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1 Supplementary Methods

1.1 Overview of experimental data

All analyses were carried out using the official IHEC human hg38/GRCh38 assembly
available at www.epigenomes.ca/data/CEMT/resources. We selected the following high
quality DEEP samples to include both closely related as well as more distantly related
cell types in our analysis: two replicates of HepG2 (HG 1 and 2; Supplementary Table
S1), two replicates of hepatocytes (He 2 and 3; Supplementary Table S1), three replicates
of monocytes (Mo 1, 3, and 5 [Wallner et al., 2016]) and two replicates of macrophages
(Ma 3 and 5 [Wallner et al., 2016]). All primary cell types were isolated from healthy,
adult donors. For each replicate, we downloaded the DEEP reference alignments for six
histone marks (H3K4me1, H3K4me3, H3K27ac, H3K27me3, H3K36me3, H3K9me3) and
the corresponding Input control as BAM files (Supplementary Table S1). Additionally,
we downloaded DEEP mRNA expression data for all samples as raw read FASTQ files
(Supplementary Table S2). The hg38 genome reference was restricted to fully assembled
auto- and gonosomes for all data preprocessing steps. The differential analysis with
SCIDDO was then limited to autosomes and chromosome X to alleviate any effects aris-
ing from the uneven distribution of sexes in our dataset. Annotation data were likewise
limited to the same set of chromosomes. The GeneHancer [Fishilevich et al., 2017] en-
hancer annotation was licensed for academic use on 2017-05-30. The GeneHancer anno-
tation was reduced to gene-enhancer pairs that could be mapped to gene identifiers in the
GENCODE v21 annotation [Harrow et al., 2012]. The analysis of chromatin dynamics at
enhancer regions was based on EP300 data downloaded from ENCODE [The ENCODE
Project Consortium et al., 2012] under accessions ENCFF674QCU and ENCFF806JJS.

1.2 Generation of chromatin state maps

Following IHEC recommendations, all histone BAM files were filtered using Sambamba
v0.6.6 [Tarasov et al., 2015] to exclude low quality reads (mapping quality ≥ 5; no dupli-
cated, unmapped or non-primary reads/alignments). These filtered BAM files were used
as input to generate chromatin state segmentation maps for all samples. We used the
pre-trained 18-state ChromHMM (CMM18) model provided by the Roadmap Epige-
nomics Mapping Consortium (REMC [The Roadmap Epigenomics Consortium et al.,
2015]). We decided to use this pre-trained model because it has been carefully designed
using the large compendium of epigenomes generated by the REMC. We thus assumed
that this model robustly captures chromatin states irrespective of the biological source
of the samples at hand. As an additional benefit, the chromatin states of the CMM18
model were functionally characterized and labeled by the REMC to make interpretation
of the state segmentation maps straightforward (Supplementary Figure S1 and Table
S3). We executed version 1.12 of ChromHMM with commands BinarizeBam -b 200

and MakeSegmentation -b 200 and otherwise default parameters to create the state
segmentation maps.
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1.3 Differential gene expression analysis

Gene expression estimates per replicate were computed with Salmon v0.9.1 [Patro et al.,
2017] using the GENCODE v21 [Harrow et al., 2012] annotation for protein coding
genes. For each gene in the GENCODE reference, we extracted genomic coordinates
for the gene body (5’ to 3’ end) and for the promoter (-2500 bp to +500 bp around
the 5’ end) using custom scripts (see section “Availability of raw data and code” for
link to sources). After expression quantification, we used DESeq2 v1.18.1 [Love et al.,
2014, Soneson et al., 2016] to obtain differential expression estimates for all six possible
pairs of sample replicate groups in our dataset. We split the DESeq2 results into groups
of differentially expressed genes (DEGs) and non-differentially expressed genes (stable
genes) based on an absolute log2 fold change in expression of at least 2 and a multiple
testing corrected p-value of less than 0.01.

