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A Supplementary Material for Lei et al. (2020)639

A.1 Supplementary Methods640

A.1.1 Optimization model641

We begin with a full description of the formal problem statement and642

its realization as an integer linear program. For clarity of exposition, we643

restate the objective function of the method:644

min
C,F,S,P

(||B −CPF ||1

+ αf · ||F − F ′||1

+ αp · J(S,C,C′)

+ αc · ||XTCP −H′||1)

Table S1 describes the main variables used in the objective function.645

Additional variables and constraints are explained in the subsequent646

sections in defining the full program.647

A.1.2 Estimating F648

||B−CPF ||1 constraints: We define theL1 distance of ||B−CPF ||1
as:

||B −CPF ||1 =

m∑
i=1

n∑
j=1

b∆,i,j (2)

with constraints:649

b∆,i,j ≥ bi,j −
k∑
r=1

ci,r · pr,r · fr,j ,∀i ∈ {1, ...,m},

j ∈ {1, ..., n}

(3)

b∆,i,j ≥ −bi,j +
k∑
r=1

ci,r · pr,r · fr,j , ∀i ∈ {1, ...,m},

j ∈ {1, ..., n}.

(4)

where m is the number of total genomic loci, n is the number of bulk650

tumor samples, and k is the number of cells.651

F constraints: Since F is a weighted matrix, each column of F should652

add up to 1 and all entries are non-negative.653

0 ≤ fr,j ≤ 1, ∀r ∈ {1, ..., k}, j ∈ {1, ..., n} (5)

n∑
r=1

fr,j = 1, ∀j ∈ {1, ..., n} (6)

||F − F ′||1 constraints: We apply L1 distance on ||F − F ′||1:

||F − F ′||1 =

k∑
r=1

n∑
j=1

f∆,r,j (7)

with constraints:

f∆,r,j ≥ fr,j − f ′r,j , ∀r ∈ {1, ..., k}, j ∈ {1, ..., n} (8)

f∆,r,j ≥ −fr,j + f ′r,j , ∀r ∈ {1, ..., k}, j ∈ {1, ..., n}. (9)

In summary, when we estimate F , we optimize:

min
F

(
||B −CPF ||1 + αf · ||F − F ′||1

)
with constraints (3)-(9).654

A.1.3 Estimating S655

J(S,C,C′) constraints: J(S,C,C′) provides an error term for the
cost of an phylogenetic relationship describing shared ancestry among
the inferred cell data C and the reference cell data C′. In computing
this term, we define a phylogenetic structure with a K × K directed
adjacency matrix S, where K = 2k + 1, the first k columns indicate
C, the next k columns indicate C′ and the last column indicates a root
with normalized copy numbers all-2 (diploid). We introduce a vertex set
T = {1, . . . , 2k + 1} that represents the set of all cells in S. Let r be
the unique, predetermined, root of T . For t, u, v ∈ T , we introduced the
binary variables gtv,u representing the amount of flow along edge (u, v)

with destination t ∈ T . Then the full constraints are:
flow conservation on the Steiner vertices:∑

v

gtuv =
∑
v

gtvu, ∀u ∈ T, u 6= t, u 6= r (10)

inflow/outflow constraints on terminals in T :∑
v

gtuv =
∑
v

gtvu, ∀u ∈ T, u 6= t, u 6= r (11)

∑
v

gtvt = 1, ∀t ∈ T, t 6= r (12)

gtvr = 0, ∀v (13)∑
v

gttv = 0,
∑
v

gtrv = 1, ∀t ∈ T (14)

positive flow on an edge iff the edge is selected:

0 ≤ gtuv ≤ suv , ∀t ∈ T (15)

no self loops:

suu = 0, ∀u (16)

binary variable for gtuv and su,v :

gtuv , suv ∈ {0, 1} (17)

Phylogenetic cost: We then define the measurement for evolutionary656

distance across each edge (u, v) in the tree as L1 distance of the copy657

number profiles of the edge endpoints(l∗u, l
∗
v) and introduce a minimum658

evolution model defined by S to estimate the phylogenetic cost:659

J(S,C,C′) =
K∑
u=1

K∑
v=1

suv · ‖c∗u − c∗v‖1. (18)

We define the phylogeny objective to be derived from normalized copy660

numbers, effectively ignoring ploidy changes in the evolution objective661

and measuring distance from localized focal copy number variations only.662

One might plausibly improve on this model by accounting for ploidy663

changes separately as evolutionary events (Chowdhury et al., 2014, 2015)664

or adopting a more nuanced general model of copy number change,665

such as the MEDICC model (Schwarz et al., 2014). The L1 distance of666

normalized copy numbers is used as a heuristic because of the difficulty667

of incorporating these other model types into the ILP framework.668

A.1.4 EstimatingC669

C constraints: We impose some basic constraints on C: (1) all copy
numbers are no larger than a certain maximum number cmax, which is
set at 10 in our tests; (2) all copy numbers must be integers.

ci,r ≤ cmax, ∀i ∈ {1, ...,m}, r ∈ {1, ..., k} (19)

ci,r ∈ N0, ∀i ∈ {1, ...,m}, r ∈ {1, ..., k} (20)
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||C−C′||1 constraints: The ||C−C′||1 term is not explicitly expressed670

in the objective function. Instead, it exists in the J(S,C,C′) term since671

we applyL1 distance between two nodes in S as the edge weight (Eq. 18).672

Then we redefine:673

w∆,u,v,i = ||c∗i,u − c∗i,v || (21)

with constraints:

w∆,u,v,i ≥ c∗i,u − c∗i,v , ∀i ∈ {1, ..., 2k + 1} (22)

w∆,u,v,i ≥ c∗i,v − c∗i,u, ∀i ∈ {1, ..., 2k + 1} (23)

wu,v =
∑
i

w∆,u,v,i. (24)

||XTCP −H′||1 constraints: miFISH probes each cover a genomic674

interval spanned by SCS data, so ||XTCP −H′||1 provides a way to675

favor consistency between miFISH and SCS data over these intervals in the676

optimization. We note that one might optionally weight this objective term677

to account for varying clonal frequencies of the miFISH cells, although678

we do not do so here. In this step, the known H′, which represents the679

unnormalized miFISH probe counts, provides additional constraints on680

the copy numbers in C. To get these constraints, we first define an array681

Index mapping miFISH probe regions to SCS copy number regions,682

where each element indicates whether a copy number region is considered683

to be covered by, or strongly correlated with, a miFISH probe. We then684

defineX as follows:685

Xij =

{
1, if i ∈ Index and i = Index[j]

0, otherwise

for ∀i ∈ {1, ...,m}, and ∀j ∈ {1, ..., Index.length}686

Then we impose L1 distance on ||XTCP −H′|| and redefine it as:

||XTCP −H′||1 =

s∑
p=1

k∑
r=1

z∆,p,r (25)

with constraints:687

z∆,p,r ≥
m∑
i=1

xp,i · ci,r · pr,r − h′p,r, ∀p ∈ {1, ..., s},

r ∈ {1, ..., k}

(26)

688

z∆,p,r ≥ −
m∑
i=1

xp,i · ci,r · pr,r + h′p,r, ∀p ∈ {1, ..., s},

r ∈ {1, ..., k}.

