
Supplement of A Fast Data-Driven Method for Genotype1

Imputation, Phasing, and Local Ancestry Inference: MendelImpute.jl2

3

June 28, 20214

1 Supplemental Material5

1.1 Imputation Quality Scores6

Consider the observed genotype xi j ∈ [0,2]∪{missing} at SNP i of sample j and the corresponding imputed7

genotype gi j derived from the two extended haplotypes of j. If Si denotes the set of individuals with observed8

genotypes at the SNP, then MendelImpute’s quality score qi for the SNP is defined as9

qi = 1− 1
|Si| ∑j∈Si

(
xi j−gi j

2

)2

.

Note that 0≤ qi ≤ 1 and that the larger the quality score, the more confidence in the imputed values. Because10

qi can only be computed for the typed SNPs, an untyped SNP is assigned the average of the quality scores for11

its two closest flanking typed SNPs. Figure 1A plots each SNP’s quality score in the 1000G Chr20 experiment12

summarized in Table ??. For each sample, one can also compute the mean least squares error over all p SNPs13

to obtain a per-sample quality score. This is shown in Figure 1B. By default MendelImpute outputs both14

quality scores. Thus, investigators can perform post-imputation quality control by SNPs and by samples15

separately.16

Empirically, it is rather common for a sample subject to harbor a few poorly imputed windows. Thus,17

we observe a long left tail in the histogram for per-sample error in Figure 1. Unfortunately, the bad windows18

generally do not exhibit any discernible regional patterns across subjects. We suspect that poorly imputed19

windows involve breakpoints that occur near the middle of a window. It is possible to detect such breakpoints20

by IBS matching and ancestry weighting [4]. We plan a detailed analysis of this issue in future work.21

1

Figure 1: Histograms of per-SNP and per-sample quality scores for chromosome 20 in our 1000G analysis.
By default MendelImpute computes (a) per-SNP quality scores and (b) per-sample quality scores. SNPs and
samples with noticeably lower quality scores should be removed from downstream analysis.

1.2 JLSO Compressed Reference Haplotype Panels22

The jlso format is constructed in three steps: (a) specify window intervals, (b) compute unique haplotypes in23

addition to hash maps to reference haplotypes in each window, and (c) save the result in a binary compressed24

format via the JLSO.jl package [1]. The resulting jlso files are 30-50x faster to read and 3-5x smaller in file25

size (varies depending on window width) than compressed VCF files in the vcf.gz format. Note the jlso26

format is simply a container object that facilitates reading and transferring large VCF files stored as Julia27

variables. In principle, all files that are slow to read can be pre-processed and stored in this alternative format28

for quicker access. As such, we similarly store ultra-compressed sample haplotypes, as discussed in Section29

3.4, using the JLSO.jl package.30

1.2.1 Adaptive Window Widths via Recursive Bisection31

The first step in generating JLSO haplotype panel is to specify genomic window ranges. The width of genomic32

windows is an important parameter determining both imputation efficiency and accuracy. Empirically, larger33

window widths give better error rates but also increase the computational burden of the matrix multiplications34

and minimum entry search described in Section 2.2. The magnitudes of these burdens depend on local hap-35

lotype diversity. Thus, we choose window widths dynamically. This goal is achieved by a bisection strategy.36

After aligning all typed SNPs with the reference panel, initially we view all typed SNPs on a large section of a37

chromosome as belonging to a single window. We then divide the window into equal halves if it possesses too38

many unique haplotypes. Each half is further bisected and so forth recursively until every window contains39

2

fewer than a predetermined number of unique haplotypes. Empirically, choosing the maximum number dmax40

of unique haplotypes per window to be 1000 works well for both real and simulated data. When a larger41

number is preferred, we resort to a stepwise search heuristic for minimizing criterion (??) that scales linearly42

in the number of unique haplotypes d. This heuristic is described above.43

1.2.2 Elimination of Redundant Haplotypes by Hashing44

Within a small genomic window of the reference panel, multiple haplotype pairs may be identical at the45

typed SNPs. Only the unique haplotypes play a role in matching reference haplotypes to sample genotypes.46

