
Supplementary File 6

July 1, 2021

Feature Relevance

In an attempt to understand the possible reasons behind the improved per-
formance of models trained on organism-specific data, we have conducted a
graphical investigation of feature relevance, as returned by the Random For-
est models fit on both organism-specific and heterogeneous sets. This section
documents this exploration, with the figure captions indicating points of partic-
ular interest. In all figures, the feature families are referred as follows (notice
that all features are calculated based on the local 15 aminoacid-wide neighbour-
hood of each position of a protein sequence. Please refer to Section 2.1.1 of the
manuscript for details):

• AAdescr.: 66 physiochemical descriptors of amino acid residues .

• Atoms: Count of Carbon, Hydrogen, Nitrogen, Oxygen and Sulphur
atoms.

• CT: 343 conjoint triad frequencies.

• Entropy: Sequence entropy.

• Freq-1AA: Frequencies of occurrence of each amino-acid.

• Freq-2AA: Frequencies of occurrence of each dipeptide.

• Freq-Types: Frequencies of occurrence of each of the 9 amino-acid types
(aliphatic, hydrophobic, etc.)

• Mol. weight: Molecular weight.
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Figure S6 - 1: Feature importance (as calculated by the RF models), coloured by
feature family. Notice that Freq-2AA and CT features contribute almost nothing
to the predictive ability of RF models in all cases, and that the AAdescr -type
features are consistently selected as the most relevant by Random Forest.
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Figure S6 - 2: Feature importance for organism-specific vs. heterogeneous data-
trained models, stratified by pathogen. The dashed regression line provides a
reference for qualitatively assessing the high correlation (notice that both axes
are log-scaled). This again highlights the high relevance of the physiochemical
descriptors (AAdescr) , followed by the atom counts and single-aminoacid fre-
quencies. Dipeptide and CT frequencies do not contribute significantly to any
of the models.
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Figure S6 - 3: Feature importance for different organism-specific models. The
dashed regression line provides a reference for qualitatively assessing the high
correlation (notice that both axes are log-scaled). The same patterns of relative
importance of feature families observed in figure 3 are also observed here.
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Figure S6 - 4: Thirty most highly relevant features according to each Random
Forest model trained for each pathogen (organis-specific and heterogeneous).
The high prevalence of AAdescr features is clear, although they make up only
a fraction of the total feature space (66/845 features u 7.8%).
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Figure S6 - 5: Another visualisation of the thirty most relevant features used
by the Random Forest models. Notice how feature BLOSUM1 (Georgiev, 2009)
appears as particularly relevant for all organism-specific models. Although in-
teresting, the detailed investigation of underlying mechanisms potentially rep-
resented by this particular feature is beyond the scope of this work.
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Figure S6 - 6: Number of times features appear among the top 5, 10, 20 and 30 features, for the Heterogeneous and Organism-
specific models (max = 3). Notice how feature BLOSUM1 shows a high relevance for the Organism-specific models (see also
Figure 5). This feature is strongly associated with hydrophobicity, with an r2 = 0.94 according to (Georgiev, 2009). In the
case of the data representation used in this work, it measures the average hydrophobicity of the 15-AA neighbourhood of a
given position on the protein.
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Spatial distribution of observations

To explore the neighbourhood structure of the datasets, we have employed t-
SNE projections (Van der Maaten and Hinton, 2008). The purpose of this
exploration was to (i) investigate whether data coming from distinct pathogens
present different clustering structures in terms of positive/negative observations;
or (ii) whether data coming from different pathogens is located in distinct regions
of the space of features. Either case would help explain the improved perfor-
mance of the organism-specific models when compared to generalist approaches,
from a modelling perspective (albeit not necessarily in terms of underlying bi-
ological mechanisms). These explorations are illustrated in Figure 7 below, as
well as in Figure 3 of the main text.
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Figure S6 - 7: t-SNE projection of the data. The projection was calculated on
the entirety of the data, and later split by pathogen. Notice how heterogeneous
data (which is composed of observations from many different organisms) has
positive and negative points distributed almost uniformly over the projected
space. Contrast that with the organism-specific data, for which different regions
of the space exhibit distinct balances of positive/negative observations, which
potentially makes the fitting of classification models more capable of partitioning
the feature space into more homogeneous sub-regions. See also Figure 3 in the
main text. It is also apparent that distinct regions of the projected space are
more or less occupied by data coming from different pathogens (contrast, e.g.,
the density of points above V 2 = 30 between O. volvulus and HepC ).

9



Supplementary References 6

Georgiev, A. G. (2009). Interpretable numerical descriptors of amino acid space. Journal of Com-

putational Biology, 16(5), 703–723.

Van der Maaten, L. and Hinton, G. (2008). Visualizing data using t-sne. Journal of machine

learning research, 9(11).

10