(27)

where s is the number of miFISH probes, k is the number of cells.689

A.1.5 Estimating P690

P constraints: P is the diagonal matrix whose diagonal elements are
the half ploidies (re-scaling factors) to transform the normalized copy
numbers to unnormalized copy numbers. We also set lower (pmin) and
upper (pmax) bounds for pij , and these are set at 0 and 8 respectively in
our tests below. The complete constraints are then:

pi,j ≤ pmax, ∀i, j ∈ {1, ..., k} (28)

pi,j ≥ pmin,∀i, j ∈ {1, ..., k} (29)

pi,j ∈ R+, ∀i, j ∈ {1, ..., k} (30)

pi,j = 0,∀i 6= j, i, j ∈ {1, ..., k} (31)

||XTCP −H′||1 constraints: Unlike in A.1.4, in this step,C is known
from the computation in previous step to update C, and we would like
to update P . Index is defined such that XT represents the normalized
miFISH probes, which we can compute after updatingC, thenXTC can
be redefined as Y . Then Y P is the unnormalized FISH probes. We
still impose L1 distance between Y P andH′ and redefine it as:

||Y P −H′||1 =
s∑
p=1

k∑
r=1

h∆,p,r (32)

with constraints:691

h∆,p,r ≥ yp,r · pr,r − h′p,r, ∀p ∈ {1, ..., s}, r ∈ {1, ..., k} (33)

692

h∆,p,r ≥ −yp,r · pr,r + h′p,r, ∀p ∈ {1, ..., s}, r ∈ {1, ..., k} (34)

where s is the number of miFISH probes, k is the number of cells.693

A.1.6 Coordinate descent method for deconvolution694

For clarity of exposition, we restate the objective function of the method:695

min
C,F,S,P

(||B −CPF ||1

+ αf · ||F − F ′||1

+ αp · J(S,C,C′)

+ αc · ||XTCP −H′||1)

Table S1 describes the main variables used in the objective function.696

Additional variables and constraints are explained in the main paper in697

Sec. 2.698

The original deconvolution problem as shown above is non-convex,699

and it is hard to derive a closed form for the solution, so we apply a700

coordinate descent method to solve F ,S,C,P iteratively by following701

the order of Sec. A.1.2 to Sec. A.1.5 with the corresponding constraints702

for each term (Algorithm 1).703

A.1.7 Extending the reference miFISH matrix704

The original Index contains the indices of the 8 original FISH probes in705

the SCS data. However, compared to the 9934 genomic positions in the706

SCS data, 8 probes only contribute a very tiny portion to the copy number707

inference. Instead, if we find that the genomic positions around the miFISH708

probes are highly correlated (Fig. S1), then we extend the Index by adding709

to it the consecutive genomic positions that are highly correlated with the710

miFISH probes (light blocks in the Fig. S1, threshold=0.95). We use two711

pointers to make sure the correlated genomic positions are consecutive to712

each other and to the miFISH probe (Algorithm 2), and those positions713

that may be also highly correlated but far away in the genomic positions714

or even on different chromosomes would not be considered as correlated.715

A.1.8 Semi-Synthetic Data Simulation716

This section describes our protocol for simulating data to test the717

algorithms. The guiding principle of the method is to generate a ground718

truth dataset in which the true clones and their mixture fractions are719

known and resemble the GBM data, then subsample artificial bulk, SCS,720

or FISH data from that single ground truth. Note that we do not know721

the ground truth clonal lineage tree for these semi-simulated data, since722

we are deriving them from actual SCS data for which the ground truth723

lineage is unknown. We set NUM_REGIONS=3 and NUM_PROBES=8724

and MAX_COPY=10 to match the GBM data. We define this ground truth725

in terms of six data structures:726
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Algorithm 1: Modified Coordinate Descent Algorithm for
Deconvolution

i = 1;
H′ = reference copy number at FISH probes;
F ′ = reference mixture fractions;
C′ = reference single cell;
C(i) = diploid initialization;
P (i) = initial ploidy;
distance = +∞;
dnorm0 = 0;
while distance > threshold do
F (i) ← argminF (||B −C(i)P (i)F || − αf · ||F − F ′||)
given constrains (3)-(9);
S(i) ← argminS(S · ||C(i) −C′||) given constrains
(10)-(17);
C(i) ← argminC(||B−CP (i)F (i)||−αp ·J(S(i),C,C′)

given constraints (19)-(27);
P (i) ←
argminP (||B−C(i)PF (i)|| −αc · ||XTC(i)P −H′||)
given constraints (28)-(34);

dnorm = ||B −C(i)F (i)||2Fr ;
distance = ||dnorm0-dnorm||;
dnorm0← dnorm;
i← i+ 1;
if i > Maxiter then

quit the loop
end

end

B ∈ R+(m×n)
bi,j is the mixed copy number of genomic

location i in tumor sample j

C ∈ N(m×k)
0 ci,r is the integer copy number of genomic

locaion i in inferred cell type r

C′ ∈ N(m×k)
0 c′i,r is the integer copy number of genomic

locaion i in reference cell type r
F ∈ R+(k×n)

fr,j is the mixture fraction of inferred cell type r
in tumor sample j

F ′ ∈ R+(k×n)
f ′r,j is the mixture fraction of reference cell type
r in tumor sample j

P ∈ R+(k×k)
pr,r is the half ploidy of reference cell type r

and pi,j = 0, ∀i 6= j

S ∈ {0, 1}(K×K) su,v = 1 if cell type u is ancestor of cell type v

Table S1. Variables in the objective function

1.C̃: a matrix of normalized copy number profiles of all selected cells,727

including major, minor and tiny clones. Each column of Ĉ corresponds728

to a ground truth single cell and each row to the mean copy number at729

a single genomic locus, where it is assumed the rows collectively span730

the full genome. We assume each cell (column) is normalized to mean731

diploid count.732

2.Ĉ: a matrix of normalized copy number profiles of major clones in each733

tumor region. According to previous description, Ĉ was generated by734

picking the first two components in C̃ and used to calculate copy number735

accuracy and RMSD for performance estimation.736

3.P̃ : a diagonal matrix of half ploidies, where each non-zero element737

p̃ii provides a scaling factor to convert the diploid row c̃i to absolute738

(unnormalized) copy numbers.739

Algorithm 2: Extend the Index of FISH probes

corrMat← correlation matrix of genomic position in SCS;
Extend Index← empty list ;
for p in Index do

tempArr← empty list;
pointer1, pointer2 = p, p;
while TRUE do

if pointer1 >= 0 and
corrMat[pointer1, p] >= threshold then

add pointer1 to tempArr;
pointer1 = pointer1 + 1;

else if pointer2 >= 0 and
corrMat[pointer2, p] >= threshold then

add pointer2 to tempArr;
pointer2 = pointer2 - 1;

else
quit the loop;

end
end
add every element in tempArr to Extend Index;

end
Index← Extend Index

Fig. S1. Correlation matrix for genomic positions. The light blocks indicates the
neighbouring genomic position are highly correlated in positive direction. For each
one of 8 original FISH probe indexes, We search the consecutive genomic positions
that are highly correlated with it and add it to Index, so that we extend the original
Index from length of 8 to the length around 100 (please also refer to Fig. S2, step
(9)).