1.4 Differential histone peak calling

We selected PePr [Zhang et al., 2014] as a current state-of-the-art tool for differential
chromatin analysis as a reference to compare to. We executed PePr v1.1.18 to perform
differential analysis including postprocessing for all six possible pairs of sample replicate
groups in our dataset. All available replicates were processed in a single run of PePr
for each comparison. PePr was executed with histone peak type set to broad for the
mark H3K36me3, and otherwise default parameters. The resulting histone peak sets
were filtered to peaks with a q-value of less than 0.01 using custom scripts (see section
“Availability of raw data and code” in the main text for link to sources).

1.5 Chromatin dynamics at EP300 peaks

EP300 peak datasets for HepG2 were downloaded from ENCODE [The ENCODE Project
Consortium et al., 2012] (ENCFF674QCU and ENCFF806JJS) and merged using bed-
tools v2.26.0 [Quinlan and Hall, 2010]. For the chromatin dynamics filtering, chromatin
states 7–11 (genic, active and weak enhancers) were considered as enhancer “on” states,
and chromatin states 13, and 15–17 (heterochromatin, bivalent enhancer and polycomb
repression) were considered as enhancer “off” states.

1.6 Generation of randomly sampled genomic regions

For each set of DCDs, we generated randomly sampled genomic regions as control set.
The DCDs were used as input to a custom script that generated a random sample of
genomic regions following the DCD length distribution. Since this process was performed
in parallel over chromosomes, the generated control regions resemble the DCDs both in
length and in chromosomal distribution. Additionally, the control regions for a specific
set of DCDs are disjoint (as DCDs are also disjoint by construction). To limit the
runtime of the sampling process, a lower limit of at least 95% generated control regions
was set (see section “Availability of raw data and code” in the main text for link to
sources).
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1.7 Algorithm 1: computation of length normalization factor L

The Expect (E) value of a differential chromatin domain is computed according to the
formula

E = K · L · e−λR (1)

where the value L is the length of the chromosomal sequence, R is the raw score of the
segment, and K and λ are the Karlin-Altschul parameters that are estimated by external
routines (see main text for references). The length normalization factor L is computed
as follows:

Algorithm 1: Compute length normalization factor L

Input: chromatin state maps for 2 sample groups (GROUPS), each consisting
of at least one replicate r

Output: Length normalization factor Lc per chromosome c

for c ∈ CHROMOSOMES do
Lc = 0
n = |c|
for G ∈ GROUPS do

states1...n = ∅
for r ∈ G do

Lc = Lc +
∑n

p=1 1(rp 6∈ statesp)
for p = 1 to n do

statesp = statesp ∪ sp
end

end

end
Lc = Lc − n

end

To give a simple and explicit example, consider the groupsG1 = {(A,B,B), (A,B,C), (A,B,A)}
and G2 = {(A,B,C), (A,B,C)}. Running Algorithm 1 on this dataset would result in
the following summation: G1 : 3+1+1 and G2 : 3+0 Lc = (3+1+1)+(3+0)−3 = 5.
Note that Algorithm 1 is used when SCIDDO’s parameter --adjust-group-length is
set to adaptive for the scan subcommand. This is the recommended setting for compar-
ing two groups of high-quality (replicated) samples. For cases where the sample groups
to be compared are heterogeneous, the --adjust-group-length parameter should be
set to linear. For the linear setting, the length normalization factor Lc will simply be
computed as Lc = |c| ·#comparisons. For the example above, the result would then be
Lc = 3 · 6 = 18.
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1.8 Fit of random scores to Gumbel-type extreme value distribution

The calculation of the E-value (see Materials and Methods in the main text) assumes
a null model of random sequences. Following the theory (cf. Theorem 1 in [Karlin
et al., 1990] and examples in [Karlin and Altschul, 1993]) the normalized maximal scores
should follow a Gumbel-type extreme value distribution when comparing random state
sequences, in the limit of the sequence length n. Since SCIDDO supports the use of
customized scoring schemes, it also supports the user in assessing if the chosen scoring
scheme follows this theoretical assumption. To that end, SCIDDO scans the randomly
shuffled chromatin state maps of all sample pairs for high scoring subsegments and
retains only the maximally scoring subsegment per chromosome; if several segments
with identical scores emerge, only the first one is kept. This process is iterated until a
pre-specified number of these “random” scores have been found. The scores underlying
Figure S2A have been generated in that way. The user can then use these “random”
scores and, e.g., assess their fit to a Gumbel-type extreme value distribution following
our example in Figure S2A. Notably, in Figure S2A, we jointly fitted all “random” scores
of all chromosomes to simplify the visualization.
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2 Supplementary Results

