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Materials and Methods 
1. mHap format and mHapTools functions 
1.1 Overview of the mHap format 

The mHap format file was developed for efficient storage and manipulation of DNA methylation 

haplotypes. It is a genomic position-based format with six fields, including the genomic region 

specified by the first and last cytosines in the first three fields, the DNA methylation haplotype, and 

the numbers of reads with given methylation haplotypes and strand (Fig. 1A). In the fourth field, 

DNA methylation haplotypes are represented as binary strings with 0 and 1, where 1 indicates 

methylated CpG site and 0 indicates un-methylated CpG site. An mHap file can be indexed by Tabix 

[1] to achieve random and fast retrieval of haplotypes overlapping with a specified chromosomal 

region. In most cases, only one seek call is needed to retrieve haplotypes in a region. 

1.2 Converting SAM/BAM to mHap files 

This is the main function of mHapTools: it takes an indexed BS-seq BAM/SAM and a CpG 

position file as input to extract DNA methylation haplotypes, the resulting output is saved as a mHap 

file. 

1.3 Merging multiple mHap files 

This module merges multiple sorted mHap files to produce a single sorted mHap file that 

contains all input records. 

1.4 Summary of CpG site-level methylation 

This module outputs summary information of CpG site-level methylation data from mHap 

files. It is similar to the Bismark DNA methylation caller but uses a mHap file as input. 

1.5 Summary of DNA methylation statistics 

The summary function of mHapTools computes the methylated CpG sites, total CpG sites, 

discordant reads, methylated reads and total number of reads. The analysis can be performed for 

the entire genome or specific regions by the " -g " or “-b” options. PDR and CHALM are 

calcuated as the proportion of discordant reads and methylated reads among all reads that cover at 

least 4 CpG sites [2]. 

 
2. Differential methylation analysis 
Differential methylation analysis was performed by comparing two groups of samples using 

Student's t-test, the resulting p-values were adjusted with the Benjamini–Hochberg procedure to 

obtain false discovery rates (FDR). This analysis was performed on genomic features, such as CpG 

islands, downloaded from the UCSC genome browser, and gene promoters, defined as 2,000 bp 

regions centered at the transcription start site (TSS). Similarly, changes in discordant methylation 

were tested by comparing PDR between different conditions using Student's t-test. Significantly 



differentially methylated CpG islands and gene promoters were determined with FDR cutoff of 5% 

plus absolute changes of mean methylation or PDR of 0.1 

 
3. Pathway enrichment 
Gene ontology (GO), KEGG pathway and tumor Hallmarks enrichment were performed by a 

hypergeometric test using the clusterProfiler [3] and GSEA online tool, respectively. The P value 

was adjusted for multiple hypothesis testing according to Benjamini and Hochberg, with 5% as a 

cutoff. 

 
4.The mHap database 
Using mHapTools, we constructed a DNA methylation haplotype database, mHapDB, which 

includes 3,731 publicly available human RRBS samples. All of them were downloaded from the 

Gene Expression Omnibus (GEO), including 917 cancer cell lines from the Cancer Cell Line 

Encyclopedia (CCLE) [4]. The R package SRAdb [5] was used to query all publicly available human 

RRBS samples in GEO, with the following parameters : library strategy = “Bisulfite-Seq”, platform 

= “ILLUMINA”, library selection = “Reduced Representation” and taxon id = “9606”. For all 

samples, the full names, cell types, tissue of origin, disease categories and other metadata were 

curated. Raw SRA files were downloaded and converted to FastQ files with the SRA Toolkit 

(version 2.9.1), followed by quality control using FastQC (version: 0.11.8). Sequence adapters were 

trimmed by trim_galore (version 0.6.2) in the RRBS mode, thus removing an additional 3 bp at the 

3’-end when adapters were detected. Comprehensive quality control reports were generated using 

Bismark [6] with the first 1 million reads or read pairs. Trimmed sequences were aligned to the 

human genome version hg19 using BSMAP [7], with options “ -q 20 -f 5 -r 0 -v 0.05 -s 16 -S 1”. 

Mean CpG methylation levels were extracted using MethylDackel [8]. DNA methylation haplotypes 

were extracted using mHapTools and saved as mHap files. 

 
5. Data availability 
All the raw DNA methylation sequencing data (RRBS) was downloaded from the Gene Expression 

Omnibus (GEO, https://www.ncbi.nlm.nih.gov/gds/). The TPM normalized CCLE RNA-seq matrix 

data and samples annotation files were derived from CCLE Browse Datasets 

(https://portals.broadinstitute.org/ccle/data). The mouse extraembryonic ectoderm (ExE) and 

Epiblast data are accessible under GSE84236; and CLL and normal B lymphocytes from 

GSE118255, GSE71702, GSE109085, GSE66121. 
 