4.P̂ : a diagonal matrix of half ploidies, where each non-zero element740

p̂ii provides a scaling factor to convert the diploid row ĉi to absolute741

(unnormalized) copy numbers.742

5.F̃ : a matrix of mixture fractions, where each row corresponds to743

a selected cell and column defines a probability density describing744

frequency of occurrence of each cell type in the bulk samples.745

6.F̂ : a matrix of mixture fractions, where each row corresponds to a major746

clone and column defines a probability density describing approximate747

frequency of occurrence of each major clone in the bulk samples. F̂ is748

derived from F̃ , but column is also normalized to 1.749

We first define this ground truth model, then generate simulated data750

of each needed type by sampling from the model. These processes are751

described step-by-step below.752
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copy number profiles of clones

fractions of clones

phylogenetic tree and ploidy of clones

Fig. S2. Workflow of the simulation and deconvolution. The figure shows the process from real SCS data to select SCS clones, sample ploidies, simulate mixture
fractions, simulate FISH and simulate bulk genomic data (step(1)-(9)). We then deconvolve the bulk data into copy number profiles of a set of inferred clones each with a
defined ploidy and set of mixture fractions across tumor regions, as well as a phylogenetic tree relating these clones. We then compare these outputs with the ground truth
data to evaluate our model. Further methodological details are provided in the text. Note that the images in this figure are purely illustrative and do not show true data from
any particular analysis.

Selecting clones from SCS data: We first select copy number vectors to753

instantiate the normalized copy numbers in C̃ and identify these as clones754

of the model. We use the true SCS data for this purpose. We uniformly at755

random select 25 single cells from each of the NUM_REGIONS regions756

to have 75 cells in total, of which the copy number and ploidy make757

nonzero contribution in the simulated bulk tumor sample later. The true758

copy number data of the selected cells define the columns of C̃. Of the 25759

single cells from each region, we denote the first 2 as major clones or high-760

frequency clones, and the remaining 23 cells as minor, or low-frequency,761

clones for that region. For each region, we model the assumption that,762

within the tumor, cells from the other occur but with very small frequency.763

Thus for each region, we designate the 50 cells from the other two regions764

as tiny clones, which will let these cells effectively serve as noise in the765

analysis (Fig. S2, step (1)). The two major clones from each regions to766

compose Ĉ, which has 6 clones in total (Fig. S2, step (2)).767

Sampling ploidies: Since the real single-cell sequencing data have been768

normalized, the ploidy profiles for all samples have been set to 2 (diploidy)769

by default, and we call them normalized cells. The normalized cells770

are a standard target to study tumor evolution, however, the ploidy771

information is also important during tumor evolution (Dewhurst et al.,772

2014; Bielski et al., 2018). Since we do not know the correspondence773

between ploidies and WGS copy number vectors in the ground-truth data,774

we sample a ploidy independently for each ground truth cell. We note775

that this practice may result in ploidy combinations that are biologically776

implausible given the phylogeny, as we only know the phylogeny for777

the fully-synthetic data simulation. We give each ground truth cell i a778

probability β1 of being diploid, corresponding to p̂ii = 1. We give it a779

probability β2 of tetraploidy, corresponding to p̂ii = 1. We then allow a780

probability β3(= 1− β1 − β2) of some other ploidy, selected uniformly781

from [1, 3, 5, 6, 7, 8]. Currently, β1 = 60%, β2 = 30%, β3 = 10%.782

Thus, at present:783

P(L = i) =


0.3, i = 4

0.6, i = 2

0.1/6, i ∈ {1, 3, 5, 6, 7, 8}

where L represents the ploidy number for and P (L) is the probability of784

each ploidy number, then we have an additional tag of ploidy number for785

each SCS sample (Fig. S2, step (3)).786

Simulating mixture fractions: We next assign mixture fractions F̃ to the787

clones. We follow our previous work (Lei et al., 2019) to use a Dirichlet788

distributionDir(γ), to assign multinomial frequencies to clones selected789

as in A.1.8. γ is a vector of concentration parameters that allows different790

cell components to have different contributions in the bulk tumor. The791

vector γ is generated to model that in the Dirichlet distribution, all regions792

have a equal prior probability of contributing to the bulk tumor. Following793

our previous work (Lei et al., 2019), for each region, we set γ to be 100794

for these major clones, 1 for the these minor clones and 0.01 for these795

tiny clones. Because there are three regions, we take the sum of the three796

vectors γ, one for each region, and use the sum as the parameters to the797

Dirichlet distribution. Then we retrieve the simulated mixture fractions of798

major clones to compose F̂ , and normalized each column to 1 (Fig. S2,799

step (4)), This is used as the mixture fractions for RMSD calculation later.800

Simulating bulk genomic data: Once we have defined a ground truth801

dataset, we simulate each source of input data for a given problem instance802

from this common ground truth. We first simulate bulk data from the803

reference model by assuming that each regions samples all clones from804

their ground truth proportions and with the ground truth copy number805

vectors and mixture fractions. That is, we simulate the input bulk matrix806

B as C̃P̃ F̃ .807

Simulating miFISH copy number profiles: We next simulate miFISH data808

using the genomic positions of the same NUM_PROBES loci as in the809
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real data. Because we require the ground truth mapping of simulated810

miFISH to whole-genome copy number vectors, we do not use true FISH811

probe counts or assigned ploidies for this simulation. We assume known812

absolute genomic positions of Sbegin and Send of each genomic interval813

in C̃ and absolute genomic loci Hbegin and Hend of all FISH probes814

according to the reference genome hg19. This provides us a way to retrieve815

corresponding copy number as the copy number of probes in FISH. We816

also save an array Index mapping overlaps of SCS intervals and FISH817

probes for later use.818

To simulate a FISH cell in a region, we use the two major clones for819

the region and restrict their copy numbers to the intervals overlapping the820

FISH probe. If the interval for a given FISH probe is included in a given821

SCS interval, we assign the FISH probe count to be the copy number of the822

corresponding SCS interval. If the FISH probe crosses two SCS intervals,823

we assign the FISH probe count to be a weighted average of the copy824

numbers of the two SCS intervals, weighted by the length of the FISH825

probe in each SCS interval (Fig. S2, step (6)). No FISH probe covers more826

than two SCS intervals in the real data, so we do not consider any other827

cases.828

We also optionally randomly perturb copy numbers to simulate errors829

in FISH probe counts before transferring them to be unnormalized. This830

can be represented in terms of noise parameter qf , where with probability831

qf a probe count will be increased by 1, with probability qf it will be832

decreased by 1 unless already zero, and with probability 1−2qf it will be833

unaltered. Both before and after adding noise, the miFISH copy numbers834

are capped at MAX_COPY.835

We repeat this process for 1000 FISH cells in each of NUM_REGIONS836

tumor regions to generate a simulated miFISH data set (Fig. S2, step (5)).837

Simulating miFISH frequencies: We assume that the miFISH data provide838

an approximate measure of the distribution of mixture fractions. From839

the 1000 miFISH cells simulated in A.1.8, we calculate the fraction of840

each miFISH copy number combination for each region by calculating the841

proportion of each combination out of the total number of miFISH cells842

(1000), and then extract the mixture fractions of the first two largest clones843

