
Supplementary File 4

July 1, 2021

Model Selection

A variety of classification models were tested, using the O. volvulus data set
(split into train and test based on protein ID and sequence similarity, and ex-
cluding the holdout set used in the main experiments) to investigate model per-
formance for classification problems set in the space of features defined in this
work. The following models were tested: Random Forest (RF) (Breiman, 2001)
, XGBoost (Chen and Guestrin, 2016), Support Vector Machine (SVM) (Vap-
nik, 2013) and Multilayer Perceptron Neural Network (MLP) (Haykin, 2004)
across multiple performance measures, including Accuracy, Matthews Correla-
tion Coefficient, Area Under the ROC curve and Positive Predictive Value. The
model selection and hyper-parameter tuning experiments were run using model
implementations available from package Scikit-learn version 0.24.1 (Pedregosa
et al., 2011) for all classifiers except XGBoost, for which the implementation
available on package (Chen et al., 2019) was employed. All methods were ini-
tially run using their default hyper-parameter values, shown in Table 1. The
Random Forest model performed the best across all performance measures, as
shown in the table 2, and was therefore selected as the modelling approach for
all experiments reported in the main paper.

1



Table S4 - 1: Model hyper-parameters used in the model selection
experiments. Default values from each implementation were used.

Model Parameter: value used
Random Forest n estimators: 100

split criterion: Gini
max depth: None
min samples: 2
min samples leaf : 1
min weight fraction leaf : 0
max features: auto
max leaf nodes: None
min impurity decrease: 0
min impurity split : None
bootstrap: True
warm start: False
class weight : None
ccp alpha: 0
max samples: None

XGBoost eta: 0.3
gamma: 0
max depth: 6
min child weight : 1
max delta step: 0
subsample: 1
sampling method : auto
colsample bytree: 1
lambda: 1
alpha: 0
tree method : auto
sketch eps: 0.03
scale pos weight : 1
updater : grow colmaker
refresh leaf : 1
grow policy : depthwise
max leaves: 0
max bin: 256
predictor : auto

Support Vector Machine C : 1
kernel : rbf
degree: 3
gamma: scale
coef0 : 0
shrinking : True
probability : True
tol : 1e-3

2



Table S4 - 1 – continued from previous page
Model Parameters: values used (package defaults)

cache size: 200
class weight : None
decision function shape: ovr
break ties: False

Multilayer Perceptron hidden layers sizes: (100,)
activation: relu
solver : adam
alpha: 0.0001
batch size: auto
learning rate: constant
learning rate init : 0.001
power t : 0.5
max iter : 200
shuffle: True
tol : 1e-4
warm start : False
momentum: 0.9
nesterovs momentum: True
early stopping : False
validation fraction: 0.1
beta 1 : 0.9
beta 2 : 0.999
epsilon: 1e-8,
n iter no change: 10
max fun: 15000

Table S4 - 2: Point estimates of performance obtained for initial model explo-
ration. ACC = Accuracy, MCC = Matthews Correlation Coefficient, PPV =
Positive Predictive Value, AUC = Area Under the ROC Curve.

Model ACC MCC PPV AUC
Random Forest 0.695 0.377 0.739 0.753
XGBoost 0.690 0.364 0.727 0.741
Support Vector Machine 0.674 0.334 0.719 0.722
Multilayer Perceptron 0.661 0.300 0.694 0.705

These results motivated the use of Random Forest for the development of all
organism-specific models in this paper. Although further, more comprehensive
model investigation could be performed, the results obtained exhibited a suffi-
ciently high performance to justify the adoption of RF as our model of choice.

3



Investigation of Hyper-parameter Tuning

Hyper-parameter tuning was investigated as a possible way to improve the per-
formance of the Random Forest classification model. As in the model selection
experiments, we employed the O. volvulus data for the tuning experiments.
These tests were performed using Scikit-learn’s randomised search function,
with the following parameters:

• n iter : 200

• scoring : mcc scorer

• refit : True

• error score: np.nan

• pre dispatch: None

The hyper-parameters that were tuned for the model were:

• bootstrap ∈ {False, True}. Selected value: True

• max features ∈ {auto, sqrt}. Selected value: auto

• min samples split ∈ {10, 15, 20, 25, 30}. Selected value: 20

• n estimators ∈ {500, 550, 600, . . . , 1000}. Selected value: 650

• min samples leaf ∈ {2, 3, 4, 5, 6}. Selected value: 4

• max depth ∈ {20, 40, . . . , 120}. Selected value: 80

The final performance values obtained after tuning, are shown in Table 3.
The baseline results obtained by the standard configuration are also repeated
in this table for convenience.

