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I Performance of RLM 
 

 
 

 
We measured the performance of RLM by randomly sampling increasing numbers of BAM records 
from a publicly available data set (GSM4075619, aligned to the mouse reference genome mm10 
using BSMAP) ranging from the size of an RRBS experiment to a high-coverage WGBS data set. 
Benchmarks were executed on an Intel Xeon 6242 @ 2.80GHz with test data located on NFS 
mounted file servers and measurements are reported as the average across five runs with standard 
deviation. The runtime of RLM scales linearly with the input size for both paired- and single-end 
modes. The single-end mode is more than twice as fast compared to the paired-end mode (around 40 
and 90 minutes for one billion records respectively), which can be attributed to the temporary storage 
and specific treatment of paired-end reads. Here, reads are kept in memory until the mate has been 
read, potential overlaps of the two mates are resolved and reads are removed from memory 
afterwards. This is also reflected in the memory consumption, which stays consistently below five GB 
for the single-end mode while the peak memory increases exponentially for paired-end reads. 
However, even for an extremely well covered experiment using a billion reads (roughly 500 million 
fragments), the maximum memory remains below 32 GB. Typical data sets in the range of RRBS 
experiments (50 million fragments) run with modest memory requirements. Runtime comparisons with 
an existing software package and detailed feature comparisons can be found in the next section. 
  

Supplementary Fig. 1 Feature overview and performance of RLM 
A) Runtime measurements using different numbers of BAM records for single- and paired-end mode. For 
paired-end reads, the corresponding number of pairs in million contained in the test files are 0.5, 1.0, 2.4, 
4.9, 9.7, 24.3, 48.7, 97.5, 243.7 and 487.3 respectively. Mean measurements across five runs are reported 
and whiskers indicate standard deviation. 
B) Memory measurements using different numbers of BAM records using the maximum resident set size 
(RSS) for single- and paired-end mode (number of pairs in paired-end mode as in B). Mean 
measurements across five runs are reported and whiskers indicate standard deviation. 



II Implementation, usage and comparability with other tools 
 
1 Implementation details 
 

 
 

 
1.1 General 
 
RLM processes BAM files by streaming over the input records. Generally, reads get excluded if they: 
 

• Are not a primary alignment 
• Are QC-failed 
• Are PCR or optical duplicates 

Supplementary Fig. 2 Feature overview of RLM 
Structure and features of RLM. Both SAM and BAM files for different experiment types such as target 
enrichment approaches, reduced representation bisulfite sequencing (RRBS), whole genome bisulfite 
sequencing (WGBS) with single-end (SE) and paired-end (PE) reads can be used. Statistics per single 
read as well as aggregated in form of read-level methylation scores can be produced as output. 
We also offer a separate, standalone R Markdown script that generates a report based on the RLM output 
files including summary statistics, distribution of coverage, methylation and read level scores as well as 
figures visualizing global and per-feature read-level methylation dynamics. Read-level methylation scores 
can be used for various applications where the underlying population dynamics are important to consider 
besides the bulk methylation measurements such as tissue heterogeneity, comparing healthy and tumor 
tissue, allele-specific methylation and population methylation dynamics over time. 
 
 



• Contain indels 
• Fail a user-defined mapping quality threshold (default: 30) 
• Contain mismatches at CpG positions or less than 3 CpGs (A minimum number of CpGs is 

required to make a useful statement about heterogeneity or methylation patterns. For entropy 
and epipolymorphism calculations at least 4 CpGs need to be present.) 
 

For every read, the methylation status of each CpG is detected and read-wise methylation statistics 
are reported. Additionally, if PDR/RTS scores or entropy/epipolymorphism scores are requested, 
these are calculated for all CpGs or 4-mers covered by a minimum number of reads defined by the 
user (default: 10). 
 
Indels: Indels complicate read-level analyses because CpGs can potentially be inserted or (partially) 
deleted which makes it tricky to compute valid statistics for such regions. Therefore, currently reads 
containing indels are not included in the analysis. However, pairs where one mate contains an indel 
while the other does not will be partially processed using only the mate without indels. 
 