from each region. We combine these fractions and allow the sum of each844

column to be less than 1, since in real data, it is possible that there would845

be a small proportion of cells that are not represented by the major clones.846

Then the resulting mixture fraction matrix F ′ represents the fraction of847

each major clone across the miFISH cells for each region, which can be848

used as reference for the mixture fractions of the major clones in SCS data849

(Fig. S2, step (7)).850

Simulating SCS data: To simulate a set of SCS data, we select cells851

independently at random from C̃ with probabilities for each cell in each852

region as defined in F̃ . The resulting SCS matrix C′ would then consist853

of normalized single cells, where each column ofC′ initially corresponds854

to some column of Ĉ, allowing for repetition (Fig. S2, step (8)).855

We further allow the data to be perturbed by a noise model with856

parameter qs, where with probability qs each copy number will be857

increased by 1, with probability qs it will be decreased by 1 unless already858

zero, and with probability 1−2qs it will be unaltered. Also, we would not859

allow for copy number to exceed MAX_COPY after perturbing the noise.860

A.1.9 Fully-Synthetic Data Simulation861

Since it is impossible to establish the ground truth phylogeny with certainty862

for the real or semi-simulated data on which we focus in this manuscript,863

we also created a fully simulated SCS dataset for which we would have864

known ground truth trees in order to better assess effectiveness of the865

methods and tree inference specifically. The simulation approach is based866

on similar SCS simulations used for the same purpose in (Lei et al., 2019)867

but extended to include FISH data.868

Simulating binary tree based on real data for each region: As described869

in (Lei et al., 2019), we modeled the fully simulated data to approximate the870

true GBM data. We therefore began with the true number of tumor regions871

R (R = 3 in our case). For each region, we start from a root and create872

a complete binary tree by following level-order-traversal (LOT) such that873

the depthD of the tree (we define the depth of root is 0) is sufficient that the874

total number of nodes in the tree exceeds the number of cells sampled in the875

real SCS data in that region (D = 6 in our case). We modeled the estimated876

rate rai of copy number variation a per region (a ∈ {0, 1, ..., 10), and877

probability pmi that each genomic position has a non-diploid copy number878

(m ∈ {1, 2, ..., 9934}, i ∈ {1, 2, 3}) empirically from the real data. We879

started from the root, creating a copy number vectors for each node by880

extending the copy number profile of its parent node according to a Poisson881

distributed mutation model with the empirical rates rai and pmi to mutate882

the copy number in different genomic positions so that the overall copy883

number distribution will be similar to that of the real SCS samples (Lei884

et al., 2019). This yields a complete binary tree with CNA for each region885

as shown in Fig. S3 (a). We then sampled a subset of nodes by a walk from886

root to the leaves level-by-level (define the level of the root to be 0, which887

is the same as depth), for each node at current level, we picked its left,888

right or both children at the next deeper level with probability of 0.2, 0.2889

and 0.6, respectively (red circles in (a), Fig. S3; if a node was not selected,890

all the nodes derived from such node would not be selected either). We891

repeated this process until we had as many selected nodes (cell samples)892

per region as we had in the real data, stopping and resetting to a tree893

with only the root node if we did not generate sufficient nodes before we894

exceed a level of 6. This process followed the parent-child pair convention895

to successively deeper nodes in the tree, establishing an adjacency matrix896

T (i)(i = 1, 2, 3), where T (i)
u,v = 1 means node u is ancestor of node v,897

describing the topology of each tree (Table S1).898

Simulating ploidy in the tree: The previous step yields an independent899

sub-tree for each region (Fig. S3 (b)) meant to mimic the characteristics900

of the real data. We then modeled the ploidy of the nodes in the tree as901

an independent process from focal CNAs. While most of this simulation902

is similar to that described in the Sampling ploidies step in Sec. A.1.8 for903

semi-simulated data, we modified the protocol to accommodate the fact904

that each child node here inherits the ploidy from the parent node: i) we905

made the ploidy of the child node to be equal to the ploidy of its parent if the906

child ploidy is less than the parent ploidy; ii) we only allowed the ploidy to907

be 2 or 4 with probability of 0.9 and 0.1, respectively, which yields a more908

biologically realistic ploidy distribution as findings in (Boisselier et al.,909

2018).910

Constructing the ground truth phylogenetic tree: We select six true and911

six inferred cells (nodes) from the data (two true and two inferred cells912

from each region) as proved effective with the real data. Unlike with the913

uniform selection for each of the sample in the semi-simulated data where914

we do not know the phylogenetic relations (Sec. A.1.8) here, we followed915

a set of constraints implied by parent-child pairs to select nodes that would916

allow us to test tree inference accuracy: i) among the selected nodes, we917

require that there is only one root and rest of the nodes descended from918

such a root, directly or indirectly, will then yield five types of quartet if919

we select four nodes in each region (Fig. S3 (c)); ii) we allow for the fact920

that some nodes of the true tree are not observed. We accomplish these921

goals by selecting a root node for each region and performing a random922

walk, assigning parent-child relations by collapsing the tree around the923

unobserved nodes and finding the most recent parent that was selected924

(lowest red circle in blue region in (b) of Fig. S3). We then manually add925

a diploid node as the common root of the three regions to build a ground926

truth phylogenetic tree encompassing the whole tumor (Fig. S3 (e)). For927

the four selected nodes in each region, we chose with equal probability928
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(a) (b) (c) (d)

(e) (f)

Fig. S3. Workflow of the fully-simulated data analysis. The figure shows some important steps to fully simulate SCS and FISH data and evaluate tree inferences from
these data. (a) Complete binary tree for each tumor region. (b) Random walk in (a) to construct the sub-tree for each region. (c) Five types of quartet. (d) A tree example
from the inference result. (e) A tree example derived from the ground truth tree by randomly picking parent-child pairs in (b). (f) Comparison between trees from (e) and (d)
of matrix representation using Hamming distance (upper) and the Newick tree format representation using Robinson–Foulds distance (bottom). Note that (1) the images
in this figure are purely illustrative and do not show true data from any particular analysis, (2) red circles indicates the nodes were selected for next step, and (3) different
colors of the boxes in (b)(c)(d) indicate different tumor regions.

two of them as true cells and the other two as inferred cells and constructed929

the matrix representation Ŝ based on previous selection and the adjacency930

matrix T (i)(i = 1, 2, 3) from each region.931

Robinson–Foulds distance for tree comparison: The Robinson–Foulds932

(RF) metric ((Robinson and Foulds, 1981)) is widely used to measure933

distances between phylogenetic trees by calculating the number of934

partitions in one tree that are not found in the other. We used the Python935

ETE3 package ((Huerta-Cepas et al., 2016)) to calculate the RF distance936

between the true and inferred trees (Fig. S3 (f) bottom) based on common937

leaf nodes between the trees. Smaller RF distance means higher similarity938

between two trees.939

Hamming distance for tree comparison: While RF distance provides a940

good standard metric to compare trees, it is not an ideal measure for941

tumor phylogeny trees in which we have labeled internal nodes that may942

differ between trees. There are now specialized methods for handling943

some of the particular challenges of comparing tumor phylogeny inference944

methods (DiNardo et al., 2020), but none to our knowledge well suited945

to whole-genome copy number data like ours that cannot be easily946

partitioned into a discrete set of mutations. We use a comparison of the947

full adjacency matrices to provide a more discriminatory measurement of948

tree distance, specifically using the Hamming distance between the two949

ordered adjacency matrices. The Hamming distance between two 1-D950

vectors u, v is defined as:951

d(u, v) =
nij

N
(35)

where nij is the number of occurrences of u[k] = i, v[k] = j, i 6=952

j, i, j ∈ {0, 1}, k ∈ {1, ..., N}. Based on our definition of the adjacent953

matrix that only the row elements can be the parents of the column elements954

(Table S1), we define the Hamming distance between two matrices Ŝ,S955

as:956

Dist(Ŝ,S) =

K∑
i=1

(
d(Ŝ[i, :],S[i, :])