2.1 Differential chromatin scores follow extreme value distribution

The last step in the SCIDDO workflow described main Figure 1 consists of turning the
differential chromatin scores (DCSs) into an E-value that is used for filtering the set
of candidate regions to obtain the final set of differential chromatin domains (DCDs).
This step relies on theory developed for biological sequence analysis (see main text Ma-
terials and Methods) and requires first a normalization of the raw cumulative DCSs to
account for the fact that comparing longer chromosomal sequences increases the chances
of observing higher cumulative DCSs. This normalization uses two estimated statistical
parameters, λ and K. These parameters have no biological interpretation, but can be
thought of as scaling factors for the scoring system and the sequence length, respec-
tively. Moreover, the theory assumes a null model of random sequences, and under this
null model, the distribution of the scores should in the limit converge in distribution
to a Gumbel-type extreme value distribution (see main text Materials and Methods).
We confirmed that this is indeed the case in our analysis by comparing randomized
chromatin state maps with each other and fitting all maximal DCSs identified during
this sampling procedure to a Gumbel distribution (Figure S2A). We also plotted the
per-chromosome estimates of the statistical parameters λ and K that are needed for the
score normalization (Figure S2B; see Methods), and could confirm that the estimates
are within reasonable bounds given examples from literature [Karlin and Altschul, 1993].
The observed agreement with theory thus supports the last step in the SCIDDO analysis
(Main Figure 1 step (C)) of filtering candidate regions based on their E-value.

2.2 SCIDDO robustly identifies differential chromatin domains

Histone ChIP-seq data is known to be affected by various sources of noise, e.g., ranging
from artifacts introduced during library preparation, to irregularities caused by varying
mappability in the reference genome or to spurious signal due to unspecific antibody
binding [Bailey et al., 2013, Head et al., 2014, Landt et al., 2012]. In combination,
biological and technical variation can render any differential analysis pointless if the
results are dominated by noise, and not by the biological signal of interest. To test if
the identified candidate regions were indeed representative and not replicate-specific, we
computed the Spearman correlation of the E-values between all overlapping candidate
regions. We visualized an exemplary case selected based on the mean of all comparisons.
This exemplary case shows a Spearman correlation of 0.72 between the candidate regions
(Figure S3). The red bars in the lower left corner indicate candidate regions that are
unique to the respective replicate comparison. It can be observed that unique candidate
regions tend to have comparatively lower E-values whereas those candidate regions found
in both replicate comparisons tend to have higher E-values. In general, the average
Spearman correlations across all replicate comparisons are consistently in high range
from 0.67 (HepG2 vs. hepatocytes) to 0.73 (HepG2 vs. monocytes; Table S5).
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2.3 Chromatin state transitions in DCDs show consistent patterns of
changes in genomic activity

For all six sample comparisons, we plotted the chromatin state transitions observed
in the identified DCDs to examine if the overall change in chromatin activity showed
comparison-specific characteristics (Figure S4). The chromatin state transition frequen-
cies indicate a general trend that activity states related to transcription and transcrip-
tional regulation are down-regulated by, e.g., polycomb-mediated silencing. For the four
comparisons involving one liver and one blood cell type (Figure S4 B–E), a switch from
polycomb-repressed to heterochromatin can also be observed quite frequently, indicat-
ing long-term silencing of the respective region. The state transitions for the monocytes
versus macrophages comparison seem to show a different overall pattern, with more
state switches within the borad functional categories related to (active) transcription
and transcriptional regulation. In other words, when comparing more distantly related
cell types, the identified DCDs seem to indicate rather broad changes in genomic activity
including long-term silencing via heterochromatin formation. For the two closely related
cell types monocytes and macrophages, the chromatin state switches appear to be more
constrained to the respective functional activity level.