1.2 Paired-end sequencing mode 
 
For paired-end reads, reads get stored in memory until the mate is mapped. Depending on the 
fragment size, mates are mapped with a specific insertion size but sometimes also overlap each 
other. This brings confounding factors into the read-level statistics calculation: The two mates belong 
to the same allele and if both reads would be treated independently, the overlapping positions would 
be counted twice for the same allele and by that biasing the population heterogeneity measurement. 
RLM therefore merges overlapping reads of the same pair into one long, contiguous read which is 
then further processed. This procedure has the additional advantage that more consecutive CpGs on 
the same read can be examined and increase the genome-wide coverage when looking at scores 
such as entropy. 
 
1.3 RRBS mode 
 
Reduced representation bisulfite sequencing (RRBS) is a specific type of bisulfite sequencing 
experiments where the DNA gets fragmented using restriction enzymes. The most commonly used 
enzyme is MspI cutting the sequence 5'-CCGG-3' which enriches for fragments in CG-rich regions 
(such as CpG islands). During the fragment end-repair after cleavage, artificial cytosines get 
introduced at the 3' end of reads (or 5' end for non-directional/paired-end reads originating from the 
reverse complement of the original forward or reverse strand) which do not represent the original 
methylation status of the read at this position (see the Babraham RRBS guide, 
https://www.bioinformatics.babraham.ac.uk/projects/bismark/RRBS_Guide.pdf). If the sequencing 
reads are longer than the fragment size, these artificial CpGs could get incorporated into downstream 
analysis which is undesirable. Therefore, RLM offers the option to trim 2 bases of the 3' end of reads 
from the original forward or reverse strand and 2 bases of the 5' end of reads from the reverse 
complemented original forward or reverse strand (option: -rrbs). You should not set this option if you 
already accounted for this problem during trimming (e.g. using Trim Galore, 
https://www.bioinformatics.babraham.ac.uk/projects/trim_galore/). 
 
2 Input files 
 
2.1 Reads 
 
The main input for RLM consists of a BAM file from a bisulfite sequencing alignment tool. RLM 
supports BAM files from either BSMAP, BISMARK, segemehl or GEM (e.g. included in gemBS) and 
the used alignment tool needs to be specified when running RLM using the option -a. All four 
alignment tools use different tags to report the strand each read originated from and based on this 
option RLM will choose which tag to look for. 
 
We recommend trimming of low quality bases (and potentially tail trimming for swift libraries) prior to 
the alignment (e.g. using cutadapt) as well as the removal of technical duplicates after the alignment 



(e.g. using Picard MarkDuplicates). This way technical bias is reduced and read-level metrics are not 
influenced by artefacts. We also recommend sorting the BAM file by position in order to reduce 
memory consumption while running RLM in paired-end mode but RLM can also process unsorted or 
name-sorted BAM files. 
 
RLM can process BAM files of different bisulfite sequencing experiments such as whole genome 
bisulfite sequencing (WGBS), reduced representation bisulfite sequencing (RRBS), hybrid capture 
methods or amplicons with single-end or paired-end reads. For RRBS, we recommend using BSMAP 
in RRBS mode in order to reduce runtime and avoid mis-mappings. 
 
2.2 Reference genome 
 
RLM can be run using any reference genome (also custom genomes or assemblies), however, it 
should be the same genome (ideally the same file) that was used to align the reads in the BAM file. 
The order and number of reference sequences in the BAM header and the reference genome FASTA 
file are compared by RLM and different numbers or order of sequences will result in an error and 
termination of the program. 
 
3 Output files 
 
RLM offers multiple different output files that can be requested all together or separately. Which 
output files will be computed can be set via the -s option. This option can be set to either 
“single_read”, “entropy”, “pdr” or “all”. 
 