)
(36)

whereK is the number of total nodes in one tree, and Ŝ is the true adjacent957

matrix in fully-simulated data whileS is the inferred adjacent matrix from958

the method (Fig. S3 (d), (e) and (f) top). Then smallerDist(Ŝ,S) means959

higher similarity between Ŝ and S.960

We used the same process to construct bulk tumors from fully-961

simulated data and to infer trees from the generated data as we did for962

semi-simulated data in Sec.A.1.1 - A.1.8.963

A.2 Supplementary Results964

A.2.1 Phylogenetic tree comparison965

With the real single-cell sequencing data, the true phylogenetic relationship966

between cells is usually unknown, limiting our ability to compare the967

phylogenetic outputs of our method to any certain ground truth for the semi-968

simulated data. For the complex combinations of copy number events at969

different scales that we seek to understand, there is sufficient uncertainty970

about the biology that even establishing realistic fully simulated data is971

challenging. We therefore seek to validate the effectiveness of our methods972

at phylogeny building more indirectly, based on the plausibility of the trees973

it constructs. For this purpose, we assume that the principle of minimum974

evolution (or maximum parsimony) should approximately hold and that the975

true phylogenetic tree for a given data set is likely to be one that comes close976

to minimizing the evolutionary changes among the taxa. Here, we define977

the evolutionary changes across the edges of any pair of nodes as the L1978

distance of the unnormalized copy number profiles of the edge endpoints as979

we described in Sec. A.1.3, providing an indirect but informative criterion980

would be comparing the total distance along all the edges in different trees.981

Fig. S4 shows results of a series of experiments to test the effectiveness982

of our model at finding trees with low evolutionary cost. For a given tree,983

we sum up all the edge distances in the tree tree and normalized it by984

dividing the total number of genomic position (9934), averaged for 10985

instances, and compared these costs in different variants of our model.986

Since only with the phylogenetic weight turned on (αp = 0.2) could987

we get the phylogenetic output, we only compared the results from four988

models (as the legend shows in the Fig. S4). We also calculated the results989

for all the cases as we showed in Sec. 3.1.1 and Sec. 3.1.2. Comparing990

different subplots from (a) to (d) in Fig. S4, we can find that when the991

ploidy is variable and/or the noise was introduced, the total distance of992

the trees is somewhat increased , which is consistent with our findings on993

accuracy of the copy number, frequency and ploidy inferences in Sec. 3.1.1994

and Sec. 3.1.2. Comparing different bars in each subplot, we find that995

when we add information from miFISH data, the total distance decreases996

significantly compared to the model that only utilized single-cell sequence997

data (blue bars, αp = 0.0, αc = 0.2, α3 = 0.0, Fig. S4), and the998

complete model has the minimum average distance among all the model999

for all the cases (coral bars, αp = 0.2, αc = 0.2, α3 = 0.2, Fig. S4).1000

This again confirms, though indirectly, that miFISH information helps1001

in phylogenetic inference and improves performance relative to a model1002

omitting miFISH data, and further that the complete model performed the1003

best in inferring parsimonious trees.1004
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Fig. S4. Average total distance in the phylogenetic trees (n=10). Each bar with
different color represents a deconvolution model distinguished by the data of which
it took advantage. In the legend at the bottom, the numbers represent the values of
the mixture fraction weight, phylogenetic weight, and copy number weight, which
are coefficients for ||F −F ′||, J(S,C,C′) and ||XT CP −H′||, respectively.
0.0 means the corresponding term is not included in the model, and we only show
the results that have the phylogenetic output (αp = 0.2). The number in the first
row under the bar indicates different model, the number in the second row under
the bar indicates the mean of each model and the whiskers show the standard
deviation. Statistically significant improvements from incorporating FISH data were
assessed by paired sample t -test, comparing orange(6), cyan(7), coral(8) bars to
the single-cell only model (blue bar(5)) (*: 0.05 <p-value≤ 0.1, **: 0.01 <p-
value≤ 0.05, ***: p-value≤ 0.01). (a) Without ploidy change and without noise.
(b) Without ploidy change and with 10% noise. (c) With ploidy change and without
noise. (d) With ploidy change and with 10% noise.

A.2.2 Deconvolution without SCS Data1005

We initially tested our model in the scenario where we ido not have real1006

SCS data but only have miFISH available. To incorporate the tree part of1007

the objective function, we made an artificial reference cell matrix with1008

all diploid copy number for every entry. We did the same process as1009

described in Sec. 3. Fig.S5 shows the average result. From the top to1010

bottom are the results without noise and without ploidy change, with 10%1011

noise but without ploidy change, without noise but with ploidy change,1012

with 10% noise and with ploidy change, respectively. We found that,1013

compared to the results in Fig. 1 (a) and Fig. 2 (a), the performance was1014

worse for most of the cases. This observation suggests that the real SCS1015

data plays an important role in the reference, which is consistent with the1016

conclusion of our previous work (Lei et al., 2019). However, this loss is1017

not obvious if we do not perturb the ploidy, as assuming diploid reference1018

cells effectively provides an informative prior probability for the inference.1019

When we implemented the change of ploidy, the difference of performance1020

with and without real SCS became evident. Nonetheless, the addition of1021

miFISH data substantially improves accuracy relative to inference from1022

bulk sequence data alone.1023

A.2.3 Deconvolution with different number of iterations1024

As mentioned in Sec. 3.1.1, our current model reduced the maximum1025

number of iterations for the Gurobi solver from 100 to 10 relative to1026

our earlier work, as we found that increasing the number of iterations1027

could greatly increase run time while generally not substantially improving1028

our quantitative measures of performance. Here, we evaluated the effects1029

of this change by showing performances with two different maximum1030

numbers of iterations (Fig. S6) in the case of 10% noise and with variable1031

ploidy 3.1.2. In all cases, optimization may terminate before the maximum1032

number of iterations based on the convergence test of Algorithm 1. The1033

cyan box shows the results of maximum iteration = 10 and violet box1034

shows the results of maximum iteration = 100. We can see that though1035

there is some variation between each pair of results, the average values1036

showed no consistent pattern of improvement with increasing numbers of1037

iterations and no significant difference between the two. While additional1038

rounds of optimization did sometimes lead to better solutions, the results1039

suggest that improvement was generally small and that further refinement1040

of the objective function does not reliably translate to better solutions as1041

assessed by our performance measures.1042

A.2.4 Effects of different initialization schemes1043

We tested the effect of different initialization schemes on the effectiveness1044