2.4 DCDs overlapping regulatory regions show higher E-values

The results presented in main Section 3.2 (“Differential chromatin domains occur in
variousregulatory contexts”) illustrate that the distribution of overlaps seems not to
be affected by the number of DCDs identified. In all comparisons (main Figure 2),
at least ∼70% of the DCDs overlap with at least one regulatory region annotated in
the Ensembl Regulatory Build [Zerbino et al., 2015]. The Regulatory Build comprises
several different types of regulatory regions and has extensive genome coverage. Hence,
the Regulatory Build enables us to interpret the relevance of DCDs in light of various
functional categories. Since the distribution of genomic locations of the DCDs seems
fairly similar across all comparisons, and analogous observations can be made when
examining the length distribution of the DCDs (Supplementary Figure S5), we examined
if there is a difference in DCD E-values aggregated over all comparisons (Supplementary
Figure S6). DCDs overlapping any regulatory region show higher E-values compared
to those DCDs that have no overlaps (Supplementary Figure S6, bottom panel). This
effect is most pronounced for annotated promoters and transcription factor binding sites
(TFBS), and this seems not to be an effect of regulatory region size (Figure S6, top
panel). The average number of distinct regulatory region overlaps per DCD shows that
a DCD often spans several of the shorter regulatory regions, with the exception of TFBS,
which is the least abundant region type with a median size < 1 kbp in the Regulatory
Build. At the other end of the size spectrum are promoters, which also show hardly any
variation around a median of one DCD overlap per promoter.
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2.5 Methodological and biological limitations for chromatin-based detection
of differentially expressed genes

The theory borrowed from local scoring and implemented in SCIDDO is used to assign
a measure of statistical stringency — the E-value — to each discovered DCD (see main
Materials and Methods). Yet, the theory does not offer a way to decide what threshold
on the E-value best separates genuine from chance observations. The necessary normal-
ization to account for the length of the sequences being compared immediately suggests
that short but biologically true differential regions will be assigned an (untransformed)
E-value above SCIDDO’s default threshold of 1.
We checked the extent to which the default E-value threshold of 1 could limit SCIDDO’s
ability to identify — especially short — DEGs. We binned all DEGs by their gene body
size and plotted the amount of genes with a DCD overlapping their gene body at E-value
thresholds of 1 and 100 (Supplementary Figure S13). The histogram shows the expected
behavior of SCIDDO to predominantly recover longer DEGs by means of finding a DCD
in their gene body. However, relaxing the E-value threshold seems not to affect this gen-
eral trend as the additional DEGs also show a tendency toward longer gene bodies. We
thus wondered if other technical or biological artifacts might exacerbate the detection of
DEGs on the chromatin level. We focused specifically on the comparison of monocytes
to macrophages where approximately only 54% of all DEGs could be recovered using
DCDs (see main Figure 3F).

As a first step, we examined if artifacts in the data could be the reason for the low DEG
recovery rate. Besides chromatin states with annotated function, chromatin state maps
usually include a so-called background state that represents regions of no detectable sig-
nal (state number 18 labeled as “quiescent” in the CMM18 model). It is important to
realize, though, that the interpretation of this background state is difficult. While it is
conceivable that technical problems caused this lack of a signal in certain regions of the
genome, it may be biologically meaningful in others. Moreover, the six canonical histone
marks included in this study certainly cover a wide range of functionally important chro-
matin signals, but they do not represent the entire regulatory chromatin landscape. To
give an example, the recently characterized H3K122ac histone modification is also found
at active enhancers that lack the canonical H3K27ac marking [Pradeepa, 2017]. Given
these uncertainties, we opted for a conservative approach and considered the background
state as not differential relative to all other chromatin states (see main Materials and
Methods).
We evaluated how many DEGs might not be recoverable under these conditions for
the monocyte to macrophage comparison. For each of the 1110 DEGs that could not
be recovered, we computed the percentage of the gene body length covered with the
background state (averaged over all replicates in the respective groups). We found that
close to a hundred genes that are covered to at least 60% with the background state are
shared between the monocyte and the macrophage group (Supplementary Figure S14A).
At a higher threshold of 80% body coverage, this number drops to 35 genes. Given that
this considers genes that are in the same uninformative chromatin state to roughly the
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same extent in all samples — and being differentially expressed at the same time — it
seems justifiable to assume that the non-detection of these genes is not a limitation of
SCIDDO. When focusing on the genes that are covered with the background state in
either monocytes or macrophages, the numbers rise considerably (Supplementary Fig-
ure S14B). 164 genes are above the lower threshold of at least 60% coverage, and when
raising the threshold to at least 80% coverage, 72 genes are still affected. In this scenario,
the non-detection of the DEGs is hence largely driven by the lack of a signal in one of
the two sample groups.