MendelImpute identifies redundant haplotypes by hashing. For each reference haplotype limited to the win-47

dow, hashing stores an integer representation of the haplotype via a hash function. This integer serves as an48

index (key) to locate the reference haplotype (value). Put another way, hashing stores the inverse images of49

the map from reference haplotypes to unique haplotypes. In our software, the GroupSlices.jl package [2]50

identifies a unique key for each haplotype.51

1.2.3 Save in binary compressed format52

Since haplotypes are long binary vectors, the entire haplotype reference panel can be compactly represented53

using a single bit per entry. We have already divided the full reference panel into non-overlapping windows54

of various widths after proper alignment of all typed and reference SNPs in the window. For each window we55

save two compressed mini-panels. The first houses the unique haplotypes determined by just the typed SNPs.56

The second houses the unique haplotypes determined by all SNPs in the window, typed or untyped. The57

former is much smaller than the later, but each entry of both can be compactly represented by a single bit per58

entry in memory. Thus, for each window we save two compressed windows in addition to meta information59

and pointers that coordinate reference haplotypes with the two mini-panels per each window. This whole60

ensemble is stored in the jlso file. Because there are only a limited number of SNP array chips on the market,61

one can in principle store just a few jlso files on a universal source such as the cloud. The same JLSO62

compressed panel can also be re-used as long as the set of typed SNPs does not change drastically between63

different GWAS chips.64

1.3 Parallel Computing and Memory Requirements65

MendelImpute employs a shared-memory parallel computing model where each available core handles an66

independent component of the entire problem. Work is assigned via Julia’s multi-threading functionality.67

When computing the optimal haplotype pairs in equation 1 of section 2.2, we parallelize over windows. This68

requires allocating c copies of XT H and HT H, where c is the number of CPU cores available. Note the69

3

dimensions of these matrices vary across windows. To avoid accruing memory allocations, we pre-allocate70

c copies of n× dmax and dmax× dmax matrices and re-use their top-left corners in windows with d < dmax.71

For intersecting adjacent reference haplotype sets (phasing), we parallelize over samples. This step requires72

no additional memory. Writing to output is also trivially parallelizable by assigning each thread to write a73

different portion of the imputed matrix to a different file, then concatenating these files into a single output74

file. Data import is not parallelized. Beyond allocating XT H and HT H, our software requires enough memory75

(RAM) to load the target genotype matrix and the compressed haplotype reference panel.76

1.4 Bias Correction for Initializing Missing Data77

Since BLAS requires complete data, we must first initialize the missing data in each genotype vector x before78

computing M and N in equation 2 of section 2.2. This may introduce bias in our minimization of equation 1 if79

there is a high fraction of missing genotypes in the typed SNPs, for example above 10%. One way to alleviate80

bias is to initialize missing data with the mean and save all unique haplotype pairs minimizing criterion81

equation 1 under this convention. Once this set of optimal haplotype pairs are identified, we re-minimize82

criterion equation 1 but now skipping the missing entries of x. That is equivalent to setting xk−hik−h jk = 083

when xk is missing.84

1.5 Avoidance of Global Searches for Optimal Haplotype Pairs85

Recall that minimizing equation 1 of section 2.2 requires searching through all lower-triangular entries of the86

d× d matrix M+N, where d denotes the number of unique haplotypes in the window. When d < 1000,87

searching through all
(d

2

)
+ d lower-triangular entries of M+N via MendelImpute’s standard procedure is88

fast, but this global search quickly degrades as d→∞. Below we outline two heuristic procedures for large d.89

These heuristics typically produce sub-optimal solutions compared to global searches, so they should be used90

with caution.91

1.5.1 Stepwise Search Heuristics92

Consider minimizing the loss fi(β) =
1
2 ||xi−Hβ||22, where the d columns of H ∈ {0,1}p×d store unique93

haplotypes, p is the window width, and xi is a sample genotype vector. The original problem minimizes94

fi(β) under the constraint that exactly two β j = 1 and the remaining βk = 0 or the constraint that exactly one95