of the present method as well as in comparison to our previous work ((Lei1045

et al., 2019)). We created 10 instances of semi-simulated data and set1046

up 5 different experiments as shown in Table S2. In Case 1 and Case 3,1047

we initialized C with 0 and random real single-cell data, respectively and1048

applied the phylogeny-based method as described in (Lei et al., 2019). In1049

Case 2 and 4, we we initialized C with 0 and random real single-cell data,1050

respectively and applied the method in this paper. Since the method in (Lei1051

et al., 2019) did not infer the ploidy, we did another experiment (Case 5)1052

in which we modified the code run the ploidy inference, but then ignore1053

the result and reset the ploidy to diploid for every iteration, (as mentioned1054

in Sec. A.1.5) thereby eliminating the effect of ploidy inference while1055

verifying that the ploidy inference had no unexpected side-effects. Also,1056

for the same reason, when we simulated the data, we assumed the ploidy1057

for each cell clone to be 2 rather to be random and we did not introduce1058

noise into the simulated data. In other words, the process here is the same1059

as we describe in Sec. 3.1.1 but we only compared the performance on the1060

copy number inference and frequency inference.1061

Case 1 phylogeny-based method in (Lei et al., 2019), using 0 to
initialize C

Case 2 method in this paper, using 0 to initialize C
Case 3 phylogeny-based method in (Lei et al., 2019), using real

single-cell data to initialize C
Case 4 method in this paper, real single-cell data to initialize C
Case 5 method in this paper, real single-cell data as to initialize

C, forcing ploidy to be 2

Table S2. Different experimental cases for initialization comparison

For all of the cases, we did not introduce any penalty (dubbed the NULL1062

model: αf = 0.0, αp = 0.0, αc = 0.0) in order to just test the effect1063

of initialization. As shown in Fig. S7, we found that using real single-cell1064

data as initialization, the overall performance is better (comparing cyan1065

bars with blue bars in Fig. S7), which is consistent with our findings in (Lei1066

et al., 2019), while the results from the method in (Lei et al., 2019) and this1067

paper did not show significant difference (comparing Case 2 with Case 1,1068

comparing Case 4, 5 with Case 3, respectively in Fig. S7 by paired sample1069

t-test).1070

Although using real single-cell data would yield better performance1071

in the NULL model, we found that such initialization is vulnerable to1072

noise (results not shown). One possible reason would be that the miFISH1073

information is still much less informative than SCS information even after1074

extending it to correlated adjacent regions (Sec. A.1.7). Therefore, when1075
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Fig. S5. Average accuracy and RMSD of the deconvolution without real SCS data. From top to bottom are the results without noise and without ploidy change, with
10% noise but without ploidy change, without noise but with ploidy change, and with 10% and with ploidy change, respectively. In each subplot, the barplot from left to right
shows the average error (1-accuracy) of copy number, average RMSD of copy number, average RMSD of mixture fraction, average RMSD of ploidy and average RMSD
of unnormalized copy number. All the labels are the same and the numbers represent the values of the mixture fraction weight, phylogenetic weight, and copy number
weight, which are coefficients for ||F − F ′||, J(S,C,C′) and ||XT CP −H′||, respectively. 0.0 means the corresponding term is not included in the model. The
number in the first row under the bar indicates different model, the number in the second row under the bar indicates the mean of each model and the whiskers show the
standard deviation. Statistically significant improvements from incorporating FISH data were assessed by paired sample t -test, comparing green(2), pink(3) and gray(4)
bars to the NULL model (red bar(1)) and orange(6), cyan(7), coral(8) bars to the single-cell only model (blue bar(5)) (n.s.: not significant, *: 0.05 <p-value≤ 0.1, **:
0.01 <p-value≤ 0.05, ***: p-value≤ 0.01)

we introduce small amounts of noise to the real single-cell data before1076

using it for initialization, we actually perturb the inference substantially.1077

We choose not to focus on this single-cell initialization approach as our1078

default in this work because the effect confounds the effect of miFISH1079

information, which is the major focus of the present work. In addition,1080

since single-cell data are usually noisy and sometimes limited in quantity1081

or unavailable altogether, we prefer not to make additional assumptions1082

on the initialization. We therefore in the present work focus primarily on1083

results from initializing with zeroes in the main paper or with all-diploid1084

initial guesses, as mentioned in Sec. A.2.2.1085

A.2.5 Sensitivity to parameter changes1086

In the previous sections, we turned on or off the three weights (αf , αp, αc)1087

by setting them either to 0.2 or 0.0. We chose 0.2 heuristically as a good1088

default value for similar regularizations in our previous work (Lei et al.,1089

2019). In this section, we explored the question of sensitivity of the1090

parameters to determine whether the results would be highly dependent on1091

parameter choices. To evaluate this, we performed a parameter scan around1092

the value of 0.2 to test different combinations of the three parameters,1093

focusing specifically on the case of 10% noise and with variable ploidy.1094

In the set of parameter combinations, we found that the model was1095

minimally sensitive to changes of parameters in the measurement of1096

normalized copy number but somewhat more sensitive to the change of1097

parameters in the measurement of frequency, ploidy and unnormalized1098

copy number (Fig. S8). For example, when we fixed the copy number1099

weight, αc, to be 0.1, the average performances in each heatmap did not1100

change much in copy number inference (1st and 2nd rows in Fig. S8) but1101

showed more oscillation in the rest of measurements when we increased1102

the mixture fraction weight, αf , and/or the phylogenetic weight, αp,1103

(3rd, 4th and 5th rows in Fig. S8). When we fixed αf and αp, we1104

observed that ploidy inference did not reveal a simple pattern of better or1105

worse average performance across different combinations of parameters,1106

which indicates that the parameters may influence performance in a more1107

complicated way. Further, there was no single ideal parameter set for all1108

measures, but rather improvement by different measures with different1109

parameter variations. Nevertheless, the default setting of parameters1110

(αf = 0.2, αp = 0.2, αc = 0.2) seems to yield a good consensus1111

that provides a reasonable set of trade-offs in the performance across all1112

the measurements (3rd column in the middle of Fig. S8).1113

A.2.6 Robustness to real data1114

To test the robustness of our method to random variation in data, we1115

conducted an analysis of sub-samples of the real GBM data. In each1116

experiment, we sample 80% of the real SCS and FISH samples without1117

replacement, then perform k-median clustering as described in Sec. 3.2.1118

We still utilized the predefineded parameters (αf = 0.2, αp = 0.2, αc =1119
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Fig. S6. Performance comparison for varying numbers of maximum iterations of optimization. This figure shows differences in performance for 10 versus 100
maximum iterations of optimization in the case of 10% noise and variable ploidy. Cyan boxes represent results of maximum iterations = 10 and violet boxes represent
results of maximum iterations = 100. From the left to the right, we present the performance comparison in overall copy number accuracy, overall RMSD of copy number,
overall RMSD of frequency, overall RMSD of ploidy and overall RMSD of unnormalized copy number, respectively.
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Fig. S7. Comparison between the method in (Lei et al., 2019) and this paper. (a) Overall accuracy in copy number. (b) Overall RMSD in copy number. (c) Overall RMSD
in frequency. Blue bars indicate the results using 0 as initialization. Cyan bars indicate the results using random real single-cell data as initialization. Bars of Case 1 and 3
stand for the results from phylogeny-based method in (Lei et al., 2019) while bars of Case 2, 4, and 5 stand for the results from the method in this paper. All the tests were
run on the same data.

