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Supplementary methods

DGE calling with DESeq2
DTUrtle offers methods to perform a differential gene expression (DGE) analysis for bulk or single-cell RNA-seq data. The DGE analysis is conducted via DESeq2 (Love et al., 2014), DESeq2 is widely accepted as one of the gold-standard tools for DGE analysis of bulk RNA-seq data, with recent benchmarks also showing good performance for single-cell RNA-seq data (Soneson and Robinson, 2018; Wang et al., 2019; Mou et al., 2020). For the analysis of single-cell data, DTUrtle applies recommended parameters, such as using glmGamPoi (Ahlmann-Eltze and Huber, 2020) for fast computation of dispersion estimates.


Following the DESeq2 analysis, log2 fold change values are shrunken via apeglm (Zhu et al., 2019) and s-values (Stephens, 2017) are computed by default.

DTUrtle computation time benchmark
Computation time of the main DTU analysis steps (data import, meta data formatting, DTU calling) was measured for a bulk and single-cell data set (Supporting data 1 & Supporting data 2). The data sets were varied in the number of samples / cells they consist of (doubled, tripled) and varied by the number of transcripts that were analyzed (1000, 10k, 100k), respectively. For variation of the number of samples / cells, the data sets have been duplicated – thus the number of analyzed transcripts is consistent between runs. In the bulk data set, filtering with default parameters retained 52,805 transcripts, in the single-cell data set 22,719 transcripts were retained. For the runs with a varying number of transcripts, the data sets were artificially pruned to the stated number of transcripts. Furthermore, filtering was effectively deactivated for these runs (only genes with a single transcript isoform were excluded by the filtering step). Each analysis was run five times with parallelized functions using up to six cores of an Intel Xeon E5-2695 v4 CPU. For each analysis step, the mean computation time of the five runs is reported.
Filtering strategy
Transcript-level count matrices are filtered to reduce noise, exclude lowly expressed transcripts or genes, and increase the statistical power of the analysis. The overall goal is to perform as few tests as possible, but as many as necessary. DTUrtle utilizes an adaptable filtering scheme of DRIMSeq (Nowicka and Robinson, 2016) and provides two predefined filtering strategies for bulk and single-cell RNA-seq data, respectively. Regardless of the applied filtering strategy, DTUrtle removes transcripts with no expression as well as genes, which have less than two transcripts left in the analysis. By design, a DTU analysis needs at least two different transcripts per gene to compare their proportions. The later exclusion step is performed twice by default, before and after the other filtering steps. 


The predefined bulk filtering strategy requires a gene to have a minimal expression of 5 counts and a transcript to have a minimal expression proportion of 5% - both in a specified number of samples. By default, this number of samples is defined as 50% of the smaller comparison group’s size. This allows to retain effects solely occurring in one of the comparison groups, while allowing for a 50% dropout ratio in that group. The single-cell filtering strategy requires for each transcript a minimal expression proportion of 5% in at least 5% of the number of cells of the smaller comparison group. This allows retaining effects in rare (sub-) cell types for inherently sparse single-cell data.


An additional filtering scheme is applied after the initial DRIMSeq statistical analysis, the so-called “post-hoc” filtering (Love et al., 2018). The post-hoc filter excludes transcripts, whose proportional standard deviation across all cells or samples is below a threshold (default 10%). This filter excludes transcripts with low proportional variation, which are therefore not interesting in the context of DTU.
Gene body coverage analysis
Gene body coverage analysis was performed with RSeQC’s geneBody_coverage function (Wang et al., 2012). For this analysis, genomic BAM-files are needed, which were created with STAR (Dobin et al., 2013). By default, transcripts with less than 100bp are excluded from the analysis. Samples / cells were pooled for the analysis.
Gene ontology analysis
Gene ontology analysis of significant genes was carried out with topGO (Alexa et al., 2006), using species-specific Bioconductor annotation data packages (Carlson, 2019a, 2019b) for the Gene-to-GO mapping. The analysis was limited to terms of the Biological Process ontology, pruning terms with less than ten annotated genes. For statistical analysis, the default weight01 method was used with Fisher's exact test, specifying all non-filtered genes from the DTU analysis as the universe. Significantly enriched terms were selected by requiring a p-value below 0.01.
Growth of public RNA-seq data
Available RNA-seq data sets were queried from the Gene Expression Omnibus  (Edgar et al., 2002; Barrett et al., 2013) DataSets repository (https://www.ncbi.nlm.nih.gov/gds) by two non-overlapping search terms on 19 January 2021. For bulk RNA-seq data sets the query `("expression profiling by high throughput sequencing"[DataSet Type]) AND ("RNA-seq" OR "RNA sequencing" OR "RNA seq" OR "RNAseq") NOT ("single-cell" OR “single cell”)` was used, for single-cell RNA-seq data sets the query `("expression profiling by high throughput sequencing"[DataSet Type]) AND ("RNA-seq" OR "RNA sequencing" OR "RNA seq" OR "RNAseq") AND ("single-cell" OR “single cell”)`. The list of matching data sets was split by the publication date (PDAT) in the GEO database. For visualization purposes, an exponential model was fit to the histogram.