3.1 Single read output 
 
The “single_read” option only writes an output file containing information for every read or read pair 
that passed all filters and can be considered for read level analysis. This file gets written for every 
score option since the information it contains needs to be computed for all downstream scores. It has 
the following tab-delimited format: 
 
#chr start end read_name CpG_pattern n_CpGs n_CpGs_methyl
 discordance_score transitions_score mean_methylation 
chr_test 2384 2518 A00442:HFH2KDSXX190418:HFH2KDSXX:1:1108:19334:12555 gGg 3
 1 1 1 0.333333 
chr_test 5286 5421 A00442:HFH2KDSXX190418:HFH2KDSXX:1:1103:6334:22670 GGG 3
 3 0 0 1 
chr_test 7418 7553 A00442:HFH2KDSXX190418:HFH2KDSXX:1:1108:17463:25692 gGGG 4
 3 1 0.333333 0.75 
chr_test 7444 7579 A00442:HFH2KDSXX190418:HFH2KDSXX:1:1104:11957:9768 gGgg 4
 1 1 0.666667 0.25 
 
For every read, 10 different fields are reported: 
 

1. The chromosome the read aligned to. 
2. The start position of the read with respect to the chromosome (0-based, half-open intervals). 
3. The end position of the read with respect to the chromosome (0-based, half-open intervals). 
4. The read name. This will be the same for mates of the same pair. 
5. The methylation pattern for all CpGs spanned by the read. Capital G indicates methylation, 

lower case G refers to unmethylated CpGs. 
6. The number of CpGs spanned by the read. 
7. The number of methylated CpGs spanned by the read. 
8. The discordance score of the read (0 if all CpGs are either unmethylated or methylated, 1 

otherwise). 
9. The transition score of the read (how often does the pattern switch from methylated to 

unmethylated for consecutive CpGs normalized by the possible number of transitions n - 1) 
10. The mean methylation of the read based on all CpGs spanned by it. 

 
Note: If trimming of reads in the RRBS mode is enabled, the start and end position of the reads will 
match the sequence considered for RLM and will be truncated either at the 3' end (reads originating 



from the original forward/reverse strand) or 5' end (reads originating from the reverse complement of 
the original forward/reverse strand). 
 
3.2 Entropy output 
 
When choosing “entropy” as score option, additionally to the single read output file another file will be 
written of the following form: 
 
#chr start end entropy epipolymorphism gggg gggG ggGg ggGG
 gGgg gGgG gGGg gGGG Gggg GggG GgGg GgGG GGgg
 GGgG GGGg GGGG mean_methylation coverage 
chr_test 7390304 7390306 0.663386 0.792899 5 2 1 1 1
 1 0 1 0 0 0 1 0 0
 0 0 0.269231 13 
chr_test 7390619 7390621 0.42511 0.579882 8 0 1 0 2
 0 0 0 1 0 0 1 0 0
 0 0 0.134615 13 
chr_test 7390646 7390648 0.584893 0.764444 6 2 0 0 2
 1 0 2 2 0 0 0 0 0
 0 0 0.233333 15 
chr_test 7390665 7390667 0.508735 0.662722 7 0 2 0 0
 0 0 0 1 0 0 1 0 0
 1 1 0.25 13 
 
For every 4-mer of consecutive CpGs that are spanned by a user-defined minimum number of reads 
(default: 10), the following fields are reported: 
 

1. The chromosome. 
2. The start position of the first CpG in the 4-mer (0-based, half-open intervals). 
3. The end position of the first CpG in the 4-mer (0-based, half-open intervals). 
4. The methylation entropy calculated for the 4-mer based on the reads that span the complete 

4-mer. For more information on this score see (Xie et al., 2011). 
5. The methylation epipolymorphism calculated for the 4-mer based on the reads that span the 

complete 4-mer. For more information on this score see (Landan et al., 2012). 
6. The count of reads for all possible 16 epialleles that underlay the entropy and 

epipolymorphism calculations (16 columns, the header defines the epiallele per column. 
Capital G indicates methylation, lower case G refers to unmethylated CpGs). 

7. The mean methylation of the 4-mer based on all 4 CpGs across all considered reads. This 
might slightly deviate from the value that can be calculated by standard methylation calling 
since RLM excludes certain reads that might be considered by standard methylation callers 
such as reads with indels, low quality reads, etc. 

8. The coverage defined as the number of reads considered that span the complete 4-mer. 
9. 4-mers are reported using the first CpG as position in order to allow creating browser tracks 

but the value refers to the complete 4-mer starting with this CpG. 
 