β j = 2 and the remaining βk = 0. As an approximate alternative, one first finds the r unique haplotypes with96

the largest influence on fi(β). This is accomplished by identifying the r most negative components of the97

gradient98

∇ fi(β) =−HT (xi−Hβ) =−HT xi +HT Hβ

4

at β = 0. These are the r directions of steepest descent. Note that ∇ fi(0) = −HT xi and that HT xi is pre-99

computed and cached in N. The residual function gi j(hk) =
1
2 ||x−h j−hk||22 is then minimized over hk to100

find the candidate pair (h j,hk) generated by each of the vectors h j determined by the gradient ∇ fi(0). The101

ingredients to perform these minimizations are already in hand. This heuristic scales as O(rd), much better102

than O(d2) in the original formulation. MendelImpute sets the default r = 100. In the same spirit as the first103

step, one can alternatively find for each j the most negative component k of the gradient ∇ fi(e j), where e j is104

the standard unit vector with 1 in position j. This again determines a nearly optimal pair (h j,hk). Under this105

tactic the Gram matrix HT H comes into play. Note that HT He j reduces to its jth column v j. Hence, no new106

matrix-by-vector multiplications are necessary in calculating ∇ fi(e j) =−HT xi +v j = ∇ fi(0)+v j.107

Alternatively, one can find the best r unique haplotypes for a given sample xi en masse by arranging all108

pairwise column distances of X and H in the matrix109

R =


||x1−h1||22 · · · ||xn−h1||22

...
...

||x1−hd ||22 · · · ||xn−hd ||22


d×n

.

Then we partially sort each column of R to identify the top r haplotypes matching each sample xi. Here R110

is computed via the Distance.jl package of Julia, which internally performs BLAS level-3 calls analogous111

to computing HT H and XT H. Instead of searching through all haplotypes to minimize gi j(hk) for a given112

sample xi, one can instead search only over the
(r

2

)
+ r combinations of the top haplotypes. This allows one113

to entertain much larger values of r. Empirically, choosing r = 800 works well for most data sets.114

1.6 Phasing by Dynamic Programming115

We also investigated a dynamic programming strategy that gives the global solution for minimizing the number116

of haplotype breaks across the extended haplotypes E1 and E2. For each given haplotype pair p1 = (hi,h j) in117

window w, we can compute the squared Hamming distance between it and the pair p2 = (hk,hl) in window118

w+1; in symbols119

d(p1,p2) =



0 hi = hk,h j = hl (0 breaks)

1 hi = hk,h j 6= hl (1 break)

1 hi 6= hk,h j = hl (1 break)

4 hi 6= hk,h j 6= hl (2 breaks).

Observe that a double break is assigned an error of 4 to favor 2 single breaks across 3 windows as opposed to120

a double break plus a perfect match.121

Now we describe a dynamic programming strategy for finding the two paths with the minimal number122

5

of unique haplotype breaks. We start with all candidate pairs pi in the leftmost window and initialize sums123

si = 0 and traceback path vectors ti to be empty. One then recursively visits all windows in turn from left to124

right. If w is the current window, then every candidate haplotype pair pi in window w is connected to every125

candidate pair p j in window w+1. The traceback path t j is determined by the pair pk minimizing d(pi,p j).126

The traceback path t j is constructed by appending pk to tk and setting s j = sk + d(pk,p j). This process is127

continued until the rightmost window v is reached. At this point the pair p j with lowest running sum s j is128

declared the winner. The traceback path t j allows one to construct the extended haplotypes E1 and E2 in their129

entirety. Unfortunately, too many haplotype pairs per window can overwhelm dynamic programming with130

large reference panels because one must enumerate and store all possible haplotype pairs in every genomic131

window for every individual. For large reference panels such as HRC, the number of possible haplotype pairs132

often exceeds 100,000 per window. Thus, it is impossible to store all of these pairs in memory. One partial133