0.2) and run 40 replicates on GBM07 data set. When we calculated1120

the mean and standard deviation for all the replicates, we chose the1121

inferred copy number matrixX1 from the first replicate as a standard and1122

reorder the column (the order of the cell components) of other replicates1123

to get the ordered index Oi such that L1 distance between X1 and1124

Xi, (i ∈ {2, ..., 40}) is minimal. We then use Oi to reorder the rows of1125

the mixture fraction and ploidy matrices (the order of the cell components)1126

and get the mean and standard deviation for each cell component across1127

all experiments.1128

We provide here an expanded version of Fig. 4, Fig. S9. The copy1129

number results on subsampled data shows that for the majority genomic1130

loci, the standard deviation is less than 0.5, which indicates the inference1131

consistency of our method (Fig. S10 (a)). We also found that at some1132

specific genomic loci, the variation is much larger. These loci are usually1133

located on chromosomes 7, 9, 10 (e.g. Fig. S10 (b)). We believe this is due1134

to high levels of variation in these chromosomes leading to heterogeneity1135

within defined cell clones, which is consistent with our previous analysis1136

in (Lei et al., 2019) and Sec. 3.2. We note that the pattern of mixture1137

fractions of cell components appears different from the representative in1138

Fig. S9 (e) in part because the order cell components has been changed. We1139

also note the variance can be relatively large, however, this is not beyond1140

our expectation since sub-sampling the real data produces clusters with1141

somewhat different inferred mixture fractions. This also reinforces the1142

importance of accurate prior mixture fraction information from miFISH1143

data, as we mentioned in Sec. A.1.2 and Sec. 3. Nevertheless, we can still1144

clearly see that different cell components take on distinct proportions in1145

the tumor, which also explains the intra-tumor heterogeneity (Fig. S101146

(c)). The ploidy inferences are more stable, as we can see there are1147
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Fig. S8. Model performance for different combinations of parameters. This figure shows the results of sensitivity tests on semi-simulated data, where we vary the value
of αf , αp and αc to be 0.1, 0.18, 0.2, 0.22, 0.3, respectively, to form 5 × 5 × 5 = 125 combinations of all the there parameters. From the top to the bottom, we present
the performance in overall copy number accuracy, overall RMSD of copy number, overall RMSD of frequency, overall RMSD of ploidy and overall RMSD of unnormalized
copy number, respectively. In each case, we modeled 10% noise and variable ploidy. The value in each block represents the average performance of n = 10 experiments.

diploid, (pseudo) triploid and tetraploid cell components in the inferences1148

(Fig. S10 (d)). These results demonstrate the robustness of our method on1149

real data and further reinforce the importance of integrating information1150

from different data types.1151

A.2.7 Deconvolution using fully-simulated data1152

In this section, we analyzed the results from application of our method1153

to fully-simulated data, as described in Sec. A.1.9. We first evaluated the1154

average error (1-accuracy) of copy number, average RMSD of normalized1155

copy number, average RMSD of mixture fraction, average RMSD of1156

ploidy, and average RMSD of unnormalized copy number. These tests were1157
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Fig. S9. Expanded version of Fig. 4. (a), (c): The corresponding mixture fraction of each inferred cell component. (b), (d): The phylogenetic relationship among the inferred
cell components (pink) and observed cell components (light blue). (e), (f): The copy number of each chromosome in inferred cell component C0 (top) to C5 (bottom). The
X-axis corresponds to the genomic loci and the intervals between vertical dashed lines indicate chromosomes 1 to 22, X and Y.
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Fig. S10. Robustness to sub-sampling GBM data. (a) Average copy numbers with standard deviation as shade. From top to bottom are cell components 1 to 6. The
X-axis corresponds to the genomic loci and the intervals between vertical dashed lines indicate chromosomes 1 to 22, X and Y. (b) Copy numbers of cell component 6 with
a zoom-in window showing the high variations on chromosome 7. (c) Average clonal mixture fraction results for each cell component in different regions in GBM, different
bars indicate different cell components (d) Ploidy results for each cell component.

conducted for four data models (with and without noise, with and without1158

ploidy changes) as in Sec. 3.1.1 and 3.1.2. The results are qualitatively1159

consistent with those of we found with semi-simulated data: miFISH data1160

reliably improves the deconvoluntion accuracy, and the complete model1161

(αf = 0.2, αp = 0.2, αc = 0.2)performed the best in all cases (Fig. S111162

(a)). One notable observation is that the model only using single-cell data1163

(αf = 0.0, αp = 0.2, αc = 0.0) achieved higher average performance1164

for fully simulated than for semi-simulated data (Fig. S11 blue bars). One1165

possible reason is that the fully simulated data imposes some constraints on1166

clonal phylogenies to maintain parent-child pair relations when we match1167

true and observed cells, as described in Sec. A.1.9, while we are necessarily1168

unsure about such relationships in semi-simulated data. When the selected1169

samples have simple phylogenetic relationships, our phylogenetic penalty1170

J(S,C,C′) would be expected to reconstruct them more easily than if1171

the true trees were more complicated than our simulated model assumes,1172

for example if a substantially larger number of unobserved ancestral clones1173

were needed to explain the relationships between the observed cells. This1174

again confirms that the application of phylogenetic penaltyJ(S,C,C′) is1175

reasonable in inferring tumor progress since tumor progress is generally a1176

clonal evolutionary model that has parent-child pair relations ((Nowell,1177

1976)), while suggesting that more sophisticated phylogenetic models1178

might lead to better performance with more complicated phylogenies that1179

might be found in real data.1180

We also conducted an the indirect assessment of the phylogenetic1181

output by calculating the total evolutionary distance (L1 distance) along1182

all the edges of the tree. We again found that the results are qualitatively1183

comparable to those for semi-simulated data (Fig. S4) but that the average1184

performance is also quantitatively somewhat better for full simulated than1185

semi-simulated data in many cases (Fig. S11 (b)). In the direct assessment1186

of the phylogenetic output by calculating the Hamming distance between1187

matrix representations of true and inferred trees (Fig.S11 (c)) and the1188

Robinson–Foulds (RF) distance between true and inferred trees (Fig.S111189

(d)), we see that integrating more information from miFISH in addition to1190

single-cell data leads to inference of more similar trees (smaller distance)1191

relative to the known ground truth by both measures. Further, this improved1192

inference is also robust to ploidy changes and noise perturbation.1193

We also plot one example of a simulated tree and its inference1194

by variants of our method, shown in Fig. S12. We chose an example1195

with ploidy change and without noise to provide a clearest illustration.1196

Compared with the ground truth (Fig. S12 (a)), we find that the tree1197

from the model only with single-cell sequence data (αf = 0.0, αp =1198

0.2, αc = 0.0) tends to partition inferred and observed cell components1199

separately from one another and to infer some large ploidies not found1200

in the true tree, similar to the results from semi-simulated data. When1201

we integrate different components of the information from miFISH data,1202

we find the branches of the tree and the ploidy of the nodes become more1203

accurate, which is also consistent with the results from semi-simulated data1204
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(Fig. 3). With the complete model (αf = 0.2, αp = 0.2, αc = 0.2),1205