 
 

Table S1. Comparison of output formats between mHapTools and other BS-seq processing programs 
 
 
 
 

Software Input format Output format Description of outputs 

mHapTools 
BAM/SAM-

indexed 
mHap CpG methylation haplotypes 

Bismark [6] Fastq 
SAM/BAM, tab-

delimited text 
BAM files with additional XM tags to represent methylation states for CpG and non-CpG sites 

BSMAP [7] Fastq, BAM 
SAM/BAM, BSP, 

text 
Standard SAM/BAM format 

BS-Seeker [9] Fastq 
SAM/BAM, tab-

delimited text 
BAM files with additional XM tags to represent methylation states for CpG and non-CpG sites 

BS-Seeker2 [10] Fastq 
SAM/BAM, tab-

delimited text 
BAM files with additional XM tags to represent methylation states for CpG and non-CpG sites 

MethyQA [11] Fastq Tab-delimited text Standard SAM/BAM format 

BRAT [12] Fastq Tab-delimited text Standard SAM/BAM format 

BRAT-BW [13] Fastq Tab-delimited text Standard SAM/BAM format 

MethPipe [14] Fastq, SAM, BAM 
BAM, tab-

delimited text 
Standard SAM/BAM format 

MethylCoder [15] Fastq Tab-delimited text Summary statistics for single cytosine 

MethylDackel [8] SAM, BAM Tab-delimited text Summary statistics for single cytosine 

METHCOMP [16] bedMethyl 
Compressed 
BedMethyl 

Compressed BedMethyl 

CGmapTools [17] BAM ATCGmap Summary statistics for single cytosine 



Table S2. Performance of mHapTools for processing different BS-seq Assay with human hg19 genome  
Assay Sample Reads length (bp) Depth Coverage BAM (MB) RAM (MB) Running Time（min) mHap (MB) Compression ratio 

RRBS 

SRX1085030 100 18.85 506 375.96 4.6 14.89 33.98 

SRX1085031 100 24.24 764 412.62 6.67 20.82 36.7 

SRX1085026 100 42 1036 598.75 12.82 27.5 37.67 

SRX1070571 100 32.16 926.76 452.99 8.03 20.93 44.28 

SRX1075147 100 16.68 1056 497.84 7.07 24.61 42.91 

SRX1070580 100 45.11 3172.18 969.5 20.22 82.61 38.4 
 

Average 100 29.84 1243.49 551.28 9.9 31.89 38.99 

 

 

 

WGBS 

sample20A042139_S14_L002 150 16.03 23,017.4 2,450.53 85.6 349.77 65.81 

sample20A042163_S16_L002 150 16.55 25,408.6 3,225.26 91.1 349.5 72.7 

sample20A042220_S21_L003 150 13.35 21,902 2,478.04 72.88 325.77 67.23 

sample20A042245_S30_L004 150 20.88 31,186.4 3,588.05 114.53 432.38 72.13 

sample20A042317_S11_L002 150 14.72 22,953.8 2,478.05 82.63 341.06 67.3 

sample20A042444_S12_L002 150 13.97 21,670.8 2,565.02 77.78 324.05 66.87 
 

Average 150 15.92 24,356.5 2,797.49 87.42 353.76 68.67 

Targeted-BS 

Sample767501 150 332.187 23.34 305.71 0.53 0.2 117.67 

sample737449 150 627.275 39.9 329.2 0.78 0.27 147.8 

sample738397 150 485.214 38.18 300.38 0.72 0.25 152.72 

sample748185 150 527.614 41.06 349.38 0.78 0.27 152.07 

sample748560 150 701.374 57.91 364.23 0.95 0.38 152.4 

sample784846 150 457.764 30.93 322.3 0.63 0.19 162.79 
 

Average 150 521.9 38.55 328.53 0.73 0.26 147.58 



 

Legends for Supplementary Figures  

 

Figure S1. The comparison of mHap and BAM formats. (A-B) The BAM files generated by 

BSMAP and BISMARK, respectively. (C) The DNA methylation haplotypes, each of which is 

shown separately. (D) The mHap format, in which the same DNA methylation haplotypes are 

merged. 

Figure S2. Memory usage (RAM) and time consumptions in the processing of RRBS and targeted-

BS data.  

Figure S3. File size reduction of the mHap format compared to the BAM format. In order to explore 

how mHap format achieve its file size reduction, the effects of different components, including 

information reduction, aggregation, gzip compression and binarization, were tested. For information 

reduction, DNA methylation haplotypes were extracted from BAM files. In aggregation step, reads 

with the same haplotypes were merged and the count column was updated to reflect number of reads 

with the same haplotypes. Bgzip was used for compression. Datasets used in this testing were 

described in detail in Supplementary Table S2. File size reduction under each condition was shown 

for RRBS (A), WGBS (B) and targeted-BS (C). 

Figure S4. Binarization slightly improve compression efficiency. The testing datasets include 30 

RRBS samples which were randomly chosen from the mHap database 

(http://mhap.sciplus.cloud/mHapDB/). On average, binarization reduces file size by 7%. 

