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Text S1. Simulating admixed genomes 
To test the performance of LINADMIX, we simulated admixed genomes (target populations) in 
predetermined mixing proportions. We used modern genomes as the basic building blocks of 
the simulations and down-sampled some genomes to mimic ancient DNA data, as detailed 
below. We used ADMIXTURE’s parameters to prune the SNPs in Plink (--indep-pairwise 50 10 
0.1) (Purcell et al., 2007) on the affymetrix Human Origins array data (Lazaridis et al., 2014) in 
order to avoid dependence between SNPs. After pruning, we ended up with 49,472 autosomal 
SNPs. We phased the data with the imputation.sanger.ac.uk website using the GRCh37 as 
reference.  

To simulate an admixed genome, we used five individuals from each source population. These 
individuals were not used to test the performance of the algorithm. For the testing we used 
different samples from the source populations. For the construction of the admixed genome we 
selected sequentially chromosomal segments from the sources. Predetermined mixing 
proportions were used to select the source chromosome of a segment. The length of the 
segment (in Morgans) was sampled from an exponential distribution with rate equal to the 
number of generations since admixture. We simulated five independent admixed individuals for 
each target population.  

Down-sampling genomes to model “ancient” DNA data 
In typical ancient DNA data, a large proportion of the SNPs are missing, and for non-missing 
SNPs, only one allele is reported by selecting (at random) a single read covering the SNP 
(pseudo-haploid data). To simulate genomes from an ancient source, we selected at random 
SNPs for which genotypic information was considered missing. For the remaining SNPs, we 
selected one allele at random. In all the models analyzed with LINADMIX, unless otherwise 
specified, the sources were either simulated “ancient” genomes or true ancient genomes. Table 
S1.1 lists the number of individuals down-sampled to simulate ancient data in each of the 
populations used in our simulations. 

population Number of genomes turned into "ancient" 
English 4 
Jordanian 4 
Iranian 3 
Russian 4 
Spanish 4 
German 10 
French 25 
Palestinian 38 
Syrian 8 
Somali 13 

Table S1.1 The number of individuals in each source population for the LINADMIX model. 



Running ADMIXTURE on the simulated genomes 
We ran ADMIXTURE on each simulated genome with parameter 𝐾𝐾 = 6 (the number of 
ADMIXTURE ancestral populations). ADMIXTURE’s input genomes always included a background 
of 1,578 genomes of Eurasian and African populations (Patterson et al., 2012, Mallick et al., 
2016), to which individuals (turned into “ancient”) from the populations used for the simulations 
were added.  

  



Text S2. Calculation of Σ�𝑙𝑙  
The empirical Fisher information matrix is calculated from the following joint log-likelihood of 
the parameters given the data (Alexander et al., 2009): 
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Here, 𝐿𝐿 is the number of all individuals in the data for ADMIXTURE, 𝐽𝐽 is the number of SNPs in 
the data, 𝑄𝑄 is the matrix of the ADMIXTURE representations (𝑞𝑞 vectors) of all individuals, 𝐹𝐹 is 
the ADMIXTURE output for the frequencies of the minor alleles in each ADMIXTURE ancestral 
population, and 𝐺𝐺 = �𝑔𝑔𝑗𝑗𝑗𝑗� is the matrix of genotypes of all individuals 𝑙𝑙. Elements in 𝐺𝐺 take the 
values 0, 1, or 2, representing the number of occurrences of the minor allele in SNP 𝑗𝑗. Because 
𝑞𝑞𝑙𝑙(𝐾𝐾) = 1 − ∑ 𝑞𝑞𝑙𝑙𝐾𝐾−1
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The empirical Fisher information matrix is calculated from the second order partial derivatives of 
(i) with respect to the 𝑞𝑞 parameters. The first order derivative with respect to 𝑞𝑞𝑙𝑙(𝑘𝑘) is  
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The Hessian matrix of 𝑙𝑙(𝑄𝑄,𝐹𝐹|𝐺𝐺) is obtained by taking partial derivatives of (ii). This matrix is 
block-diagonal since mixed derivatives that involve different individuals vanish. Denote the 
block that is associated with individual 𝑙𝑙 by 𝐻𝐻𝑙𝑙�𝑞𝑞𝑙𝑙 ,𝐹𝐹�𝐺𝐺�. The (𝑘𝑘′,𝑘𝑘) element of this block is 
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(iii)                                                           

