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S1 Six possible variants of BiTSC

In the development of BiTSC, we considered six possible variants of its algorithm, and we compared them
with BiTSC to justify our choice of BiTSC as the proposed algorithm. The performance comparison is in
Section 3.1.

1. Bipartite spectral clustering with kernel enhancement (Spectral-kernel). This algorithm applies kernel
enhancement followed by bipartite spectral clustering to the original bipartite network with node
covariates. Comparing it with BiTSC would help us evaluate the effectiveness of the subsampling-and-
aggregation approach taken by BiTSC.

2. Bipartite spectral clustering (Spectral). This algorithm removes the kernel enhancement step from
Spectral-kernel. Comparing it with Spectral-kernel would help us evaluate whether kernel enhancement
is useful.

3. BiTSC-1. This algorithm differs from BiTSC in terms of the timing of subsampling. Unlike BiTSC,
BiTSC-1 performs subsampling after applying kernel enhancement and bipartite spectral clustering to
the original bipartite network. The use of “1” in the algorithm name means that bipartite spectral
clustering is only applied for once. In detail, BiTSC-1 first performs kernel enhancement on the original
bipartite network with node covariates to obtain an enhanced bi-adjacency matrix B. BiTSC-1 next
applies bipartite spectral clustering, same as in BiTSC but without the last K-means clustering step,
to B to obtain V, an (m + n) ×K0 matrix. Then BiTSC-1 applies the subsampling-and-aggregation
approach to the (m + n) rows of V. Specifically, in the h-th run, h = 1, . . . ,H, BiTSC-1 has the
following three steps: (1) it randomly samples without replacement m̃ rows from the first m rows
of V and ñ rows from the last n rows of V; (2) it divides the subsampled (m̃ + ñ) rows into K0

initial co-clusters using the K-means algorithm with Euclidean distance; (3) it assigns the unsampled
(m− m̃+ n− ñ) nodes to the K0 initial co-clusters based on node covariates, same as in BiTSC. The
remaining steps of BiTSC-1, including the aggregation of these H sets of K0 node co-clusters into
a consensus matrix and the identification of tight node co-clusters, are the same as those of BiTSC.
Comparing BiTSC-1 with BiTSC will help us evaluate the effect of the timing of subsampling, i.e.,
whether performing subsampling before kernel enhancement and bipartite spectral clustering aids the
identification of tight node co-clusters.

4. BiTSC-1-nokernel. This algorithm removes the kernel enhancement step from BiTSC-1. Comparing it
to BiTSC-1 would help us evaluate whether kernel enhancement is useful given the subsampling-and-
aggregation approach.

5. BiTSC-1-NC. This algorithm modifies BiTSC-1 by changing how the unsampled nodes are assigned
into the K0 initial node co-clusters in each of the H runs. Specifically, BiTSC-1-NC only differs
from BiTSC-1 in step (3) of the h-th run, h = 1, . . . ,H, where BiTSC-1-NC assigns the unsampled
(m−m̃+n− ñ) nodes to the K0 initial node co-clusters based on their corresponding rows in V instead
of their covariates. In detail, BiTSC-1-NC calculates a mean vector for each initial node co-cluster
as the average of its corresponding rows in V; then BiTSC-1-NC assigns each unsampled node to the
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initial co-cluster whose mean vector has the smallest Euclidean distance to the node’s corresponding
row in V. Note that “NC” in the algorithm name means that “no covariates” is used in the assignment
step. Comparing BiTSC-1-NC with BiTSC-1 would help us evaluate the effect of using node covariates
in the assignment step.

6. BiTSC-1-NC-nokernel. This algorithm removes the kernel enhancement step from BiTSC-1-NC. When
compared to BiTSC-1-NC, it can help us evaluate whether kernel enhancement is useful in the absence
of node covariates in the assignment step.

In summary, the above six possible variants of BiTSC can help us evaluate the design of BiTSC. Three
variants pose contrasts to BiTSC in three aspects: Spectral-kernel does not use the subsampling-and-
aggregation approach; BiTSC-1 uses a different timing for subsampling; BiTSC-1-NC does not use node
covariates in the assignment of unsampled nodes to initial node co-clusters. The other three variants, Spec-
tral, BiTSC-1-nokernel, and BiTSC-1-NC-nokernel, remove the kernel enhancement from Spectral-kernel,
BiTSC-1, and BiTSC-1-NC respectively to evaluate the effectiveness of kernel enhancement.

S2 Data generation in simulation studies

Here we describe how we generate bipartite networks with node covariates in simulation studies (Section 3.1).
The generation process comprises three steps.

1. Network structure setup. To evaluate the capacity of BiTSC in detecting tight node co-clusters and
leaving out outlier nodes, we generate a bipartite network including two types of nodes: clustered nodes
in co-clusters and noise nodes that do not belong to any co-clusters. We consider K non-overlapping
node co-clusters, each of which contains n1 nodes from side 1 and n2 nodes from side 2. Hence, there
are Kn1 and Kn2 clustered nodes on side 1 and 2, respectively. We define θ as the ratio (# of noise
nodes)/(# of clustered nodes). Then there are bθKn1c and bθKn2c noise nodes on side 1 and 2,
respectively. Therefore, the bipartite network contains a total of m = Kn1 + bθKn1c nodes on side 1
and n = Kn2 + bθKn2c nodes on side 2.