3.3 PDR output 
 
When choosing “pdr” as score option, additionally to the single read output file another file will be 
written of the following form: 
 
#chr start end PDR RTS mean_methylation coverage 
chr_test 7390271 7390273 0.727273 0.360606 0.636364 11 
chr_test 7390275 7390277 0.727273 0.360606 0.363636 11 
chr_test 7390304 7390306 0.655172 0.366667 0.103448 29 
chr_test 7390346 7390348 0.619048 0.372222 0.214286 42 
 
For every CpG that is spanned by a user-defined minimum number of reads (default: 10), the 
following fields are reported: 
 

1. The chromosome. 
2. The start position of the CpG (0-based, half-open intervals). 
3. The end position of the CpG (0-based, half-open intervals). 



4. The percent of discordant reads (PDR) calculated based on the reads that span the CpG. The 
number of discordant reads (neither completely unmethylated nor completely methylated 
reads) is normalized by the total number of considered reads. For more information on this 
score see (Landau et al., 2014). 

5. The average read transition score (RTS) calculated based on the reads that span the CpG. 
The transition score per read (see single read output) normalized by the total number of reads 
spanning the CpG. 

6. The mean methylation of CpG across all considered reads. This might slightly deviate from 
the value that can be calculated by standard methylation calling since RLM excludes certain 
reads that might be considered by standard methylation callers such as reads with indels, low 
quality reads, etc. 

7. The coverage defined as the number of reads considered that span the CpG. 
 
 
3.4 All output 
 
When choosing “all” as score option, all three output files (single read, entropy and pdr) will be 
created. 
 
4 Comparison with other tools 
 
Existing tools that perform read-level analysis are rare and frequently limited by their universal 
usability. In the following we provide an overview about the features of each tool as well as runtime 
benchmarks against the most comparable tool (WSH, R package) (Scherer et al., 2020). 
 
4.1 Features 
 
The different tools available for read-level analysis differ substantially in the scores they provide. 
While DMEAS provides entropy only, CluBCpG exclusively provides a clustering-based read-level 
analysis (He et al., 2013; Scott et al., 2020). WSH is the only other tool that summarizes a variety of 
available read-level scores. While all tools support only BISMARK alignments (at least for some 
scores), none of the existing tools provides an RRBS-specific mode that allows to ignore potential 
artificial bases. 
 

Tool Scores Compatible alignment 
tools 

Reference 
genome 

RRBS 
mode 

RLM Single read discordance and transitions 
Entropy 
Epipolymorphism 
PDR 
RTS 
Matching mean methylation per score 

BISMARK (Krueger 
and Andrews, 2011) 
BSMAP(Xi and Li, 
2009) 
segemehl (Otto et al., 
2012) 
GEM(Marco-Sola et 
al., 2012) 

Any yes 

DMEAS Entropy BISMARK Any no 
CluBCpG Clustering-based read-level analysis BISMARK Any no 
WSH Entropy 

Epipolymorphism 
PDR 
MHL 
FDRP 
qFDRP 

BISMARK only for 
entropy and 
epipolymorphism 

preferably 
hg38 

no 

 
RLM filters potentially biasing reads based on multiple criteria and merges overlapping mates of the 
same pair (see 1). Additionally, for PDR/RTS and single-read evaluations, only reads with at least 
three CpGs are considered, while entropy and epipolymorphism calculations require reads with at 
least four CpGs. This reduces the number of reads considered for the read-level analysis in 



comparison to the reads considered for general methylation rate calling. In order to enable combining 
read-level scores and methylation ratios precisely, RLM provides methylation rates per CpG 
(PDR/RTS) or per 4-mer (entropy/epipolymorphism) based exclusively on the reads which are used 
for the read-level analysis. 
 
4.2 Runtime comparison 
 
We chose to compare runtime of RLM with WSH since it is the most similar tool, offering a variety of 
scores that are also provided by RLM. We compared the runtime of both tools for the calculation of 
entropy since WSH requires additional input for PDR that would need to be computed separately (the 
exact position of CpG where PDR should be calculated for). RLM was executed in single-end mode 
since WSH does not offer a specific paired-end mode. We measured the performance by randomly 
sampling increasing numbers of BAM records from a publicly available data set (GSM3618718) 
aligned to the reference genome hg38 using BISMARK. Benchmarks were executed on an Intel Xeon 
6242 @ 2.80GHz with test data located on NFS mounted file servers and measurements are reported 
as the average across five runs with standard deviation. For 10 million BAM records and more, RLM 
finishes entropy calculations more than three times faster than WSH. 
 
