et al., 2017) called the same variant.  
 
Only amplicons with an average mapping rate of at least 80% over all samples, as well as an 
average coverage of more than 300 were considered for further analysis. WES variants were 
first subsetted to be within the area of the respective amplicons. 
 
Purity estimation with sequenza 
For CA-A the sequenza-utils python program was used to generate input files for the sequenza 
R program on the aligned BAM files (Favero, et al., 2014). Kmin and gamma were set to 100 
and 500 respectively to discourage a highly fragmented result.  For CA-B through -H the 
reported tumour purities were used from the publication (Vergara, et al., 2021). 
 
Performance of individual steps in Strelka2Pass 
As each of the three steps potentially has implications for the performance, we assessed the 
improvement provided by each step in the Strelka2pass workflow. Fig. S4 shows, that there is 
no change in either precision or recall just by supplying variants from all tumour-normal pairs 
for a second round of evaluation. However, there is a >20% improvement in recall when 
coupling this to the refiltering step that we have built into the workflow.  
 
Ensemble workflows – user suggestions 
An overall workflow can contain any number of additional variant callers, when not restricted 
to callers with joint analysis capability. Importantly, there is no benefit of jointly analysing 
samples with Mutect2, and it may decrease the performance in some cases. Each of our 
presented workflows outperformed Mutect2 on the data shown here, so when assembling an 
ensemble method, these methods, should have a higher confidence assigned to them in joint 
analysis cases, than tumour-normal pair approaches. 
 
Depending on the end needs of the user, an ensemble workflow can be optimised towards 
precision or recall. In Sup Fig. 11 we show the performance changes improvement that can be 
achieved by combining Mutect2 in tumour-normal paired analysis with the two new workflows 
FreeBayesSomatic and Strelka2Pass. First, in a “best of three” majority vote, where the variant 



needs to be called by two out of three variant callers, we enhance the precision of each of the 
individual tools, with slightly lower recall. 
On the other hand, with the super set approach, where any variant called in either 
FreeBayesSomatic or Strelka2Pass is included in the end result, this improves the recall even 
further, but slightly reduces the precision. This approach has the additional benefit of not 
needing to run Mutect2 which is an order of magnitude slower in our tests, than Strelka2Pass 
and FreeBayesSomatic (Sup. Table 2). 
The usage of these workflows can be easily integrated into existing workflows and  can be 
customised to the needs of the user. 
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