Table S4 - 3: Random Forest results after parameter tuning
Method ACC MCC PPV AUC
Benchmark 0.695 0.377 0.739 0.753
After Tuning 0.703 0.394 0.744 0.760

Since hyper-parameter tuning did not seem to substantially affect the end
performance of the Random Forest models, the end solution implemented for
the experiments in this paper was to not employ tuning for the model hyper-
parameters in our final implementation, based on a lowest-complexity approach
to pipeline design and in the rationale that the main objective of the paper was to
demonstrate the organism-specific training principle, rather than explore model
optimisation.

4



Investigation of Dimensionality Reduction

A selection of dimensionality reduction techniques were investigated for the
epitope prediction problem, including: (i) filter methods based on extracting
the top K features, using both Mutual Information (Vergara and Estévez, 2014)
and the Anova F-value (Montgomery and Runger, 2003) as ordering scores; (ii)
Principal Component Analysis (PCA) (Tan et al., 2005); and (iii) a wrapper
method, Maximum Relevance-Minimum Redundancy (MRMR) (Peng et al.,
2005). Those methods were tested using the the O. volvulus data set (split
into train and test based on protein ID and sequence similarity, and excluding
the holdout set used in the main experiments). Scikit-learn implementations
were used for all techniques, and all methods were tested using their default
parameters,shown in Table 4.

Table S4 - 4: Default dimensionality reduction technique parameters
Method Parameters
Principal Component Analysis n components∈ {0.95, 0.5, 0.15}

copy : True
whiten: False
sdv solver : auto
tol : 0
iterated power : auto

Mutual Information discrete features: auto
n neighbors: 3
copy : True

Select K Best score func: f classif
k : 15

MRMR K : 15
relevance: f
redundancy : c
denominator : mean
only same domain: False

None of the reduced feature sets resulted in significant performance gains
for any of the classifiers tested (see Table 1). As an illustrative example, Table
5 shows the results for the default Random Forest classifier.

Since the main focus of this work was in demonstrating the effects of organism-
specific training rather than developing a fully-deployed pipeline, we opted
(based on the observed lack of improvement) to retain the full feature sets in
the solutions developed in the main manuscript, since feature reduction did not
yield any observable generalisation performance gains and the fact that Random
Forest already performs its own embedded feature prioritisation process. Reduc-
ing the feature space will, however, be useful when implementing a user-facing
interface for the organism-specific pipeline, as it can reduce the computational
costs associated with feature calculation and model fitting.

5



Table S4 - 5: Results after dimensionality reduction on the performance of the
default RF classifier. The values next to PCA refer to the proportion of variance
retained. The baseline values obtained by the Random Forest on the full feature
set are repeated here for convenience (referenced as benchmark).

Method Features ACC MCC PPV AUC
Benchmark 845 0.695 0.377 0.739 0.753
Mutual Information 15 0.688 0.365 0.710 0.746
PCA (0.95) 521 0.655 0.284 0.683 0.699
PCA (0.50) 121 0.674 0.334 0.718 0.726
PCA (0.15) 11 0.678 0.353 0.740 0.734
Select K Best 70 0.691 0.370 0.736 0.745
MRMR 15 0.700 0.385 0.738 0.747

Supplementary References 4

Breiman, L. (2001). Random forests. Machine learning, 45(1), 5–32.

Chen, T. and Guestrin, C. (2016). XGBoost: A scalable tree boosting system. In Proceedings of

the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,

KDD ’16, pages 785–794, New York, NY, USA. ACM.

Chen, T., Okhlopkov, D., Cho, P., and Turkov, M. (2019). Xgboost extreme gradient boosting.

Haykin, S. (2004). Neural Networks: A Comprehensive Foundation. Prentice Hall, 2nd edition.

Montgomery, D. C. and Runger, G. C. (2003). Applied Statistics and Probability for Engineers.

John Wiley and Sons.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M.,

Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher,

M., Perrot, M., and Duchesnay, E. (2011). Scikit-learn: Machine learning in Python. Journal of

Machine Learning Research, 12, 2825–2830.

Peng, H., Long, F., and Ding, C. (2005). Feature selection based on mutual information criteria of

max-dependency, max-relevance, and min-redundancy. IEEE Transactions on pattern analysis

and machine intelligence, 27(8), 1226–1238.

Tan, P.-N., Steinbach, M., and Kumar, V. (2005). Introduction to Data Mining. Addison Wesley.

Vapnik, V. (2013). The nature of statistical learning theory. Springer science & business media.

Vergara, J. R. and Estévez, P. A. (2014). A review of feature selection methods based on mutual

information. Neural computing and applications, 24(1), 175–186.

6