we find more parent-child pair relations were restored even though the1206

reconstruction is still not perfect (Fig. S12 (e)). Our deconvolution results1207

above suggests the fully-simulated data is reconstructed somewhat more1208

accurately than semi-simulated data and thus may not truly capture the1209

complexity of the real data. Nonetheless, these tests together with those1210

on semi-simulated and real data, provide evidence that bringing miFISH1211

data into the analysis can improve inference of phylogenetic relationships1212

over single cell sequence data alone.1213

A.2.8 Comparison to MEDALT1214

We compared the phylogenetic inference part of our method to1215

MEDALT (Wang et al., 2021), which is a new method to infer phylogenetic1216

trees from single-cell copy number data. MEDALT does not use bulk1217

data or fluorescence in situ hybridization data, but provides a basis for1218

comparison that can be run on a subset of the data used by our method.1219

Therefore, we gave as input only the single-cell copy number part of our1220

simulated data. For all MEDALT parameters that have default values, we1221

used the default values. MEDALT does not have a default for the reference1222

genome, so we selected hg19, which matches our data. We analyzed 101223

replicates for each of two of our simulation model: i) no noise and no1224

ploidy change ii) added noise but no ploidy change.1225

In Fig. S13, we show by example that we could get MEDALT to run and1226

produce output (panel a) and we could convert the MEDALT output format1227

to our alternative tree representation, showing node numbers and ploidies1228

in each node (panel b). For purposes of comparing the example output, we1229

show the true tree underlying the simulation of this replicate (panel c) and1230

the tree that our method infers (panel d). In this example, the tree inferred by1231

MEDALT (panel b) is much shallower and broader than the true tree (panel1232

c), whereas our tree (panel d) is one level deeper than the true tree but closer1233

to it in structure (panels c,d). We found that MEDALT tends to produce1234

shallow trees on our input data. We quantified the comparative accuracy1235

of the two methods in three ways: overall distance between the inferred1236

trees and the true trees (panel e left), Hamming distance between the1237

true trees and the MEDALT trees (panel e middle), and Robinson-Foulds1238

distance (panel e right). Our method shows substantially better results than1239

MEDALT by all three measures. We caution that this result should not be1240

interpreted as a criticism of MEDALT, as our method is intended to use1241

additional data unavailable to MEDALT. Rather, it shows the value of these1242

additional data sources to accurate phylogenetic inference in situations1243

where single-cell data is limited.1244
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Fig. S11. Performance of deconvolution with fully-simulated data. (a) Overall performance across n = 10 instances by using the metrics in Sec. 3.1.1 and 3.1.2. (b)
Overall distance along all edges in the tree by using the metric in Sec. A.2.1. (c) Hamming distance between the true phylogenetic tree and the inferred phylogenetic trees.
(d) Robinson–Foulds (RF) distance between the true phylogenetic tree and the inferred phylogenetic trees. In each subplot of (a),(b),(c) and (d), [i]-[iv] indicate the results
without noise and without ploidy change, with 10% noise but without ploidy change, without noise but with ploidy change, and with 10% and with ploidy change, respectively.
All the labels are the same and the numbers represent the values of the mixture fraction weight, phylogenetic weight, and copy number weight, which are coefficients for
||F − F ′||, J(S,C,C′) and ||XT CP −H′||, respectively. 0.0 means the corresponding term is not included in the model. The number in the first row under the
bar indicates different model, the number in the second row under the bar indicates the mean of each model and the whiskers show the standard deviation. Statistically
significant improvements from incorporating FISH data were assessed by paired sample t -test, comparing green(2), pink(3) and gray(4) bars to the NULL model (red bar(1))
and orange(6), cyan(7), coral(8) bars to the single-cell only model (blue bar(5)) (n.s.: not significant, *: 0.05 <p-value≤ 0.1, **: 0.01 <p-value≤ 0.05, ***: p-value≤ 0.01).
Please note that in the performance involved with tree ((b),(c) and (d)), we could only get phylogenetic output when the term of J(S,C,C′) was enabled, so we only have
four models (5, 6, 7, 8) for the comparison in each case.



Sequencing and FISH Copy Number Deconvolution 15

12;2

4;2

11;2

12;2 12;2

12;2 12;2

5;4 10;20;4

1;4

7;4

6;4

9;2

8;22;2 3;2

7;4 7;4

7;47;4

6;4 6;4

6;4 6;4

9;2 9;2

9;29;2

8;2

8;2

8;28;2

11;2 11;2

11;211;2

10;2

10;2

10;2

10;2

root

inferred/true cell component

observed cell component

4;6.02;6.0

5;6.00;6.0

1;6.0

3;6.0

3;2.8 4;2.1

5;1.42;2.51;2.0

0;1.5

0;3.2

1;2.8 3;1.8

2;2.2

5;2.5

4;2.1

1;4.1

0;3.6

5;3.54;2.42;2.0 3;2.2

(a) (b) (c)

(d) (e)

Fig. S12. Phylogenetic output example from fully-simulated data with ploidy change and without noise. (a) Ground truth example in the fully-simulated data. (b) Tree
example from single-cell sequence-only model (αf = 0.0, αp = 0.2, αc = 0.0). (c) Tree example from model with coefficients of J(S,C,C′) and ||XT CP −H′||
(αf = 0.0, αp = 0.2, αc = 0.2). (d) Tree example from model with coefficients of ||F −F ′|| and J(S,C,C′) (αf = 0.2, αp = 0.2, αc = 0.0). (e) Tree example from
the complete model (αf = 0.2, αp = 0.2, αc = 0.2). The yellow node represents a diploid root cell, the pink nodes represent inferred cell components in from the method
or true cell components of the ground truth, and the light blue nodes are observed cell components. The number pair inside each node provides NodeIndex; Ploidy .
Note that all the nodes in the ground truth tree (a) have integer ploidy since our simulations only used integer ploidy values (Sec. A.1.9), even though the inference method
allows for fractional ploidy (Sec. A.1.5).
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Fig. S13. Performance comparison with MEDALT. (a)-(d) Visualization of a tree example. (a) original output from MEDALT. (b) transform MEDALT tree output to the
tree representation in this paper. (c) corresponding true tree. (d) corresponding tree output from inference in this paper. The number pair inside each node represents
NodeIndex; Ploidy. (e) presents the tree distance comparisons between MEDALT and our method. From left to right, the measures are Overall distance along all edges in
the tree by calculating L1 distance between node pairs, Hamming distance between the true phylogenetic tree and the inferred phylogenetic trees and Robinson–Foulds
(RF) distance between the true phylogenetic tree and the inferred phylogenetic trees. In each subplot, bars 1 and 2 present results without noise and without ploidy change
while bars 3 and 4 present results without noise but with ploidy change. The bold floating point number under each bar is represent the average among 10 replicates; the
whiskers in each bar represent the standard deviation.