recourse is to discard partial paths and associated partial termini pi that are unpromising in the sense that134

their running sums si are excessively large. This does not completely alleviate the memory burden, and the135

approximate algorithm is burdened by extra bookkeeping. The bookkeeping of the exact algorithm is already136

demanding.137

1.7 Msprime simulation script138

Usage: python3 msprime_script.py n ne seq recomb mut seed > full.vcf139

We used ne=10000; seq=10000000; seed=2020; recomb=2e-8; mut=2e-8140

n = 12000 or 102000 or 1002000141

142

import msprime, sys143

144

parameters145

sample_size = int(sys.argv[1])146

effective_population_size = int(sys.argv[2])147

sequence_length = int(sys.argv[3])148

recombination_rate=float(sys.argv[4])149

mutation_rate=float(sys.argv[5])150

seed = int(sys.argv[6])151

152

run the simulation153

ts = msprime.simulate(sample_size=sample_size, Ne=effective_population_size,154

length=sequence_length, recombination_rate=recombination_rate, random_seed=seed)155

model = msprime.InfiniteSites(msprime.NUCLEOTIDES)156

6

Population Code Description Super Population
CHB Han Chinese in Beijing, China East Asian (EAS)
JPT Japanese in Tokyo, Japan East Asian (EAS)
CHS Southern Han Chinese East Asian (EAS)
CDX Chinese Dai in Xishuangbanna, China East Asian (EAS)
KHV Kinh in Ho Chi Minh City, Vietnam East Asian (EAS)
CEU Utah Residents with NW European Ancestry European (EUR)
TSI Toscani in Italia European (EUR)
FIN Finnish in Finland European (EUR)
GBR British in England and Scotland European (EUR)
IBS Iberian Population in Spain European (EUR)
YRI Yoruba in Ibadan, Nigeria Africans (AFR)
LWK Luhya in Webuye, Kenya Africans (AFR)
GWD Gambian in Western Divisions in the Gambia Africans (AFR)
MSL Mende in Sierra Leone Africans (AFR)
ESN Esan in Nigeria Africans (AFR)
ASW Americans of African Ancestry in SW USA Africans (AFR)
ACB African Caribbeans in Barbados Africans (AFR)
MXL Mexican Ancestry from Los Angeles USA Ad Mixed American (AMR)
PUR Puerto Ricans from Puerto Rico Ad Mixed American (AMR)
CLM Colombians from Medellin, Colombia Ad Mixed American (AMR)
PEL Peruvians from Lima, Peru Ad Mixed American (AMR)
GIH Gujarati Indian from Houston, Texas South Asian (SAS)
PJL Punjabi from Lahore, Pakistan South Asian (SAS)
BEB Bengali from Bangladesh South Asian (SAS)
STU Sri Lankan Tamil from the UK South Asian (SAS)
ITU Indian Telugu from the UK South Asian (SAS)

Table 1: The 26 population codes present in the 1000 genomes project.

ts = msprime.mutate(ts, rate=mutation_rate, model=model, random_seed=seed)157

158

print results (2 is for diploid, "legacy" = no matching positions)159

with sys.stdout as vcffile:160

ts.write_vcf(vcffile, 2, position_transform="legacy")161

1.8 Summary of 1000 Genomes Reference Panel162

A total of 26 different populations contribute to the 1000 Genomes Project data set. These populations are163

further organized into five super population. While this information is freely available online, we summarize164

it in Table 1 for completeness.165

7

2 Author contributions166

KL, JS, ES, and HZ conceived this project. BC, KL, RW, JS, ES, and HZ devised the methods. BC, RW, and167

HZ developed the software. S.K added BGEN support. BC and KL accessed the data. BC wrote the original168

draft of the paper. BC, KL, RW, JS, ES, and HZ reviewed and edited the draft. KL previewed some of the169

methods incorporated in MendelImpute in his talk [3].170

3 Acknowledgements171

BC and RW were supported by NIH grant T32-HG002536. BC, ES, JS, HZ, and KL were supported by172