Finally, we take 𝐼𝐼𝑙𝑙�𝑞𝑞𝑙𝑙  ,𝐹𝐹� = −𝐻𝐻𝑙𝑙�𝑞𝑞𝑙𝑙 ,𝐹𝐹�𝐺𝐺�. 

  



Text S3. Variance of small samples 
The sample variance is an unbiased estimator of the population variance, in the sense that the 
mean of the sample variance is equal to the true population variance. However, the sampling 
distribution of the sample variance is positively skewed, and thus a typical draw will be smaller 
than the mean, underestimating the true variance. This problem is more acute when the 
variance is estimated from a small sample. Underestimating the population variance of the 
ADMIXTURE proportions will result in bootstrap simulations that do not fully represent the 
uncertainty in the data, and can lead to over-optimistic confidence intervals for the mixture 
coefficients, which is undesired. 

We investigated the inaccuracy in the estimation of the variance when the sample size is small. 
To this end, we considered three populations with relatively large sample sizes: Palestinians (38 
individuals), French (25 individuals) and Spanish (48 individuals). For each population, the 
complete sample variances of the different ADMIXTURE components served as gold standard. 
This gold standard is marked yellow in Figure S3.1. The subject of the investigation was the 
validity of variance estimators that rely on a sample of size 4. 

Two estimation strategies were considered. One strategy used the standard sample variance. 
This strategy is marked light blue. The other strategy, that is marked dark blue, added to that 
variance the inverse of the empirical Fisher information of a random individual. The 
distributional properties of these strategies were assessed via the empirical distributions of 100 
resamples of size 4 each. 

The first column of the bar plots in Figure S3.1 presents the expectation of the estimators in 
both strategies. Comparing the light blue and the dark blue bars to the yellow bars validates that 
the first strategy is unbiased and the second strategy is positively biased. On the other hand, the 
second column of bar plots in the figure shows the medians of the same estimators. They 
suggest that the median in the second strategy is usually closer to the target values than the 
median in the first strategy.   

We conclude that for a small sample the standard sample variance of the components produced 
by ADMIXTURE is more likely than not to underestimate the true variances. The addition of the 
inverse Fisher information seems to be a partial remedy. 



 Figure S3.1. Variance of small samples. The means (A-C)  and medians (D-F) of the estimated variances of the first 
five components of the ADMIXTURE representation across 100 random subsamples of size four of three different 
populations (Palestinian, French and Spanish) using two estimation strategies vs. the estimated variances of the 
entire sample (size in brackets). Calculation of the subsample variance using only the sample variance is given in 
blue; Calculation of the  subsample variance as the sum of the sample variance with the inverse of the empirical 
Fisher Information is given in light blue. Calculation of the entire sample variance is given in yellow. 



Text S4. Modifications to the estimation of the standard errors 
In practice, we include in the bootstrap sampling of an individual only ancestral populations that 
are sufficiently represented: The variance of ancestral components of 𝑞𝑞𝑙𝑙 that contributed less 
than 1% was set to zero. Likewise, we set to zero the components and variance of ancestral 
components of 𝑞𝑞𝑖𝑖 that for all samples from population 𝑖𝑖 had a contribution of less than 1%. In 

addition, we set to zero negative values of  𝑞𝑞𝑖𝑖
𝑙𝑙,(𝑏𝑏)(𝑘𝑘) and renormalized the vectors to ensure 

they sum to one. 