2. Edge generation. We generate independent binary edges between nodes by following a stochastic block
model [Nowicki and Snijders, 2001]: if two nodes belong to the same co-cluster, an edge between them
is drawn from Bernoulli(p), where p ∈ (0, 1) is the within-cluster edge probability; otherwise, an edge
is drawn from Bernoulli(q), where q ∈ (0, p) is the not-within-cluster edge probability smaller than p.
A larger q/p ratio would lead to a more obscure node co-cluster structure in the resulting bipartite
network.

3. Covariate generation. We generate covariate vectors for clustered nodes and noise nodes separately.
First, we assume that nodes in each co-cluster on each side have covariate vectors following a multi-
variate Gaussian distribution. In detail, for the n1 nodes in the k-th co-cluster on side 1, we indepen-
dently draw n1 vectors of length p1 from a p1-dimensional Gaussian distribution N (µ1k, (ω1k)2Ip1

),
k = 1, . . . ,K. Note that the larger the co-cluster index k, the more spread out the n1 covariate
vectors are around the mean µ1k. The K co-cluster mean vectors on side 1, µ11, . . . ,µ1K , are in-
dependently drawn from a p1-dimensional Gaussian prior N (0, σ2

1Ip1
). Nodes in co-clusters on side

2 are simulated similarly from K p2-dimensional Gaussian distributions N (µ2k, (ω2k)2Ip2
), with the

co-cluster mean vectors on side 2, µ21, . . . ,µ2K , independently drawn from a p2-dimensional Gaus-
sian prior N (0, σ2

2Ip2
). Second, for noise nodes that do not belong to any co-clusters on each side,

we randomly generate their covariate vectors from uniform distributions defined by the ranges of the
already-generated covariate vectors of clustered nodes. In detail, on side 1, we take the Kn1 clustered
nodes and define a range based on their values in each of the p1 dimensions. Then we independently
draw bθKn1c scalars uniformly from the range of each dimension to construct bθKn1c covariate vectors
of length p1. Similarly, we simulate covariate vectors of noise nodes on side 2.

In summary, the data generation process requires the following input parameters: K, the number of true
co-clusters; nr, the number of nodes in each co-cluster on side r; θ, the ratio of the number of noise nodes
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over the number of clustered nodes; p, the within-cluster edge probability; q, the not-within-cluster edge
probability; pr, the dimension of covariate vectors on side r; ωr, the parameter for within-cluster variance
on side r; σ2, the variance parameter for generating co-cluster mean vectors on side r, r = 1, 2.

We simulated an example bipartite network using the approach described above, with H = 50, n1 = 50,
n2 = 70, p1 = p2 = 2, σ1 = σ2 = 10, ω1 = ω2 = 0.1, θ = 0.5, q/p = 5, and q = 0.03. Figure S5a-b illustrate
the bi-adjacency matrix and the true co-membership matrix of this simulated network. Figure S5c-d show
the node covariates.

S2.1 Average degree

Within each of the K true co-clusters, there are n1 and n2 nodes on side 1 and 2, respectively. The noise
node ratio is denoted by θ; that is, there are bn1Kθc and bn2Kθc noise nodes on side 1 and 2. Hence, in
total there are m = n1K + bn1Kθc nodes on side 1 and n = n2K + bn2Kθc nodes on side 2. Recall that
A = (aij)m×n is the bi-adjacency matrix. Let λ1i =

∑n
j=1 aij and λ2j =

∑m
i=1 aij be the degree of node i

on side 1 and node j on side 2, respectively. Then, the average degree of the network is

λ =

∑m
i=1 λ1i +

∑n
j=1 λ2j

m+ n
=

2
∑m

i=1

∑n
j=1 aij

m+ n
. (S1)

S3 Evaluation metric of clustering result

In the simulation study (Section 3.1), we use the weighted Rand index [Thalamuthu et al., 2006], which
the extension of the adjusted Rand index [Rand, 1971, Hubert and Arabie, 1985], to evaluate the clustering
result by comparing the identified co-clusters to the true co-clusters. The weighted Rand index was developed
for the case where noise nodes exist and should stay unclustered. We use V = {V1,V2, . . . ,VK ,VK+1} to
denote the true node cluster membership, where V1,V2, . . . ,VK indicate the K true co-clusters and VK+1

indicates the set of noise nodes. We use Ṽ = {Ṽ1, Ṽ2, . . . , ṼC , ṼC+1} to denote the clustering result, where
Ṽ1, Ṽ2, . . . , ṼC indicate the C identified co-clusters and ṼC+1 represents the set of unclustered nodes.

Thalamuthu et al. proposed two types of adjusted Rand index. The first one, Rand1(V, Ṽ), considers
VK+1 and ṼC+1 as two regular clusters:

Rand1(V, Ṽ) =

∑K+1
i=1

∑C+1
j=1

(
Nij

2

)
−
∑K+1

i=1

(
Ni·
2

)∑C+1
j=1

(
N·j
2

)
/
(
N
2

)
0.5
[∑K+1

i=1

(
Ni·
2

)
+
∑C+1

j=1

(
N·j
2

)]
−
∑K+1

i=1

(
Ni·
2

)∑C+1
j=1

(
N·j
2

)
/
(
N
2

) ,
where Nij = |Vi ∩ Ṽj |, Ni· =

∑C+1
j=1 Nij , N·j =

∑K+1
i=1 Nij , and N =

∑K+1
i=1

∑C+1
j=1 Nij . Note that N denotes

the total number of nodes.
The second index Rand2(V, Ṽ) ignores VK+1 and ṼC+1:

Rand2(V, Ṽ) =

∑K
i=1

∑C
j=1

(
Nij

2

)
−
∑K

i=1

(
Ñi·
2

)∑C
j=1

(
Ñ·j
2

)
/
(
Ñ
2

)
0.5
[∑K

i=1

(
Ñi·
2

)
+
∑C

j=1

(
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2
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−
∑K

i=1

(
Ñi·
2
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(
Ñ·j
2

)
/
(
Ñ
2

) ,
where Ñi· =

∑C
j=1Nij , Ñ·j =

∑K
i=1Nij and Ñ =

∑K
i=1

∑C
j=1Nij .