Seurat cell marker identification
Cell marker identification was performed on transcript-level counts for all cell types in the Tabula Muris mammary gland data set. Seurat’s (Stuart et al., 2019) FindAllMarkers() function was limited to positive markers identified by the default Wilcoxon rank-sum test, requiring a ln-foldchange of at least 0.25 and non-zero expression in at least 10% of cells.
sparseDRIMSeq development
We used the established DTU calling package DRIMSeq, to create a single-cell compatible fork – called sparseDRIMSeq. As most single-cell RNA-seq data sets are utilized as sparse count matrices, a data representation only encoding the non-0 values, the main goal was to alleviate DRIMSeq’s strict limitation to dense count matrices. This was achieved by expanding DRIMSeq’s S4 class system to allow both, dense and sparse matrices, and creating appropriate accessing and representation functionalities. Furthermore, some calculations were not compatible with sparse matrices, these have been substituted with their appropriate counterpart or re-written. It was of highest priority, that the results for dense matrices should not be altered by the introduced changes.


Initial testing with sparse matrices revealed the dmFilter() function, DRIMSeq’s main filtering functionality prior to the actual DTU analysis, to be one major bottleneck for large matrices. Thus, DTUrtle uses a run-time optimized version of this functionality, which also supports multiple threads.
Supplementary results

Visualization and result aggregation
DTUrtle allows to aggregate key results, metadata, and visualizations in an overview table. The user can select which information should be shown. DTUrtle assists the user by formatting the requested metadata into a correct format. The overview table can be exported as an interactive HTML-table, utilizing the DataTables library through the DT package (Xie et al., 2020). If requested, visualizations can be hyperlinked, and values can be enhanced by a data-driven color scheme to speed-up visual assessment of results. assessing the results visually. For every column of the table, formatting functions from the formattable package (Ren and Russell, 2016) can be specified.

DTUrtle offers four different visualization options for genes of interest and their corresponding transcripts. These visualizations serve to highlight distinct aspects of the results and to inspect genes of interest thoroughly. The first visualization option is a barplot of transcript proportions, split by comparison groups (Supplementary fig. 2a). A bar represents the transcript’s proportion for each sample and transcript, accompanied by the fitted mean proportion per comparison group, indicated by a horizontal line. The sample order is preserved among the transcripts, thus allowing to track the proportions for each transcript of a sample. Additionally, the mean gene expression per comparison group and the corresponding coefficient of variation (CV) are shown as a subheading.

The second visualization option of DTUrtle is an extensible heatmap of proportions per transcript and sample (Supplementary fig. 2b). This visualization aids in spotting sample or transcript clusters and optionally taking additional metadata into account, e.g. sample batches or additional mutational information. The order of samples and transcripts is determined by hierarchical clustering (default: complete-linkage clustering using Euclidean distance). Additionally, gene expression and sample groups are added as meta-information rows, and significant transcripts are indicated by a meta-information column.

The third visualization option is the transcript view plot, which utilizes the Gviz package (Hahne and Ivanek, 2016). It displays the intron-exon structure of the different transcripts on a genomic scale, additionally differentiating untranslated regions from the actual coding region if possible (Supplementary fig. 2c). This visualization relies on the provided transcriptomic annotation information, which contains chromosome and feature coordinates. Additionally, the proportional difference between the fitted mean per group is displayed, indicating the direction and magnitude of difference between comparison groups. DTUrtle can reduce the length of common intron stretches across transcripts to highlight the transcripts’ structural differences.

The fourth visualization option is a dimensional reduction plot, which is especially useful for bulk data sets with many samples or single-cell data sets (Fig. 4). Two-dimensional coordinates of any dimensional reduction method can be used, e.g. from a principal component analysis (PCA), uniform manifold approximation and projection (UMAP), or t-distributed stochastic neighbor embedding (t-SNE). For a specific gene, either proportions or (log-transformed) expression per transcript can be displayed.