  



Text S5. Modification to the calculation of the p-values 
Similarly to the computations of the standard errors, we include only ADMIXTURE ancestral 
populations that contribute sufficiently to the populations in the model. The modifications in 
the simulation of the source populations are identical to those described in Supplementary Text 
S4, “Modifications to the estimation of the standard errors”. In the simulation of the target 
population, in addition to the above, we included ADMIXTURE ancestral populations with a 

sufficient contribution to 𝑞𝑞0
(𝑏𝑏), namely for which 𝑞𝑞0

(𝑏𝑏) ≥ 0.01. Also, when calculating 𝑊𝑊 and 
𝑊𝑊(𝑏𝑏) we only sum over ancestral ADMIXTURE populations 𝑘𝑘 with a sufficient (1% or more) 

contribution to 𝑞𝑞0 (when calculating 𝑊𝑊) or 𝑞𝑞0
(𝑏𝑏) (when calculating 𝑊𝑊(𝑏𝑏)). 

Text S6. Segments lengths 
We tested the effect of segment length by mixing Jordanians and English in proportions of 
0.2:0.8, 0.5:0.5, and 0.8:0.2, as before, but now assuming an admixture event that happened 
either 20, 50, 80 or 160 generations ago. 

All simulations gave similar results, with a maximum error ranging from 4% points (for 20 
generations) to 5% points (for 80 generations), and an average error ranging from 2.1% points 
(for 20 generations) to 2.8% points (for 50 generations) (Figure S6.1, Table S6.1). The average of 
the standard errors of the mixing coefficients ranged from 5.2% (for 50 generations) to 5.7% (for 
80 generations). All simulations consistently produced p-values higher than 0.05, compatible 
with a model that adequately describes the data (Table S6.1). 

We conclude that LINADMIX is not sensitive to the accumulation of recombination events over 
time, and is therefore robust to changes in time since admixture. This is expected as LINADMIX 
is based on ADMIXTURE, which in turn considers only allele frequencies at single SNPs and not 
haplotypes. 

 

Figure S6.1. The effect of the time since admixture on LINADMIX. (A) The estimated Jordanian contribution in 
simulations where Jordanians and English were mixed in varying proportions, for different times since admixture. (B) 
LINADMIX performance, measured in several ways, for different times since admixture. 



 

number of 
generations 

ago 

average error 
(percentage 

points) 

maximum error 
(percentage 

points) 

average 
standard error 

(percentage 
points) 

p-value   
(model 1) 

p-value 
(model 2) 

p-value 
(model 3) 

20 2.09 4.05 5.27 0.9307 0.9258 0.6358 

50 2.80 4.21 5.17 0.7779 1.0000 0.6017 

80 2.52 5.00 5.69 0.4693 0.9883 0.4180 

160 2.77 4.13 5.43 0.9548 0.6686 0.6766 

Table S6.1. Simulating different times since admixture. 

Text S7. Finding FST limits for potential proxies 
We tested how genetically remote a population can be and still serve as a proxy to the original 
source population. To this end, in addition to proxies with FST values of 0.001, 0.002, and 0.003 
relative to the original source, that were analyzed in the main text (section genetic drift), we 
also examined proxies with FST values of 0.004, 0.005 relative to the original source for the 
Jordanian-English simulations; and 0.007 for the Jordanian-Iranian simulations. For FST=0.004 we 
took Iranians as a proxy to Jordanians; for FST=0.005 we took Russians as a proxy to English; and 
for FST=0.007 we took Iran_ChL as a proxy to Iranians (Supplementary Table S1). We looked at 
the difference between the average absolute estimation errors of the models with the original 
source and those for the models with the proxies. In addition, we looked at the p-values of the 
models (Table 1, Table S4). 

