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Abstract

1 Details of used datasets
Ten RNA-seq datasets in Table S1 were collected from NCBI official site1

according to the SRA ID. These RNA-seq datasets are pre-processed for
experiments as follows. Quality control software: Fastqc (Patel et al.,
2012) and Multiqc (Ewels et al., 2016); data filtering software: Trim-
Galore (Suchan et al., 2016), build index; and comparison software: Hisat2
(Kim et al., 2019); format conversion software: Samtools (Li et al., 2009);
differential Expression Analysis Software: Stringtie (Pertea et al., 2015).
We extracted the cut site and exon information from the annotation file,
which was used to build an index with the B73 v5 genome assembly data
by Hisat2. Then, we converted the original RNA-seq data into fastq files
through the commands that come with the NCBI database. Fastqc was
then used for quality inspection of all fastq files; then, Multiqc was used
to integrate fastqc report files. In quality control, the length threshold was
fixed to 20bp, and the default Phred score was 20. After that, Hisat2 was
used to map the indexed genomic data with the fastq file after quality
control and Samtools was used to sort this mapping file. Finally, Stringtie
was used to integrate the generated valid data and featureCounts (Liao
et al., 2014) was used to construct the isoform expression data matrix.

1 https://www.ncbi.nlm.nih.gov/sra/

2 Results on gene level and Human data
Table S2 reports the gene-level results of DMIL-IsoFun and of other
compared methods on the Maize genome. Due to the lack of isoform-
level GO annotations, we have added a max layer after the GCN stage
to aggregate the predicted association probabilities between isoforms and
GO terms based on the gene-isoform relation and then used gene-level
annotations to train the GCN model. We can find that DMIL-IsoFun again
achieves a better performance than other compared methods, which proves
effectiveness of DMIL-IsoFun in gene-level. Obviously, our method has
made a significant improvement in terms ofAUROC, Smin and Fmax.
In Rankloss, DMIL-IsoFun does not exceed the second-best method
(DIFFUSU), which is explainable. In our method, an isoform-level co-
expression network is used to propagate annotations, when a negative
example appears in the gene bag, it will impact the prediction results of
the entire gene and cause negative annotations rank ahead of positive ones,
and consequently increase the RankLoss.

In addition, we adopt the same Human isoform data from 569 RNA-
seq runs of 298 samples from different tissues and conditions of Human
ENCODE project, which was also used by Yu et al. (2020), to further
comparatively study the performance of DMIL-IsoFun and other compared
methods. More data information can refer the supplementary file of (Yu
et al., 2020). Table S3 reports the results evaluated at the gene-level. Note,
alike the evaluation on Maize, the annotations of genes in the validation
set are not used for training but used for validation only to avoid self-
validation. DIFFUSE is trained with respect to each GO term and very
time-consuming to complete on the Human dataset with more than 1000
GO terms. So its results on the Human dataset are not reported. Compared
with the GO annotations and available RNA-seq datasets of Maize, the GO
annotations of genes and RNA-seq datasets of human are relatively richer.

© The Author 2016. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com 1
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Table S1. The details of ten used B73 RNA-seq datasets.

Immature
tassel

seedling
shoot

seedling
root

unpollinated
ear tip

Root SAM Apex

SRR445383 SRR445382 SRR445245 SRR445244 SRR395208 SRR424649
SRR395194 SRR424650
SRR395192
SRR395191

Although the shallow methods can obtain a relatively better performance
on Human than Maize, such as IsoFun and Disofun, DMIL-IsoFun still
gets a better performance. The GO terms with larger sizes represent more
heterogeneous functions and are therefore more difficult to distinguish
among similar GO terms. It is difficult for DisoFun based on matrix
factorization to learn discriminative features from the isoforms annotated
with these GO terms. IsoFun based on label propagation on sparse isoform
network to propagate GO terms, and it further considers both the positive
and negative GO annotations of genes. As a result, it can obtain a better
performance than DisoFun with respect to selected GO terms, each of
which is annotated to at least 150 genes.