 

 
 
4.3 Score comparison 
 
Due to the filtering steps embedded in RLM prior to the score calculations, the number of reads 
considered for read-level scores decreases. Taking one of the examples above (4.2) containing 
around 50 million reads, 8.2 million reads fulfill the criteria of at least three CpGs on one read. Of 
these, only 82% end up in the RLM single-read output. The remaining reads get filtered out due to e. 
g. mismatches at CpG positions. WSH does not filter reads that go into the analysis which makes the 
resulting scores from the same BAM file not comparable between the two tools as different numbers 
of reads go into each calculation. We therefore do not provide comparisons of the results of both tools 
here.  
 
In order to ensure correctness of the RLM output, we included extensive tests in the RLM GitHub 
repository. These tests cover a wide range of use cases such as the calculation of methylation ratio, 
entropy, epipolymorphism, PDR and RTS but also the correct usage of alignment files from all three 
supported alignment tools, WGBS and RRBS mode. Additionally, tests for the correct filtering of reads 



that should be excluded from the analysis and merging of overlapping mates are included here. All 
tests are automated using continuous integration. 
 
 
III Post-processing and use cases 
 
RLM is a standalone application that processes a BAM file and returns output files containing 
methylation information and read-level metrics for and based on single reads. These output files can 
be used for downstream processing using common command line tools such as bedtools or 
UCSCtools and visualized in R. In the following, we describe the processing of an example file using 
RLM and simple potential steps to visualize the read-level information. We also provide a R 
Markdown script within this repository that creates global and - if desired - feature-wise summary 
statistics based on the RLM output. 
 
1. Browser tracks 
 
Entropy, epipolymorphism, PDR and RTS can be visualized per 4-mer or CpG e.g. using UCSCtools: 
 
cut -f 1,2,3,4 output_entropy.bed | sed '1d' | sort -k1,1 -k2,2n > entropy.bedgraph 
bedGraphToBigWig entropy.bedgraph genome.chrom.sizes entropy.bw 
 

 
 
Note: Entropy and epipolymorphism will be reported using the coordinates of the first CpG in a 4-mer. 
 
2. Aggregation per feature 
 
Scores reported per CpG or 4-mer can be simply aggregated per feature e.g. using bedtools. The 
following example code shows how to calculate the mean entropy across a bed file with regions of 
interest (3 columns: chr, start, end): 
 
bedtools intersect -a regions.bed -b output_entropy.bed -wa -wb | \ 
sort -k1,1 -k2,2n | \ 
bedtools groupby -i stdin -g 1,2,3 -c 7 -o mean > mean_entropy_regions.bed 
 
3. Visualization with R 
 
The R script we provide requires R to be installed including the following packages: 
 

• knitr 
• data.table 
• GenomicRanges 
• RColorBrewer 
• vioplot 
• ggplot2 
• ggpubr 

 
The script can be called the following way: 
 
Rscript -e "rmarkdown::render('summarize_read_level_stats.Rmd',  



params=list( 
single_read_input_file = '/path/to/output_single_read_info.bed', 
pdr_input_file = '/path/to/output_pdr.bed', 
entropy_input_file = '/path/to/output_entropy.bed', 
sample_name = 'my_sample', 
feature_input_file = '/path/to/features.bed'),  
output_file = 'my_output.pdf')" 
 
The parameter feature_input_file is optional and if not provided, no feature-wise figures will be 
reported. If provided, it should be a bedgraph file of the following format: <chr> <start> <end> 
<feature_name> where <feature_name> should be the name of the feature type the region belongs 
to. For example, a feature file separating the genome into CpG islands (CGIs), CpG island shores 
(2kb upstream and downstream of a CGI), CpG island shelves (2kb upstream and downstream of the 
shores) and open water regions (the remaining parts) could look like the following: 
 
chr1 0 3527624 OpenWater 
chr1 3527624 3529624 CGIshelf 
chr1 3529624 3531624 CGIshore 
chr1 3531624 3531843 CGI 
chr1 3531843 3533843 CGIshore 
chr1 3533843 3535843 CGIshelf 
chr1 3535843 3666619 OpenWater 
 
... 
 