For targets that are admixtures of Jordanians and English (FST = 0.013) we found that up to 
FST=0.004 the estimation error is fairly similar between the original and the proxy sources, 
however the p-values when using the proxy are all below 0.05, leading to a rejection of the 
model (Figure S7.1). For FST of 0.005, almost all the p-values are below 0.05, and in addition the 
average estimation error in the models with the proxies was the highest. Therefore, it appears 
that populations can serve as proxies (when the target is a mixture of relatively distant 
populations) when their distance from the original source is no more than FST=0.003. 

For the targets that are an admixture of the closely related Jordanians and Iranians (FST=0.004) 
we found that already at FST=0.003 the estimation error is high compared to that of the original 
source. Therefore, it is possible to use proxy populations with a distance of up to FST=0.002 from 
the original source. 

  



 

Target: Jordanian-English 
 
Pairs of populations (original and replacing) FST 

English-French 0.001 

English-German 0.001 

Jordanian-Syrian 0.002 

Jordanian-Palestinian 0.003 

Jordanian-Iranian 0.004 

English-Russian 0.005 

Target: Jordanian-Iranian  

Pairs of populations FST 

Jordanian-Syrian 0.002 

Jordanian-Palestinian 0.003 

Iranian-Iran_ChL 0.007 
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Figure S7.1 Effects of a proxy source population as a function of its FST compared to the original source. Five pairs of 
original-proxy sources with four different FST values (x-axis) were tested for the Jordanian-English simulations; and 
three pairs of original-proxy sources were tested for the Jordanian-Iranian simulations. The y-axis shows the 
difference of the average (over the three simulations of Jordanian-English or Jordanian-Iranian) absolute estimation 
error of LINADMIX between models with the proxy source and models with the original source. For FST=0.001 the top 
data point refers to the replacement of English with French. The number of asterisks above points in the graph 
represents the number of models where the p-value was lower than 0.05 when the proxy was given as a source. 

Table S7.1 FST of original source populations and potential proxies. FST values of the pairs of original and potential 
proxy source populations used to detect the FST limits. 



Text S8. Somali-English simulations 
To look at target populations that are admixtures of remote populations we mixed Somalis and 
English (FST=0.075) at three different mixing proportions, 0.2:0.8, 0.5:0.5, and 0.8:0.2, assuming 
50 generations since the admixture event. We looked at models where the sources are in 
pseudo-haploid form and have 60% missing data. The estimation error was extremely small, less 
than 1% for all mixing proportions. The standard errors were also low, as expected for targets 
that are mixtures of genetically distant populations. All p-values were higher than 0.05.  

We also tested how proxy populations perform as sources in this scenario, replacing English by 
either French or Germans. Replacing English with Germans even reduced the estimation errors, 
however for the 80% English target population the p-value was slightly below 0.05 (0.0406). 
Replacing the English with French slightly increased the estimation errors, in less than 1.5%. 
Therefore, as in the other simulations, LINADMIX is robust to drift.  

 
Figure S8.1. Admixture of remote populations. Models include the original sources (English and Somali), as well as 
proxies to English (either German or French). The asterisk represents that the p-value of the model was below 0.05. 

target 1: Somali 20% English 80% 
target 2: Somali 50% English 50% 
target 3: Somali 80% English 20% 

sources provided to 
LINADMIX 

average 
error 

(percentage 
points) 

maximum 
error 

(percentage 
points) 

average 
standard error 

(percentage 
points) 

p-value 
(target 1) 

p-value 
(target 2) 

p-value 
(target 3) 

Somali and English 0.62 0.97 2.20 0.2190 0.3332 0.0991 
Somali and French 1.57 2.37 2.40 0.2232 0.3269 0.1156 
Somali and German 0.25 0.43 2.09 0.0406 0.2768 0.1639 