Rand1(V, Ṽ) is biased against clustering methods that do not allow unclustered nodes, especially when
the number of noise nodes is large. On the other hand, Rand2(V, Ṽ) is biased against clustering methods
that allow unclustered nodes. To balance the two, the weight Rand index was proposed as a weighted sum
of the two indices [Thalamuthu et al., 2006]:

Rand(V, Ṽ) = λ · Rand1(V, Ṽ) + (1− λ) · Rand2(V, Ṽ) , (S2)

where λ = |VK+1 ∪ ṼC+1|/N .
We implemented the weighted Rand index by using the adjusted rand score function in the Python

package sklearn [Pedregosa et al., 2011].

3



S4 Robustness analysis of input parameters

Figure S6 shows the robustness analysis of BiTSC and its three variants: Spectral-kernel, BiTSC-1, and
BiTSC-1-NC, against input parameters K0 (the number of co-clusters in each subsampling run), ρ (the
subsampling proportion), and τ (the kernel enhancement parameter), in the simulation setting (Section S2).
We observe that BiTSC is robust to the choice of K0 when K0 is larger than K, the number of true co-
clusters. BiTSC outperforms the three variants when ρ is larger than 0.7, and BiTSC is robust to the choice
of τ . Hence, we set ρ = 0.8 and τ = (1, 1) as the default input parameters in BiTSC.

Interestingly, BiTSC-1-NC has weighted Rand indices that are extremely close to those of Spectral-
kernel and invariant to ρ in Figure S6b. Spectral-kernel does not use subsampling, so it is expected to have
a constant weighted Rand index invariant to ρ. However, BiTSC-1-NC uses subsampling, so its weighted
Rand index should depend on ρ. We investigated this phenomenon and found that BiTSC-1-NC has weighted
Rand indices not exactly the same but very close in values:

ρ Weighted Rand index
0.3 0.7708656319227645
0.4 0.7706005330861144
0.5 0.7710055546541685
0.6 0.7711873136856517
0.7 0.7712402375720288
0.8 0.7713976529947345
0.9 0.7715965812884181

This result suggests that BiTSC-1-NC, where we only do subsampling on V and do not use node covariates
but only rows in V to assign unsampled nodes in each subsampling run (Section S1), is very robust to ρ and
highly similar to Spectral-kernel. This result is consistent with what we observed in Figure 2.

We further verified the robustness of BiTSC against τ in simulated networks with various sparsity levels
(Figure S7). The performance of BiTSC and the three variants consistently peak near τ = 0 and decrease as
τ increases. This is within our expectation: in these simulated bipartite networks, the covariate information
is consistent with the edge information, i.e., the true co-clusters feature both dense edges between species and
similar covariates within species (Section S2); therefore, a smaller τ means better performance (Section 2.2).
We also observe that the smaller p is, i.e., the lower the edge density, the more quickly the performance of
BiTSC and the three variants drops as τ increases, demonstrating the importance of incorporating covariate
information in the kernel enhancement step especially when edge density is low.

Interestingly, as is the most obvious in Figures S7c–h, as τ keeps increasing, eventually the performance
of the three variant algorithms surpass the performance of BiTSC. This is because in the three variant
algorithms, kernel enhancement is performed prior to subsampling (or in the case of spectral-kernel, no
subsampling is done) (Section S1). Hence, utilizing covariate information from all of the nodes in the
bipartite network can make up for a large τ to a certain extent.

S5 Data processing in the real data application

In the real data application of BiTSC (Section 3.2), the D. melanogaster (fly) and C. elegans (worm) data
set consists of two parts: gene expression data and gene orthology information. For gene expression data,
we started with 15,095 fly protein-coding genes’ expression levels across 30 developmental stages and 44,969
worm protein-coding genes’ expression levels across 35 developmental stages. Note that the gene expression
levels are in the FPKM (Fragments Per Kilobase of transcript per Million mapped reads) unit and were pro-
cessed from RNA-seq data collected by the modENCODE Consortium [Gerstein et al., 2014, Li et al., 2014].
For gene orthology information, we started with 11,403 ortholog pairs between the above mentioned fly and
worm genes (obtained and processed from the TreeFam database [Li et al., 2006, Li et al., 2014]). Then we
removed all the fly and worm genes that have zero expression levels across all the developmental stages and
have no orthologous genes, leaving us with 5,414 fly genes, 5,731 worm genes, and 10,975 ortholog pairs.
After that, we performed the logarithmic transformation on the gene expression levels and standardized
the transformed levels by subtracting the mean and dividing the standard deviation for every gene (Section
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S5.1). Finally, we built a bipartite network of fly and worm genes by connecting orthologous genes, and we
collected every gene’s standardized expression levels into its node covariate vector. In this resulting bipartite
network with node covariates (Table 2), m = 5, 414, n = 5, 731, p1 = 30, and p2 = 35. The average degree
of this bipartite network is 1.97 (Section S2.1).