Supplementary tables
Supplementary table 1 - DTU result summary of Supporting data 1, Supporting data 2 and Supporting data 3. Summary table, with DTU result sheets for Supporting data 1, Supporting data 2 and Supporting data 3 (three sheets, four sheets and two sheets, respectively). The respective first sheet displays a gene-level DTU analysis summary, as returned by DTUrtle’s create_DTU_table() function. For each significant DTU gene, various statistics are shown. The respective second sheet states the OFDR values for significant DTU genes and their transcripts. The respective third sheet displays the results of the GO analysis. The top 100 GO terms are shown, ordered by p-value. The respective fourth sheet is specific to Supporting data 2 and states the number of transcript markers per cell type.
Supplementary table 2 - Key software table. Table summarizing key software used in the analysis of Supporting data 1 and Supporting data 2.
Supplementary figures
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Supplementary fig. 1 - Abundance of RNA-seq data sets. Number of publicly available RNA-seq data sets in GEO, split by year and sequencing technique. The black line represents an exponential function fitted to the data.
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Supplementary fig. 2 - Visual example of the priming bias detection probability score calculation. Schematic composition of two transcript isoforms of the same gene on a genomic coordinate scale (top). Exons of the transcripts are shown by blue boxes, introns by a black line. The schematic gene is located on the forward strand, as indicated by the annotated priming ends of the transcript (5’ and 3’). The top transcript is selected as the reference transcript tref . For 3’-biased data, i.e. expecting reads favourably originating from the 3’ end, coordinate ci is selected as the priming enriched end of transcript ti , and ći as the coordinate of the opposing 5’ end. As depicted, the start and end coordinates of exon-level differences between the two transcripts are returned by the diff-function. In the score calculation, the diff-coordinate which is closest to the priming enriched end ci is selected. The final score is calculated by dividing the exon-level distance (i.e. sum of exon lengths between two coordinates) between the closest diff-coordinate and ci ,by the exon-level distance of ći and ci . Finally, the calculated score is subtracted from one, to get the final score.
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Supplementary fig. 3 - DTUrtle visualization options exemplified for dexamethasone target gene SPTSSB. a) Proportions of SPTSSB transcripts between Dex2hr and EtOH samples. Horizontal red lines indicate the fitted group mean, generated and used in the DTU calling process. Significant transcripts are indicated with a red transcript name. Mean gene expression and coefficient of variation (CV) are presented in the subheading. b) Heatmap of SPTSSB transcript proportions per sample. Sample groups and gene expression are indicated by column annotations on top, significant transcripts by row annotation on the left-hand side (Sig=TRUE). The columns and rows are ordered based on a complete-linkage hierarchical clustering using the euclidean distance. c) Visualization of the exonic structure of SPTSSB transcripts. UTR regions are indicated by smaller boxes, chromosomal location in the ideogram on top. The left-hand side annotates significant DTU transcripts, the right-hand side displays the mean fitted proportional difference between groups and the direction of the difference in regard to the first comparison group.
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Supplementary fig. 4 - Selection of significant DTU genes in murine mammary gland tissue. Dots depict significant genes of the DTU comparison between T cells and luminal epithelial cells (Supporting data 2). The x-axis reflects the maximal difference in the expressed-in ratio of the gene’s transcripts between cell types. The y-axis reflects the maximal proportional shift of the gene’s transcripts between the cell types. The neutral element of each axis is indicated. a) The ellipse represents the multivariate normal distribution ellipse at the 99th percentile of the axes, determined via ggplot2’s stat_ellipse() function. b) “Extreme” genes (n=68) are labeled, i.e. the genes outside of the multivariate normal distribution ellipse.
[image: image5.png]Supplementary fig. 5 - Gene body coverage analysis of Supporting data sets. For each data set, the mean read coverage over the annotated gene body of all genes is depicted. The x-axis reflects gene body percentiles, where 0 indicated the 5’-end of the gene body and 100 the 3’-end.
[image: image6.png]Supplementary fig. 6 - Priming bias detection probability score for different sets of transcripts. Boxplots over the detection probability scores on the y-axis, with a boxplot for each transcript set (x-axis). The transcript sets represent transcripts for the following categories: All DTU relevant transcripts (genes with at least two transcript isoforms) (All relevant), all transcripts of significant DTU genes (Sig. genes) or all significant DTU transcripts (Sig. transcripts). The visualization is split for Supporting data 2 (Tabula Muris) and Supporting data 3 (Wuidart et al.),
[image: image7.png]Supplementary fig. 7 - Computation time of DTUrtle’s main DTU steps for a varying number of transcript isoforms. The y-axis represents the cumulative computation time in Minutes, the x-axis depicts the number of transcripts that are analyzed. The segments of each stacked bar are colored according to the DTU analysis step. The visualization is split for Supporting data 1 (bulk) and Supporting data 2 (single-cell), where 3 vs 3 and 743 vs 700 samples / cells are compared, respectively.
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