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S1 Engineering neural networks for Coral Edge TPU

In this section, we discuss practical steps needed to adapt the Bonito GPU-tuned base caller architecture to
run on and fully utilize Edge TPU accelerator. These observations can be useful also to others who want to
optimize different neural network architectures for this platform.

Our first step was to create a scaled-down version of Bonito, capable of running on the Edge TPU. Bonito
uses large convolutions, with up to 464 output channels. Our experiments suggest that the performance of
the Edge TPU accelerator severely deteriorates beyond approximately 128 channels. To stay safely within
these bounds, we decrease the maximum number of channels to 128. We also scale down the depth of the
depthwise operation, considering the range of 9-33, as the performance cost of larger depthwise kernels is
noticeable (see the main text). The final version of DeepNano-coral uses kernel depth 21.

To avoid an extensive architecture search, we use a more uniform configuration of building blocks. In
particular, all residual B-type blocks use five convolution blocks, which is a middle ground compared to the
original Bonito configuration.

Another issue is related to the quantization. It would be ideal to fuse the activation function to the
preceding convolution layer, but the development tool chain does not support this. It also does not support
the Swish [Ramachandran et al., 2018] activation function used in Bonito. For these reasons, we have used
ReLU6 as the activation function, which can be fused into preceding convolution layers by a simple value
clipping of int32 accumulator values used in matrix multiplication.

Further issues are related to limitations of the available development tools for the Edge platform. Typi-
cally, neural network inference is done in batches, with several inputs processed simultaneously to optimally
utilize hardware capacity. However, this setup is not supported in the current development tool chain. An-
other problem is that 1D convolutions are internally converted to 2D convolutions, which adds a reshape
operation before and after the convolution. This has a severe performance impact, since reshape operations
are memory intensive.

To solve both these problems at the same time, we transform multiple 1D inputs into a single 2D
“image” of dimensions B×T , where B is the batch size and T is the sequence length. The whole network is
then rewritten to an equivalent network operating on this “image” using 2D convolutions. In our network,
considering the utilization of the device and the target speed, we use B = 4 and T = 5004 (T must be a
multiple of 9). Note that splitting the input signal into slightly overlapping chunks of 5004 observations is
a reasonable compromise between overhead imposed by the overlaps and the capacity of the device.

After these modifications, we obtain a small Bonito-like architecture which the Edge TPU compiler is
able to fit on the device. The overall architecture configuration is summarized in Table S1. Finally, the last
softmax layer as well as CTC decoding are performed directly on the CPU.
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Table S1: Baseline small Bonito architecture we use in our experiments.
C1 Conv(filters=128, depth=9, stride=3) + BatchNorm + ReLU6

B1-B5 Residual with 5x SeparableConv(filters=128, depth= 7-33)
C2 SeparableConv(filters=128, depth=11) + BatchNorm + ReLU6
C3 Conv(filters=64, depth=7) + BatchNorm + ReLU6

Decoder Pointwise(filters=5) + Softmax

S2 Training and Testing Sets

We have used the combination of the following public data sets to train the models:

• Taiyaki set: Data set of 50k (downsampled to 5k) R9.4.1 reads from a PCR amplified DNA of E. coli
(SCS110), H. sapiens (NA12878), and S. cerevisiae (NCYC1052), published by Oxford Nanopore as a
part of Taiyaki software (https://github.com/nanoporetech/taiyaki/).

• E. coli set: A sample of 2804 ultra-long native R9.4.1 reads of E. coli (MG1655) from Loman Lab
(https://lab.loman.net/2017/03/09/ultrareads-for-nanopore/).

• Human training: A sample of reads from chr1 and chr2 of native R9.4.1 reads (except flowcell
FAB49164) from the human reference standard CEPH1463 from nanopore whole human genome se-
quencing project [Jain et al., 2018].

For testing, the following data sets were used:

• Klebsiella: a benchmark set of native R9.4 K. pneumoniae reads [Wick et al., 2019]. We only used
reads before the sequencing restart.

• Human testing: a sample of native R9.4.1 reads from chr14, chr15, chr16 (flowcell FAB49164) from hu-
man reference standard CEPH1463 from nanopore whole human genome sequencing project [Jain et al., 2018]

The basic characteristics of all data sets are shown in Table S2.

Data Set # reads
Total length

(in bp)
Mean read

length (in bp)
Median read

length (in bp)
Taiyaki set 5000 28.8 Mbp 5769 5459

E. coli training set 2804 90.6 Mbp 32319 21758
Human training set 1323 11.5 Mbp 8705 7111
Human testing set 305 2.7 Mbp 8936 6231

Klebsiella 1788 40.8 Mbp 22613 17547

Table S2: Overview of training and testing sets used in the study.

S3 Training procedure details

We wrote our training pipeline in TensorFlow and the code is available at https://github.com/fmfi-compbio/
coral-training. Our training schedule uses 6000 miniepochs, one miniepoch being 15 optimizer steps on
batch of 100 sequences of length 5004 (5004 being the nearest multiple of 9 targeting our desired sequence
length 5000). We use Adam optimizer with a schedule that uses rather high learning rate decaying linearly
LR(t) = 0.01 ∗ (1 − t) updated after each miniepoch, where 0 ≤ t ≤ 1 denotes progress. We have a short
ramp-up period over first 10 miniepochs where we increase learning rate from 0 to the maximum value to
avoid ”shocking” the model with high learning rate from the start. At the end of training we use stan-
dard TensorFlow post-training quantization to convert the model into a format compatible with Edge TPU
compiler.
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Figure S1: Single-read accuracy comparison between Guppy and DeepNano-Coral. Each dot represents a
single sequencing read.
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Figure S2: Estimated I/O transfer speed for copying tensor of shape (4, 1668, C) (with C ranging from 1
to 128) to and from the Coral device.

S4 Additional evaluation

Figure S1 shows a comparison between the accuracy of Guppy base calls and DeepNano-Coral on individual
sequencing reads. With the exception of a few outliers, there is a strong correlation between accuracy of
different base callers, pointing to differences in underlying quality of the signal. Improvement in the accuracy
compared to Guppy-fast is consistent for most of the reads.

We benchmarked Coral I/O operation overhead on tensors of varying size. Figure S2 suggests that
transfer speed is limited by an overhead for small tensors (e.g. (4, 1668, 1−4)) and plateaus at around 0.6kB
per microsecond. This is substantially slower than subsequent tensor operations performed on the device.
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