S5.1 Processing of gene expression levels

Gene expression values in the FPKM unit are typically highly skewed with the presence of extremely
large values. Logarithmic transformation has been widely used to transform FPKM values to reduce
the effects of outliers and to make the transformed values more normally distributed [Zwiener et al., 2014,
Danielsson et al., 2015, Pertea et al., 2016]. Following the notations in Section 2.1, for gene i on side r, we
constructed its j-th covariate as

xrij =
lrij − l̄ri·√∑pr

j=1(lrij − l̄ri·)2/(pr − 1)
, (S3)

where lrij = log2(FPKMrij +1) and l̄ri· =
∑pr

j=1 lrij/pr. In other words, the gene covariates are standardized
log-transformed FPKM values. We used these covariates in our fly-worm data analysis in Section 3.2.

S6 Choice of K0 in the real data application

In our simulation study in Section S4, we observed that BiTSC is robust to K0 values above K, the number
of true co-clusters. However, in real data applications, we do not know K. Here we explain how we used
the consensus distribution [Monti et al., 2003, Cowell, 2011] to choose K0 = 30 in the real data application
(Section 3.2).

The idea of using the consensus distribution to guide the choice of K0 is the following: since the entries
of the consensus matrix M̄ lie between 0 and 1, with each entry indicating how frequently two nodes are
grouped together across multiple clustering results, a good K0 should lead to many entries in the consensus
matrix equal to 0 or 1 and few having fractional values in between. In other words, if we plot a histogram of
the consensus matrix obtained for a good K0, it would present a bimodal shape with two bins concentrated
at 0 and 1. To better quantify this concentration of the consensus distribution, [Monti et al., 2003] used
both the empirical cumulative distribution function (CDF) (Figure S8 (a)) of a consensus matrix entries
and the area under CDF as the guidance to select K0. In particular, the CDF corresponding to a good K0

should present the shape with 2 increases (one increase at 0 and one increase at 1) and a horizontal line in
between, and this bimodal shape would keep stable as K0 past K (if known). In general, by inspecting the
area under CDF curve (Figure S8b) to see where does the progression reach stable, users could decide an
appropriate number of clusters as K0.

Following the same sense, BiTSC provides an efficient way to select K0 based on the idea of binary search
(details in Algorithm S1). The rationale of Algorithm S1 is among a range of K0’s, we want to find the
value of K0 corresponding to which the CDF of the consensus matrix reaches stable at the earliest. In the
real data analysis (Section 3.2), when we initialize K0 min = 10 and K0 max = 50 (H = 48, ρ = 0.8 and
τ = (1, 1)), Algorithm S1 selects 30 as the final input for K0. To further verify the rationality in Algorithm
S1, we applied BiTSC (H = 48, ρ = 0.8 and τ = (1, 1)) to the fly-worm data, with K0 ranging from 2
to 50. For each K0 and its resulting consensus matrix, we plotted the empirical cumulative distribution
function (CDF) of the matrix entries in Figure S8a. We also plotted the area under CDF curve as a function
of K0 in Figure S8b. From the result, we can observe that distribution of entries in the consensus matrix
corresponding to K0 = 30 concentrates at 0 and 1, and the area under the CDF curve plateaus after this
point.

S7 Statistical analysis of identified gene co-clusters

Here we introduce three hypothesis tests, which are designed to analyze the gene co-clusters identified by
BiTSC in the real data application (Section 3.2). The three tests are from [Li et al., 2014] and described
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in detail below. Note that we only include biological process (BP) gene ontology (GO) terms in the GO
term enrichment test and the GO term overlap test for ease of interpretation. The GO terms are from the
R package GO.db [Carlson, 2019].

S7.1 GO term enrichment test

Given a gene co-cluster, the GO term enrichment test is to check for each species, whether a GO term is
enriched in this co-cluster relative to all the genes in that species. The top enriched GO terms would indicate
the biological functions of this co-cluster in each species.

Suppose that there are u genes of species 1 in this co-cluster, v of which are annotated with a given GO
term. Also suppose that species 1 has a total of U genes, V of which are annotated with the same GO term.
The null hypothesis is that this GO term has the same enrichment level in the u genes as in the U genes,
i.e., the u genes are randomly sampled from the U genes. The alternative hypothesis is that this GO term
is more enriched in the u genes relative to the U genes. Under the null hypothesis, X, the number of genes
that are annotated with this GO term among any u genes, follows a hypergeometric distribution with the
following probability mass function

P (X = x) =

(
V
x

)(
U−V
u−x

)(
U
u

) , x = 0, 1, · · · ,min(V, u) .

Hence, this test has a P -value defined below and denoted by P1.

P1 = P (X ≥ v) =

min(V,u)∑
x=v

(
V
x

)(
U−V
u−x

)(
U
u

) .

We implemented this test, which is equivalent to the one-tail Fisher’s exact test, using the R package
topGO [Alexa and Rahnenfuhrer, 2019].

S7.2 GO term overlap test

Given a gene co-cluster, the GO term overlap test is to check whether the genes from the two species share
similar biological functions, i.e., whether the two sets of genes have a significant overlap in their annotated
GO terms.

Specifically, for this co-cluster, we denote by A and B the sets of GO terms associated with its genes in
species 1 and 2, respectively. We define a population of N GO terms as the set of terms associated with
any genes in species 1 or 2. The null hypothesis is that A and B are two independent samples from the
population, i.e., the common GO terms shared by two species in this co-cluster is purely due to a random
overlap. The alternative hypothesis is that A and B are positively dependent samples. Under the null
hypothesis that two samples with sizes |A| and |B| are independently drawn from the population, Y , the
number of common GO terms shared by the two samples, has the following probability mass function

P (Y = y) =

(
N
y

)(
N−y
|A|−y

)(
N−|A|
|B|−y

)(
N
|A|
)(

N
|B|
) , y = 0, 1, · · · ,min(|A|, |B|) .