Considerations involving the background state might explain a few hundred cases of
DEGs that could not be recovered by SCIDDO. It follows that a considerable amount
of genes were assigned biologically meaningful chromatin states and yet were not de-
tectable.
We hypothesized that a plausible cause for this could be a comparatively weak change in
gene expression for non-detectable genes. When a gene is switched from “off” to “on”,
a substantial change in the histone marking can be expected. However, if the gene is
already actively transcribed and then simply upregulated, e.g., by activating additional
enhancer elements (cf. Supplementary Figures S7– S9), it is not obvious why this change
in expression should lead to differential chromatin marking in the gene body. We tested
this hypothesis by plotting the mean difference in expression, plus the minimal and
maximal expression level in any sample, for all DEGs in the monocyte to macrophage
comparison (Figure S14C–E). We split the genes into three groups based on DCD overlap
in their gene body, in any associated enhancers but not in the body and no DCD overlap
at all, i.e., the non-detectable genes. The mean change in gene expression is significantly
higher in genes overlapping with a DCD compared to those genes that have no differen-
tial chromatin marking. Interestingly, the minimal expression level (Figure S14D) is still
relatively high for those genes that show differential chromatin marking only in their en-
hancers. When relating the minimal to the maximal expression level (Figure S14D/E),
the change in expression can be characterized as follows: genes with a DCD in their
gene body jump from a low to a high expression level; genes with no DCD in their body
but in their enhancer(s) show increased expression relative to an already high level, and
genes with no DCD at all remain at a low to mildly elevated expression level. It should
be pointed out that the implied directionality is supported by the observed expression
changes for the monocyte to macrophage comparison (Supplementary Figure S8).