NIH grant R01-HG006139. ES, JS, HZ, and KL were supported by NIH grant R01-GM053275. JS was also173

supported by NIH grant R01-HG009120.174

We would also like to thank Calvin Chi for his helpful discussions on ancestry estimation and Juhyun Kim175

for her helpful discussions on imputation quality scores.176

4 Competing interests177

The authors declare no competing interests.178

5 Web Resources179

Project name: MendelImpute.jl180

Project home page: https://github.com/OpenMendel/MendelImpute.jl181

Supported operating systems: Mac OS, Linux, Windows182

Programming language: Julia 1.6183

License: MIT184

All commands needed to reproduce the following results are available at the MendelImpute site in the185

manuscript sub-folder. SnpArrays.jl is available at https://github.com/OpenMendel/SnpArrays.186

jl. VCFTools.jl is available at https://github.com/OpenMendel/VCFTools.jl. The Haplotype Ref-187

erence Consortium data is available at https://www.ebi.ac.uk/ega/datasets/EGAD00001002729. Raw188

1000 genomes data is available at ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20130502/,189

and Beagle’s webpage http://bochet.gcc.biostat.washington.edu/beagle/1000_Genomes_phase3_190

v5a/ provides a quality controlled 1000 genomes data which we used in our experiments.191

8

https://github.com/OpenMendel/MendelImpute.jl
https://github.com/OpenMendel/SnpArrays.jl
https://github.com/OpenMendel/SnpArrays.jl
https://github.com/OpenMendel/SnpArrays.jl
https://github.com/OpenMendel/VCFTools.jl
https://www.ebi.ac.uk/ega/datasets/EGAD00001002729
http://bochet.gcc.biostat.washington.edu/beagle/1000_Genomes_phase3_v5a/
http://bochet.gcc.biostat.washington.edu/beagle/1000_Genomes_phase3_v5a/
http://bochet.gcc.biostat.washington.edu/beagle/1000_Genomes_phase3_v5a/

References192

[1] R. Finnegan and L. White. invenia/JLSO.jl: Storage container for serialized Julia objects. https://doi.193

org/10.5281/zenodo.3992374, 2020.194

[2] A. GreenWell and M. Abbott. GroupSlices.jl: A package for the groupslices and associated functions.195

https://github.com/mcabbott/GroupSlices.jl, 2019.196

[3] K. Lange. Lecture on Ultrafast Haplotyping. In New Statistical Methods for Family-Based197

Sequencing Studies. Banff International Research Station, http://www.birs.ca/events/2018/198

5-day-workshops/18w5154/videos/watch/201808091354-Lange.html, 2018.199

[4] E. Y. Liu, M. Li, W. Wang, and Y. Li. MaCH-Admix: genotype imputation for admixed populations.200

Genetic Epidemiology, 37(1):25–37, 2013.201

9

https://doi.org/10.5281/zenodo.3992374
https://doi.org/10.5281/zenodo.3992374
https://doi.org/10.5281/zenodo.3992374
https://github.com/mcabbott/GroupSlices.jl
http://www.birs.ca/events/2018/5-day-workshops/18w5154/videos/watch/201808091354-Lange.html
http://www.birs.ca/events/2018/5-day-workshops/18w5154/videos/watch/201808091354-Lange.html
http://www.birs.ca/events/2018/5-day-workshops/18w5154/videos/watch/201808091354-Lange.html

	Supplemental Material
	Imputation Quality Scores
	JLSO Compressed Reference Haplotype Panels
	Adaptive Window Widths via Recursive Bisection
	Elimination of Redundant Haplotypes by Hashing
	Save in binary compressed format

	Parallel Computing and Memory Requirements
	Bias Correction for Initializing Missing Data
	Avoidance of Global Searches for Optimal Haplotype Pairs
	Stepwise Search Heuristics

	Phasing by Dynamic Programming
	Msprime simulation script
	Summary of 1000 Genomes Reference Panel

	Author contributions
	Acknowledgements
	Competing interests
	Web Resources