Table S5 reports the results of DMIL-IsoFun, DIFFUSE and
DeepIsoFun on single-isoform genes in the CC branch, we can find that
DMIL-IsoFun also obtains a better performance than other deep learning
based methods on SIGs.

Table S5. Prediction results of deep learning based methods on SIGs of Maize
in CC branch.

AUC AUPRC Smin ↓ Fmax

CC
DMIL-IsoFun 0.704 0.698 0.727 0.564
DIFFUSE 0.504 0.564 0.737 0.507
DeepIsoFun 0.589 0.556 0.789 0.378

3 Data sources analysis
From the results in the main text and those in the supplementary file, we
can observe that DMIL-IsoFun can effectively fuse isoform sequence and
expression data, and thus achieve a better performance than compared
methods, which separately use or fuse RNA-seq datasets, gene-level
interactions and sequence data. We further investigate the necessity and
effectiveness of mining the composite isoform functional association
networkA, which is composed with isoform sequences similarity network
Ws and co-expression network Wc. For this investigation, we randomly
selected 500 isoforms, and then separately visualized the two networks and
the composite one in Fig. S1. We can see that many isoforms co-expressed
at the center of the co-expression network, along with many small islands
far from the center, each of which is made of several isoforms with co-
expression. The sequence similarity network also has dense connections
in the center and many small islands made of several isoform. However,
the global patterns between these two networks are still different. In the
composite network, we can find that these islands are connected with center
dense area of the composite network. In this way, the negative impact of
noisy edges between isoforms can be reduced to some extent, and the
further differentiation of functions of individual isoforms in the composite
network can be more credibly made.

In practice, we find if DMIL-Isofun uses the isoform features extracted
from MILCNN and the co-expression network derived from RNA-seq
datasets to differentiate the functions of individual isoforms, the AUROC,
AUPRC, Fmax and Smin of DMIL-IsoFun reduces by 16.5%, 17.5%
, 7.9% and 31.2%, respectively. In addition, we also try to construct a
composite network by summing up Ws and Wc, the AUROC, AUPRC,

Fmax and Smin of DMIL-IsoFun on this composite network drop by
2.3%, 9.2%, 3.9% and 7.0%, respectively.

4 Parameter sensitivity analysis
There are several key input parameters (k, γ and α) that may impact
the performance DMIL-IsoFun. For γ and α, we use the optimal
parameters recommended by Lin et al. (2020). In the main text, we adopt
k = 10 to construct the isoform co-expression network and isoform
sequence similarity network. Following the experimental setup in the main
text, we study the performance variation of DMIL-IsoFun by varying
k in {0, 5, 10, 15, 20} and report the AUROC, AUPRC, Fmax values
of DMIL-IsoFun in BP subontology in Fig S2. The results in other
subontology are similar and not reported. Here, k = 0 means that the
isoform network only uses the sequence similarity network.

We observe that the performance of DMIL-IsoFun is improved by
merging the isoform co-expression network, which can complement the
tiny sequence difference between isoforms spliced from the same gene.
However, when each isoform considers more than 10 neighbors in the
co-expression network derived from Pearson correlation coefficients, the
performance begins to decrease. A too sparse co-expression network
(smallk) can not provide sufficient functional associations among isoforms
to enable GCN-based isoform function differentiation, even our DMIL-
IsoFun considers S-order connections between isoforms. On the other
hand, a too dense co-expression network (large k) results in some
noisy/trivial associations between isoforms, and thus compromises the
performance of attributed network embedding and the prediction of
isoform functions. From these results, we can conclude that the fusion of
isoform co-expression network and sequence similarity network indeed
contributes to an improved performance for predicting the individual
functions of isoforms. Based on these results, we adopt k = 10 for
experiments.

5 Datasets statistics
We counted the number of isoforms spliced from each gene and reported
the counts via histogram graph in Fig. S3 (for Maize dataset) and Fig. S4
(for Human dataset). The maximum number of isoforms spliced from the
same genes of Maize is 16 and that of Human is 227. Since genes spliced
into ≤ 20 isoforms accounts for 92.6% of all Human genes, we adopt
τ = 20 for both datasets.