Hence, this test has a P -value defined below and denoted by P2.

P2 = P (Y ≥ |A ∩B|) =

min(|A|,|B|)∑
y=|A∩B|

(
N
y

)(
N−y
|A|−y

)(
N−|A|
|B|−y

)(
N
|A|
)(

N
|B|
) .

S7.3 Ortholog enrichment test

Given a gene co-cluster, the ortholog enrichment test is to check whether the genes from the two species are
rich in orthologs. This test will work as a sanity check for BiTSC, which is expected to output co-clusters
enriched with orthologs.

For example, given D. melanogaster (fly) and C. elegans (worm), the two species in our real data
application (Section 3.2), we denote the population of ortholog pairs between fly and worm by O =
{(f1, w1), · · · , (fM , wM )}, where fi and wi are the fly gene and worm gene in the i-th ortholog pair. Note
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that f1, . . . , fM contain repetitive genes and so do w1, · · · , wM . Given a co-cluster, F denotes its set of fly
genes, and F ′ = {(fi, wi) : fi ∈ F} denotes the set of ortholog pairs whose fly genes are in F . Similarly, W
denotes the set of worm genes in this co-cluster, and W ′ = {(fi, wi) : wi ∈ W} denotes the set of ortholog
pairs whose worm genes are in W . Note that F ′ ∩W ′ is the set of ortholog pairs between fly genes in F and
worm genes in W . The null hypothesis is that F ′ and W ′ are two independent samples from O, i.e., their
common ortholog pairs in F ′ ∩W ′ are purely due to a random overlap. The alternative hypothesis is that
F ′ and W ′ are positively dependent samples. Under the null hypothesis that two samples with sizes |F ′|
and |W ′| are independently drawn from O, Z, the number of ortholog pairs shared by the two samples, has
the following probability mass function

P (Z = z) =

(
M
z

)(
M−z
|F ′|−z

)(
M−|F ′|
|W ′|−z

)(
M
|F ′|
)(

M
|W ′|

) , z = 0, 1, · · · ,min(|F ′|, |W ′|) .

Hence, this test has a P -value defined below and denoted by P3.

P3 = P (Z ≥ |F ′ ∩W ′|) =

min(|F ′|,|W ′|)∑
z=|F ′∩W ′|

(
M
z

)(
M−z
|F ′|−z

)(
M−|F ′|
|W ′|−z

)(
M
|F ′|
)(

M
|W ′|

) .

S8 Computational time

Under Ubuntu 16.04.6 LTS (GNU/Linux 4.4.0−157−generic x86 64), the computational time for the real
data analysis (Section 3.2) is: BiTSC with a single subsampling run took 161 seconds using a single core,
and OrthoClust took 258 seconds.

S9 Supplementary Materials

• Folder Code: R code for reproducing the statistical analysis in Section 3.2

– P 1.R: R code to perform the GO term enrichment test (Section S7.1) within each co-cluster. The
results are in the folder P1

– P 2.R: R code to perform the GO term overlap test (Section S7.2). The results are in P 2.xls

– P 3.R: R code to perform the ortholog enrichment test (Section S7.3). The results are in P 3.xls

• Folder FlyWorm Result:

– Folder P 1

– P 2.xls

– P 3.xls

• Folder Figures:

– heatmap.pdf: In the application of BiTSC to the fly-worm bipartite network with input param-
eters H = 100, ρ = 0.8, and K0 = 30, we varied the value of α in the set

{1.0, 0.98, 0.96, 0.94, 0.92, 0.90, 0.88, 0.86, 0.84}

For each α value, we collected the nodes in the resulting tight co-clusters, which we required to
have at least 10 nodes on each side, and plotted a heatmap of the submatrix of M̄ that corresponds
to these nodes. Then we compared the number of visible blocks in the heatmap with the number
of tight co-clusters. Our goal was to choose a large α value for which the two numbers are close,
and we chose α = 0.9 for our analysis in Section 3.2.
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BiTSC
OrthoClust (rank=1,    =1)
OrthoClust (rank=1,    =5)
OrthoClust (rank=3,    =1)
OrthoClust (rank=3,    =5)
OrthoClust (rank=5,    =1)
OrthoClust (rank=5,    =5)

Figure S1: Performance of BiTSC vs. OrthoClust. This figure is an extension of Figure 2. The only difference
is that in Figure 2, genes in identified co-clusters that only contain genes from one species are considered
noise genes in the calculation of the weighted Rand index, just like unclustered genes. Here, we only consider
unclustered genes as noise genes. BiTSC outperforms OrthoClust in a wide range of simulation settings.