The script will output a report containing basic statistics and figures of the single reads considered for 
the analysis, the reported PDR/RTS scores and the entropy/epipolymorphism scores. In the following, 
we will illustrate and explain the type of figures produced by the script using a WGBS sample of 
mouse epiblast (embryo tissue at embryonic day E6.5) as an example (GSM4075619). The following 
figures are directly extracted from the example report. 
 
First, the report summarizes the number of reads (total and discordant) that passed all filtering 
thresholds and were considered for the score calculations. Additionally, statistics regarding the 
number of CpGs per read (all and methylated), the transitions and the methylation per read are 
reported. The WGBS sample covers the complete mouse genome with high coverage. The majority of 
mammalian genomes are highly methylated while CpG-dense regions (CpG islands) usually remain 
free of methylation. This is reflected in the per read statistics were most reads genome-wide tend to 
have few CpGs but are highly methylated with few transitions between methylated and unmethylated 
CpGs. 
 



 
For PDR and RTS scores, the report summarizes the distribution of the coverage of reported CpGs. 
Additionally, violin plots visualizing the distribution of CpG methylation, PDR and RTS are provided. 
Some genomic regions artificially tend to get high amounts of reads during mapping which is why 
removing outlier CpGs with abnormally high coverage could be considered. 
 
 

 
 
Generally, PDR is a very broad measure and will usually be higher than the RTS because a 
discordant read can have an arbitrary amount of transitions as long as there is at least one. 
 



 
 
The relationship between methylation and PDR/RTS is summarized using smooth scatter plots where 
red refers to regions of high density while blue marks regions with low density. Regions with low and 
high DNA methylation in the genome will tend to have lower read level dynamics (i.e. low PDR or 
RTS) while intermediately methylated regions tend to have higher heterogeneity. 
 

 
 
The report offers the same type of figures for entropy and epipolymoprhism scores. Importantly, here 
methylation and read level scores refer to a 4-mer of CpGs instead of a single CpG. The methylation 
per 4mer is calculated as the average methylation across all CpGs included. This average 
methylation will usually be lower compared to the CpG methylation reported PDR/RTS. For entropy 
and epipolymorphism, 4 CpGs in a row (4mer) are required to be present on a single read in contrast 
to the minimum of 3 CpGs that is required for PDR/RTS analysis. This biases the analysis towards 
CpG-rich regions such as CpG islands which tend to be unmethylated in mammalian genomes. 
 

 
 



 
 
Again, regions with low and high DNA methylation in the genome will tend to have lower read level 
dynamics (i.e. low entropy or epipolymorphism) while intermediately methylated regions tend to have 
higher heterogeneity. 
 

 
 
The script also offers the possibility to compare the distribution of methylation and read-level scores 
for different feature groups. This could be genomic regions such as CGIs or promoters but also 
differentially methylated regions (DMRs), imprinted regions, etc. As an example we compared CGIs 
with CGI shores, shelves and open water regions. As expected CGIs show low methylation levels 
which are accompanied by low heterogeneity based on read level scores. However, a group of 
CpGs/4-mers in CGIs shows higher read level scores indicating a different type of regulation of these 
regions. The lower the CpG density (i.e. going from CGIs to shores to shelves/open water) the higher 
the methylation accompanied by a rise in heterogeneity. 
 

 
 



 
 
4. Use case 
 
Read level analyses can be useful in a variety of applications where the pure methylation rates are 
not informative enough and specific interest regarding the underlying population dynamics exists. 
Scherer et al. provide a useful summary of potential use cases, applications and concepts. Generally, 
read level analysis might be useful for questions related to: 
 
Tissue heterogeneity 
Comparison of different conditions that are known to differ based on DNA methylation (this could be 
healthy and tumor tissue, wild-type and knockout contexts, etc.) 
Contamination of a cell population 
Methylation dynamics over time (such as in early mammalian embryonic development where DNA 
methylation is almost completely erased and re-established) 
Allele-specific methylation (i.e. imprinting) 
Comparing different features of interest such as DMRs or other genomic features not only based on 
average methylation differences but also regarding changes in underlying populations) 
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