Table S8.1. Admixture of remote populations. Models include the original sources (English and Somali), as well as 
proxies to English (German and French). P-values under 0.05 are shaded. 
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Text S9. The effect of ADMIXTURE perturbations on model fit 
In Agranat-Tamir et al. (2020) we looked at the effect of ADMIXTURE perturbations on the 
estimation of LINADMIX and of model fit in terms of (squared) norms of residuals, that is 
‖𝑄𝑄𝑠𝑠𝛼𝛼� − 𝑞𝑞𝑡𝑡‖22 where 𝑄𝑄𝑠𝑠 is the matrix of the admixture representations of the source populations 
in the model;  𝛼𝛼� is the vector of the estimated mixing coefficients; and 𝑞𝑞𝑡𝑡 is the admixture 
representation of the target population in the model. Here we complete the analysis by looking 
at the effect of ADMIXTURE perturbations on model fit in terms of the p-value.  

The analysis is of 17 modern populations modeled as mixtures of 4 ancient populations. The 
original analysis is of 1663 individuals with K=6 (this K is the optimal one from the cross-
validation procedure suggested in the ADMIXTURE manual). We performed two perturbations: 
looking at a different not optimal K – K=7; and adding apparently non relevant populations to 
the set given to ADMIXTUERE, ending with 3515 individuals and a new optimal K of 22. To 
summarize we found that changing the K from an optimal one to a sub-optimal affects the 
estimation of LINADMIX more than the addition of individuals: The average absolute difference 
in the LINADMIX estimation across the 17 target populations and 4 source populations is 6.1 
percentage points when K is only sub-optimal and 3.7 percentage points when the set of 
individuals is increased. The standard errors were very similar in all analyses (average difference 
of less than 2 percentage points).  

When looking at model fit we found in Agranat-Tamir et al. (2020) that the norms were much 
higher when K was sub-optimal. The addition of individuals changed to some extent the pattern 
of norms across the 17 models. We now add p-value calculations (Table S9.1). For the original 
analysis of 1663 individuals and K=6 three were below the 0.05 threshold. (All non-Southern 
Levant target populations.) As expected from the norms the p values when K is not optimal 
(K=7) were lower with 11 out of the 17 below 0.05 (intersecting two of the three when K=6). The 
p-values for the larger set of input individuals to ADMIXTURE were also lower than those with 
the smaller set – 9 out the 17 were below 0.05 intersecting with all of those in the original 
analysis. It is important to note that the addition of populations to the ADMIXTURE input 
resulted in a new, much higher, optimal K. Therefore, it is expected that it would be harder to 
get model fit.  

In conclusion, LINADMIX estimation is quite robust to changes in the ADMIXTURE run, though 
more so to changes in the input set than to a non-optimal K. The main differences are in model 
fit tests. Using a non-optimal K is not advisable. In addition, using a large set of individuals that 
results in a high optimal K is also less advisable as it makes it harder to get model fit. We suggest 
using a set of individuals that would cover those important for the analysis but that would not 
have a high optimal K.  

  



 p-value 

target populations 1663 individuals K=6 1663 individuals K=7 3515 individuals K=22 

Ashkenazi_Jew 0.1749 0.0001 0.0455 

Bedouin_A 0.9717 0.0361 0.7490 

Bedouin_B 0.4851 0.3668 0.0001 

Druze 1 0.0001 0.0005 

Egyptian 0.9036 0.0004 0.3872 

English 0.0287 0.0858 0.0197 

Iranian 0.0002 0.0001 0.0487 

Iranian_Jew 0.5906 0.0001 0.0089 

Ethiopian_Jew 0.9999 0.8335 0.7754 

Jordanian 0.5536 0.0187 0.1930 

Lebanese 0.6138 0.1117 0.2286 

Moroccan 0.1827 0.0121 0.0124 

Moroccan_Jew 0.1811 0.0001 0.0138 

Palestinian 0.9835 0.0013 0.3532 

Saudi 0.7233 0.6241 0.4927 

Syrian 0.8576 0.1417 0.5590 

Tuscan 0.0349 0.0001 0.0002 
 

Table S9.1 Model fit with ADMIXTURE perturbations. P-values below 0.05 are shaded. 
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