Algorithm S1: Automatic selection of K0 in BiTSC

Result: K0

Input: H, ρ, and τ for BiTSC; candidate K0’s in the interval [a, b] (default [5, 50])

Initialization:

K0 min = a and K0 max = b, K0 mid =
⌈
K0 min+K0 max

2

⌉
;

Calculate AUC K0 min and AUC K0 max as follows:

1. Run BiTSC with H = H, ρ = ρ, τ = τ , and K0 = K0 min to obtain the consensus matrix;

2. Plot the empirical cumulative distribution function (CDF) of the entries of the consensus matrix;

3. Calculate the area under the CDF curve and define it as AUC K0 min;

4. Obtain AUC K0 max similarly based on Step 1-3;

while True do

if |AUC K0 min−AUC K0 max|
AUC K0 min ≤ 0.05 then

Return K0 mid as the selected K0;
else

K0 mid =
⌈
K0 min+K0 max

2

⌉
, calculate AUC K0 mid based on Step 1-3;

if | AUC K0 min−AUC K0 mid | ≥ | AUC K0 mid−AUC K0 max | then
K0 min← K0 mid; K0 max← K0 max;
AUC K0 min← AUC K0 mid; AUC K0 max← AUC K0 max;

else

K0 min← K0 min; K0 max← K0 mid;
AUC K0 min← AUC K0 min; AUC K0 max← AUC K0 mid;

end

end

end
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Figure S2: Top five enriched BP GO terms in each of the 16 fly-worm gene co-clusters identified by BiTSC
(Section 3.2). (a) GO terms enriched in fly genes of each co-cluster. (b) GO terms enriched in worm genes
of each co-cluster. The P -value (P1 value) of each GO term is computed by the GO term enrichment test
(Section S7.1). Smaller P1 values are shown in darker colors to indicate stronger enrichment. For each
co-cluster, the top enriched GO terms common to fly and worm are highlighted in green.
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Figure S3: Boxplots of pairwise Pearson correlation coefficients in each species within each of the 16 fly-worm
gene co-clusters identified by BiTSC (Section 3.2). In each co-cluster, the Pearson correlation coefficient is
computed for every two genes of the same species based on their expression levels, i.e., covariate vectors.

Table S1: Fly-worm gene co-clusters identified by OrthoClust (Section 3.2)

Co-cluster1 # of genes # of genes P2
2 P3

3 Average PPC4 Average PPC Average PPC5

Fly Worm Fly Worm Total
1 216 4 2.54e-03 1.25e-07 0.52758649 0.27495886 0.52752971
2 296 5 4.39e-02 1.14e-08 0.11182023 -0.09538319 0.11177321
3 999 3 9.57e-01 6.71e-04 0.51022172 -0.22759466 0.51021819
4 449 3 3.95e-02 6.07e-05 0.54076835 0.30057179 0.54076212
5 646 5 2.14e-01 4.88e-05 0.06707985 0.20971478 0.06708681
6 530 3 3.47e-01 9.99e-05 0.25106598 0.03598257 0.25106156
7 8 502 4.07e-03 1.34e-11 0.77520991 0.61604135 0.61608481
8 3 442 6.34e-02 5.79e-05 0.46570141 0.52308973 0.52308803
9 2 610 4.44e-01 2.86e-03 0.51949823 0.38322655 0.38322734
10 265 286 1.47e-08 9.72e-110 0.78480461 0.33437622 0.58870568
11 79 105 1.18e-08 1.10e-179 0.90816313 0.62631328 0.7687559
12 5 675 3.37e-03 7.17e-07 0.35234373 0.60067804 0.60066888
13 5 864 2.27e-02 1.54e-04 0.56978234 0.40720803 0.40721284
14 4 467 2.58e-04 2.78e-06 0.13064446 0.51414297 0.51412525

1 With κ = 1, OrthoClust outputs a total of 24 clusters, among which 14 co-clusters have ≥ 2 genes in each
species.

2 P -value of the co-cluster based on the GO term overlap test (Section S7.2).
3 P -value of the co-cluster based on the ortholog enrichment test (Section S7.3).
4 The average pairwise Pearson correlation (PPC) is computed for all fly gene pairs in each co-cluster.
5 The average PPC is computed for all gene pairs of the same species in each co-cluster. Values in this column

are shown in Figure 3b-c.
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Figure S4: Workflow of BiTSC (Section 2.2).
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Figure S5: The simulated bipartite network described in Section S2. (a) The bi-adjacency matrix. (b) The
true co-membership matrix. In both matrices, entries of ones are shown in blue colors. Nodes belonging to
the same true co-cluster are ordered next to each other. (c) The node covariates on side 1. (d) The node
covariates on side 2. Each point corresponds to one node, and the two axes represent the two dimensions of
node covariates. Nodes in the 15 true co-clusters are marked in blue, and noise nodes not belonging to any
co-clusters are marked in red.
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Figure S6: Clustering performance (weighted Rand index) of BiTSC and three variant algorithms (Section S1)
as functions of (a) K0, the number of clusters in each run, (b) the subsampling proportion ρ, and (c) the
kernel enhancement parameter τ . A bipartite network was simulated as described in Section S2 using K = 15,
n1 = 50, n2 = 70, p1 = p2 = 2, σ1 = σ2 = 10, ω1 = ω2 = 0.1, θ = 0.5, p = 0.15, and q = p/5. We set
H = 50 and α = 0.7 whenever applicable. For (a), we set ρ = 0.8 and τ = (1, 1). For (b), we set K0 = 15
and τ = (1, 1). For (c), we set K0 = 15 and ρ = 0.8.