Figure S5. PDR and CHALM quantify cell heterogeneity using DNA methylation haplotypes. 

Mouse extraembryonic ectoderm (ExE) (GSE98963) was used as a model to study cellular 

heterogeneity which was quantified by PDR or CHALM. The dependency between cellular 

heterogeneity and mean methylation were shown for PDR (A) and CHALM (B), respectively. 

Figure S6. DNA methylation haplotype-level summary statistics are correlated with gene 

expression. Similar to mean methylation, haplotype-level summary statistics such as PDR and 

CHALM are both negatively correlated with gene expression in extraembryonic ectoderm (ExE) 

(GSE98963). Promoter are calculated as ±1kb of an annotated TSS. The dashed lines were fitted by 

lowess method. 

Figure S7. Genes with DNA methylation changes were significantly enriched with biological 

pathways in ExE and Epiblast. (A) Assignment of promoters by changes of mean methylation and 

PDR between ExE and Epiblast. Specifically, 4 groups were defined: gene promoters with 

significant changes in both mean methylation and PDR (group 1, n = 843), only significant changes 

in PDR (group 2, n = 1394), only significant changes in mean methylation (group 3, n = 295) and 

those with no significant changes in both mean methylation and PDR (group 4, n = 10,763). The 

correlation between changes in mean methylation and PDR were shown for all genes in these 4 

groups. (B-D) GO biological processes enrichment analysis of genes in group 1, 2 and 3. 

Figure S8. Differential PDR is associated with differential gene expression in ExE and Epiblast. 

Genes were assigned into 4 groups, as described in Figure S7. Fisher’s Exact test was used to 



determine whether changes in PDR (A and B) or mean methylation (C) were associated with 

changes in gene expression. For gene expression, 2-fold change was used as a cutoff to define 

differentially expressed genes.  

Figure S9. Disordered methylation is a hallmark of Chronic lymphocytic leukemia (CLL). (A) 

Proportion of discordant reads (PDR) is a haplotype-level summary statistics that quantifies 

disordered methylation. (B-C) Mean methylation patterns in CLL and B-cells. The analysis was 

limited to tiles or CpG islands that were covered with at least 30 reads. The boxplot shows the 

sample mean methylation patterns of normal B cells (n=59) and CLL cells (n=45) in genome-wide 

tiles (B) or CpG islands (C). (D-E) Patterns of disordered methylation in CLL and B-cells. The 

analysis was limited to tiles and CpG islands that were covered with greater than 10 reads and 4 or 

more CpG sites per read. (F) Mean intrasample CpG islands PDR variance. (G) The volcano plot 

showing the distribution of PDR changes and p-values for all covered CpG islands. Significant CpG 

islands (FDR < 5%, delta PDR > 0.1) were plotted as brown or purple points. For CpG islands with 

increased PDR in CLL, the enriched genomic features (H) and gene signatures (I-K) were shown. 

Figure S10. Locally disordered methylation is associated with gene regulation in lung cancer. (A) 

Global discordant methylation levels measured by PDR are significantly different between NSCLC 

(n = 122) and SCLC (n = 49) cell lines. Averaged PDR for each cell line is calculated over promoter 

regions (±TSS 1000 bp) of 12,673 high coverage genes in all 917 CCLE RRBS samples. (B) Mean 

promoter PDR and gene expression are negatively correlated in lung cancer cell lines. (C) 

Assignment of promoters by changes of mean methylation and changes of disordered methylation 

between NSCLC and SCLC cell lines. Specifically, 4 groups were defined: gene promoters with 

significant changes in both mean methylation and PDR (group 1, n = 862), only significant changes 

in PDR (group 2, n = 236), only significant changes in mean methylation (group 3, n = 780) and 

those with no significant changes in both mean methylation and PDR (group 4, n = 10,795). The 

correlation and corresponding p-value measure all genes in the 4 groups.  

Figure S11: Differential PDR is associated with differential gene expression in lung cancer. Genes 

were assigned into 4 groups, as described in Figure S10. Fisher’s Exact test was used to determine 

whether changes in PDR (A and B) or mean methylation (C) were associated with changes in gene 

expression. For gene expression, 2-fold change was used as a cutoff to define differentially 

expressed genes.  

Figure S12. Cancer-specific PDR changes in the CCLE dataset. To identify cancer type-specific 

promoters, one cancer type was compared to all other cancer types in CCLE dataset (FDR < 0.05, 

delta PDR > 0.1, delta mean methylation > 0.1). For visualization purposes, only cancer types with 

more than 30 PDR promoters were shown. (A) Promoters with up-regulated PDR. The right panel 

shows the proportion of gene promoters with significant changes in discordant methylation but not 

mean methylation. (B) Promoters with down-regulated PDR. The right panel shows the proportion 

of gene promoters with significant changes in discordant methylation but not mean methylation. 
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