We also studied the quantitative functionality difference of 7,587 MIGs
of Maize and found 1,016 MIGs with spliced isoforms having different GO
annotations. We firstly computed the functional annotations difference of
any pairwise isoforms within these 1,016 MIGs, and then the average
value of these differences within a gene, next presented the distribution of
average values by boxplot in Fig. S5. The mean value across 1,016 MIGs is
5.18, as shown in Figure S5. These statistics confirm that isoforms spliced
from the same gene indeed have different functions and the necessity to
differentiate the individual functions of isoforms.
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Table S2. Approximate gene-level evaluation results of isoform function prediction on Maize. The gene-level annotations are aggregated from isoforms spliced
from respective genes.

CC MF BP
AUROC AUPRC Smin ↓ Fmax AUROC AUPRC Smin ↓ Fmax AUROC AUPRC Smin ↓ Fmax

miSVM 0.470 0.492 2.218 0.417 0.505 0.074 1.255 0.063 0.528 0.033 1.006 0.107
iMILP 0.628 0.494 2.265 0.357 0.530 0.119 3.445 0.089 0.578 0.044 4.621 0.106
IsoFun 0.557 0.467 2.030 0.442 0.561 0.149 3.351 0.250 0.529 0.099 4.361 0.347
Disofun 0.627 0.507 1.969 0.360 0.521 0.151 3.530 0.209 0.574 0.064 4.664 0.249

DeepIsoFun 0.604 0.564 0.875 0.397 0.579 0.219 2.380 0.308 0.552 0.179 3.265 0.422
DIFFUSE 0.518 0.565 0.804 0.517 0.502 0.197 2.407 0.299 0.496 0.178 3.315 0.399

DMIL-IsoFun 0.754 0.647 0.612 0.654 0.775 0.200 1.780 0.532 0.747 0.065 2.435 0.561

Table S3. Approximate gene-level evaluation results of isoform function prediction on Human. The gene-level predicted annotations are aggregated from isoforms
of respective genes. We selected GO terms annotated to at least 150 genes, and obtained 148 MF terms, 175 CC terms and 855 BP terms with respect to 26,866
isoforms alternatively spliced from 12,371 Human genes for experiments.

CC MF BP
AUROC AUPRC Smin ↓ Fmax AUROC AUPRC Smin ↓ Fmax AUROC AUPRC Smin ↓ Fmax

miSVM 0.661 0.069 4.661 0.122 0.522 0.057 3.568 0.099 0.549 0.043 20.691 0.081
iMILP 0.566 0.117 5.673 0.548 0.534 0.068 3.732 0.519 0.540 0.109 21.969 0.278
IsoFun 0.632 0.322 4.757 0.607 0.528 0.144 3.829 0.471 0.598 0.163 19.969 0.339
Disofun 0.570 0.233 4.840 0.537 0.536 0.106 3.642 0.422 0.544 0.187 19.920 0.257

DeepIsoFun 0.509 0.244 4.751 0.606 0.506 0.070 3.662 0.570 0.511 0.077 21.346 0.329
DMIL-IsoFun 0.649 0.339 4.452 0.634 0.550 0.225 3.482 0.578 0.551 0.159 19.875 0.380

Table S4. The parameters of DMIL-IsoFun.

Name convolution kernels Instances pyramid pooling Depth of GCN Per-parameter adaptive learning rate Learning rate Activation function

Range 8, 16, 24, 32, 128 10 3 RMSprop, Adam 0.01 Relu, LeakyRelu

Fig. S5. Functionality differences of spliced isoforms within the same MIGs of Maize.
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(a) Co-expression Network Wc (b) Sequence Similarity Network Ws

(c) Composite Network A

Fig. S1. Visualization of the isoform co-expression network derived from RNA-seq datasets (a), sequence similarity network induced by BLAST (b), and the composite network by fusing
the above two networks (c).
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Fig. S2. Results of DMIL-IsoFun under different input values of k.

Fig. S3. Distribution of the number of isoforms spliced from the same genes of Maize.
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Fig. S4. Distribution of the number of spliced from the same genes of Human.