Table S2: Fly-worm gene co-clusters identified by OrthoClust (Section 3.2)

Co-cluster1 # of genes # of genes P2
2 P3

3 Average PPC4 Average PPC Average PPC5

Fly Worm Fly Worm Total
1 412 4 3.14e-01 1.68e-06 0.1812038 -0.05888426 0.1811872
2 417 2 1.00e-00 1.33e-03 0.24701688 -0.08194976 0.2470133
3 216 16 1.11e-06 3.51e-16 0.52421706 0.29469462 0.5231781
4 412 3 4.16e-02 4.68e-05 0.115830253 -0.05725930 0.1158242
5 900 5 8.00e-01 3.03e-06 0.51815480 0.08545191 0.518146
6 650 2 2.93e-01 3.24e-03 0.63868879 0.41859354 0.6386879
7 4 692 3.35e-05 1.35e-05 -0.13076364 0.5729412 0.572928
8 4 734 2.15e-01 1.70e-05 0.021641929 0.473630719 0.4736222
9 250 361 3.40e-04 1.20e-151 0.78019168 0.33264337 0.5172098
10 6 1067 2.32e-01 3.94e-05 0.49751377 0.42596621 0.4259682
11 2 427 2.72e-01 1.40e-03 -0.64244048 0.10860390 0.1085944
12 78 99 1.23e-06 3.40e-176 0.92014421 0.70566047 0.8179273
13 2 517 1.00e-00 2.05e-03 -0.796179190 0.240137690 0.2401283
14 2 692 1.14e-01 2.23e-04 0.296111471 0.50715018 0.5071478

1 With κ = 3, OrthoClust outputs a total of 22 clusters, among which 14 co-clusters have ≥ 2 genes in each
species.

2 P -value of the co-cluster based on the GO term overlap test (Section S7.2).
3 P -value of the co-cluster based on the ortholog enrichment test (Section S7.3).
4 The average pairwise Pearson correlation (PPC) is computed for all fly gene pairs in each co-cluster.
5 The average PPC is computed for all gene pairs of the same species in each co-cluster.
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Figure S7: Clustering performance (weighted Rand index) of BiTSC and three variant algorithms (Section S1)
as functions of τ (τ1 = τ2). For each of (a) through (h), a bipartite network was simulated following the
procedure described in Section S2 using K = 15, n1 = 50, n2 = 70, p1 = p2 = 2, σ1 = σ2 = 10, ω1 = ω2 = 0.1,
θ = 0.5, and q = p/5. For the input parameters of the algorithms, we set H = 50, ρ = 0.8, K0 = K = 15,
and α = 0.7 whenever applicable. Note that Figure S6c is a truncated version of panel (h) here.
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a b

Figure S8: (a) The empirical CDFs of the entries of the consensus matrix for K0 between 2 and 50 (in
increments of 5 after K0 passing 5) in the real data example (Section 3.2). (b) The area under CDF curve
as a function of K0. K0 = 30 was chosen.
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Figure S9: Robustness of the random selection of 1,000 unclustered genes in Figure 4. (a)-(d) Visualization
of the 16 gene co-clusters found by BiTSC, same as in Figure 4 except that four different random seeds were
used to sample the 1,000 unclustered genes.
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Co-cluster Fly gene3 Fly gene MF/CC GO terms Worm gene4 Worm gene MF/CC GO terms
D1065.1 Cytosol; transporter activity; membrane
D2021.2 Membrane; transferase activity
C09B8.6 M band; striated muscle dense body
D2092.4 Myofibril (part of: body wall muscle cell)
F09F7.2 Cytoskeleton; myosin complex

striated muscle myosin thick filament 
(part of: body wall muscle cell); 

F55C12.1 Cytoskeleton
W03A5.7 Nucleus (part of: body wall muscle cell)
W04D2.1 Striated muscle thin filament;

striated muscle dense body (part of: body wall muscle cell)
C37A2.7 Ribosome
C53H9.2 Cytosol
K02B2.5 Cytosol; ribosome
Y37E3.8 Ribosome; cytosolic large ribosomal subunit
C25H3.9 Mitochondrion
F35D11.5 Mitochondrion
F58F12.1 Mitochondrion; proton-transporting ATP synthase complex
F59C6.5 Mitochondrion
M176.3 Mitochondrion
R53.4 Mitochondrion; proton-transporting ATP synthase complex
T02H6.11 Oxidoreductase Activity; mitochondrion
Y48E1B.5 Mitochondrion
Y71H2AM.5 Mitochondrion
Y94H6A.8 Oxidoreductase Activity; mitochondrion
F25H5.6 Mitochondrion
M01F1.6 Mitochondrion
T21B10.1 Mitochondrion

FBgn0011016 Endoplasmic reticulum F44E7.9 Integral component of membrane
FBgn0019925 Endomembrane system F56A8.3 Integral component of membrane
FBgn0021795 Endoplasmic reticulum T04G9.5 Endoplasmic reticulum; endoplasmic reticulum membrane
FBgn0028327 Endoplasmic reticulum Y56A3A.21 Endoplasmic reticulum; integral component of membrane
FBgn0030990 Endomembrane system Y71F9AM.6 Endoplasmic reticulum; endoplasmic reticulum membrane
FBgn0034500 Endomembrane system
FBgn0039303 Transport/localization; endomembrane system
FBgn0010520 Nucleolus; small-subunit processome C37H5.5 Nucleus; nucleolus; chromatin binding
FBgn0030067 Nucleolus; preribosome, large subunit precursor F44G4.1 Nucleolus; preribosome, large subunit precursor
FBgn0030504 Nucleolus JC8.2 Nucleus
FBgn0031361 Small ribosomal subunit rRNA binding; 

nucleolus; small-subunit processome
T05H4.10 Nucleus

FBgn0033169 RNA binding T23D8.3 Nucleus; preribosome, small subunit precursor
FBgn0034528 Nucleic acid binding T23G7.3 Nucleic acid binding
FBgn0034734 Nucleolus; small-subunit processome Y54H5A.1 Nucleus
FBgn0037489 Chromatin binding; nucleus Y73E7A.2 Nucleus; nucleolus
FBgn0037561 ATP binding; RNA binding; nucleolus
FBgn0260456 mRNA binding; RNA binding; 

ribonucleoprotein complex
C27F2.1 Cell projection; cytoskeleton; cilium
C52B9.3 Cytoplasm; cytoskeletal protein binding
F56D12.4 Cytoplasm
K07E8.6 Cytoplasm
Y97E10AR.2 Plasma membrane
ZK643.1 Cytoplasm (part of: body wall muscle cell)

10 C32E8.5 Nucleus; mRNA binding
11 FBgn0013548 Nucleus C09H10.6 Nucleus
12 C17H11.1 G protein-coupled receptor activity

FBgn0034605 Transferase activity; UDP-glycosyltransferase activity;
intracellular membrane-bounded organelle

AC3.7 UDP-glycosyltransferase activity; transferase activity

FBgn0040252 Glucuronosyltransferase activity; transferase activity; 
UDP-glycosyltransferase activity

C10H11.3 Glucuronosyltransferase activity; 
UDP-glycosyltransferase activity;transferase activity

FBgn0040255  Glucuronosyltransferase activity; transferase activity;
UDP-glycosyltransferase activity

C32C4.7 UDP-glycosyltransferase activity; transferase activity

FBgn0040257 Glucuronosyltransferase activity; transferase activity; 
UDP-glycosyltransferase activity

H23N18.1 UDP-glycosyltransferase activity; transferase activity

T19H12.10 UDP-glycosyltransferase activity; transferase activity
T19H12.11 UDP-glycosyltransferase activity; transferase activity
Y49C4A.8 UDP-glycosyltransferase activity; transferase activity

14 FBgn0032169 Nucleic acid binding C25A1.4 Nucleic acid binding; RNA binding
16 D1009.5 Cell projection; cytoskeleton

ZK512.2 Nucleotide binding; nucleic acid binding;
RNA binding; ATP binding

FBgn0032800 Cell projection; cilium

Mitochondrion

13

Molecular Function (MF) or Celluar Component (CC) GO terms1 closely related to featured BP GO terms2 in each co-cluster

1. GO Terms Information is collected from FlyBase (flybase.org) and WormBase (wormbase.org). 
    The Terms are based on experimental evidence or predictions or assertions.
2. BP GO terms that are highly enriched in both species in a given co-cluster.
3. Fly genes (non-BP-GO-annotated) with MF/CC GO terms that are closely related to featured BP GO terms in the co-cluster. 
    Please see Supplementary Materials for the featured BP GO terms that the MF/CC GO terms in this table are closely related to.
4. Worm genes (non-BP-GO-annotated) with MF/CC GO terms that are closely related to featured BP GO terms in the co-cluster.

4

6

7

8

9

FBgn0052311 Cytoskeletal binding

1

2

3

FBgn0025336

Figure S10: MF and CC GO terms of the genes without BP GO terms in the 16 gene co-clusters identified
by BiTSC (Section 3.2).
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Figure S11: Comparison of BiTSC and OrthoClust in terms of their identified co-clusters (Section 3.2.1).
This figure is an extension of Figure 3. After running the OrthoClust algorithm, we kept the 14 co-clusters
with at least two genes in each species (Section 3.2.1; Table S1). The cluster sizes are between 184 and 1002.
For BiTSC, we set H = 100, ρ = 0.8, and τ = (1, 1) as we did in Section 3.2.1. Then we varied K0 between
5 and 10 and set α = 0.6 so that BiTSC outputs co-clusters with sizes comparable to those identified by
OrthoClust. For a given choice of K0 and α, we kept the co-clusters that have at least 10 genes from each
species and at least 200 genes total. Here, This figure shows that controlling for cluster size, the co-clusters
identified by BiTSC exhibit higher gene expression similarity (second column of each panel) and greater
enrichment of orthologs (third column of each panel).
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Figure S12: Comparison of BiTSC and OrthoClust in terms of link prediction performance on the fly-worm
data set (Section 3.2). From the 5414 fly genes and the 5731 worm genes in the fly-worm data set, we
sampled a proportion of fly genes and worm genes each, removed all edges among the sampled genes from
the original network, and run BiTSC on the remaining network with H = 100, ρ = 0.8, τ = (1, 1), and
K0 = 30 (the same parameters as we used in Section 3.2) as well as OrthoClust. The number of removed
edges divided by the number of edges in the original network (10, 975) is shown in the title of each plot.
For BiTSC, we performed link prediction by thresholding the consensus matrix with cutoffs between 0 and
1. For OrthoClust, we performed link prediction by connecting every pair of genes in the same identified
co-cluster. Denote the set of sampled fly genes as F and the set of sampled worm genes as W . Let F ′ ⊂ F
be the set of fly genes in F that are orthologous to at least one gene in W , and similarly, let W ′ ⊂ W
be the set of worm genes in W that are orthologous to at least one gene in F . That is, we removed the
“isolated” genes in F and W to obtain F ′ and W ′. Then, the link prediction performance of BiTSC and
OrthoClust was evaluated based on the set of all gene pairs between F ′ and W ′ and the ROC curves and
precision-recall curves were obtained accordingly. We chose to evaluate BiTSC and OrthoClust based on all
gene pairs between F ′ and W ′ instead of F and W due to the low edge density in the original network. If we
considered all gene pairs between F and W , then the negatives would overwhelm the positives in the truth.
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