There is a multitude of mechanisms beyond the chromatin level that can fine-tune
gene expression [Coulon et al., 2013, Kim and Ren, 2006, Orphanides and Reinberg,
2002]. Given that the DEGs lacking any sign of differential chromatin marking show
also limited dynamics in their expression changes, we wondered whether there was any
evidence of post-transcriptional control of these genes. As control group, we selected
all genes that were not classified as differentially expressed but nevertheless showed
signs of differential chromatin marking in their gene body (N=760 for the monocyte to
macrophage comparison). We then plotted the number of annotated micro RNA targets
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using the TargetScan v7.2 [Agarwal et al., 2015] annotation for both groups of genes
(Supplementary Figure S15, bottom panel). There is indeed a small but statistically
significant difference in the number of annotated micro RNA targets per gene between
the two groups. This difference seems not to be caused by a difference in 3’-UTR length,
where it is actually the group of DEGs without an overlapping DCD that has the larger
3’-UTR regions on average (Supplementary Figure S15, top panel).
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3 Supplementary Figures
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Figure S1: CMM18 chromatin states: mnemonics and colors for the 18 chromatin
states of the ChromHMM CMM18 model provided by the REMC. See Ta-
ble S3 for more detailed state descriptions.
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Figure S4: Chromatin state transitions in DCDs: frequency of chromatin state
transitions observed in all DCDs for the respective sample comparison. State
labels abbreviated as defined in Figure S1 and Table S3. Only half of the tick
labels are shown for each heatmap to improve readability. Absolute counts
of observed chromatin state transitions were turned into relative frequencies
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six sample group comparisons. The vertical line (dashed) marks the 75th
percentile of the data. The DCD length is given in genomic bins à 200 bp
(x–axis) N : total number of identified DCDs in the respective comparison.
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Figure S6: E-value distribution of DCDs overlapping regulatory regions: (bot-
tom) box plots show distribution of E-values of all differential chromatin
domains overlapping regulatory region types as annotated in the Ensembl
Regulatory Build (v78) aggregated over all sample comparisons. Differences
in magnitude of E-values were assessed with two-sided Mann-Whitney-U test
and considered significant “*” at p < 0.01. (middle) box plots show dis-
tinct overlaps per DCDs, i.e., the number of regulatory regions of that type
overlapping the same DCD. (top) size distribution of the Ensembl regulatory
regions. Dashed line indicates a size of 1000 bp. Regulatory region types:
ctcf: CTCF binding sites; tfbs: transcription factor binding sites; open: re-
gions of open chromatin; enhancer: enhancer; flanking: promoter-flanking
regions; promoter: promoter
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Figure S7: DCD formation affects gene expression: (left) all 20,091 genes were
stratified by the amount of DCD overlap either covering more than 50% of
the body (body; orange curve) or less than 50% of the body or the pro-
moter region (partial; blue curve). Expression fold change of the genes in
the respective groups is plotted along the x-axis within a restricted window
for improved readability. Statistical significance of the difference in mean
fold change of the groups relative to the no overlap group (“none”) was com-
puted separately for negative and positive fold change genes using a two-sided
Mann-Whitney-U test (“*” significant with p < 0.01, “-” not significant oth-
erwise). (middle/right) same analysis as for the gene body, but here counting
the number of intra- and intergenic enhancers (anywhere, middle) or only
intergenic enhancers (right) per gene that overlap a DCD. Expression fold
changes plotted within a restricted window for improved readability. Statis-
tical significance assessed as above.
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Figure S8: DCD formation affects gene expression: (left) all genes were stratified
by the amount of DCD overlap either covering more than 50% of the body
(body; orange curve) or less than 50% of the body or the promoter region
(partial; blue curve). Expression fold change of the genes in the respective
groups is plotted along the x-axis within a restricted window for improved
readability. Statistical significance of the difference in mean fold change of the
groups relative to the no overlap group (“none”) was computed separately for
negative and positive fold change genes using a two-sided Mann-Whitney-U
test (“*” significant with p < 0.01, “-” not significant otherwise; “//”: not
enough data to compute test statistic). (middle/right) same analysis as for
the gene body, but here counting the number of intra- and intergenic en-
hancers (anywhere, middle) or only intergenic enhancers (right) per gene that
overlap a DCD. Expression fold changes plotted within a restricted window
for improved readability. Statistical significance assessed as above.
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Figure S9: DCD formation affects gene expression: (left) all genes were stratified
by the amount of DCD overlap either covering more than 50% of the body
(body; orange curve) or less than 50% of the body or the promoter region
(partial; blue curve). Expression fold change of the genes in the respective
groups is plotted along the x-axis within a restricted window for improved
readability. Statistical significance of the difference in mean fold change of the
groups relative to the no overlap group (“none”) was computed separately for
negative and positive fold change genes using a two-sided Mann-Whitney-U
test (“*” significant with p < 0.01, “-” not significant otherwise). (mid-
dle/right) same analysis as for the gene body, but here counting the number
of intra- and intergenic enhancers (anywhere, middle) or only intergenic en-
hancers (right) per gene that overlap a DCD. Expression fold changes plotted
within a restricted window for improved readability. Statistical significance
assessed as above.
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Figure S10: Differential chromatin domains recover differentially expressed
genes: bar heights indicate percentage of recovered differentially expressed
genes by counting overlaps with differential chromatin domains in gene bod-
ies, in gene promoters or in gene-associated enhancers (i.e., this allows for
multiple counts per DCD). The leftmost bar is annotated with the total
number of recovered genes. N : total number of differentially expressed
genes per comparison (A)–(F).
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Figure S11: E-value distribution in DEGs by gene expression change: genes were
stratified into four groups based on expression behavior (stable or differen-
tial) and the magnitude of expression change (lowest 40% [lo], middle 40%
[mi] and highest 20% [hi] of DEGs according to gene expression fold-change).
Bottom: boxplots show distribution of E-values of all DCDs overlapping
gene bodies in the respective groups aggregated over all sample compar-
isons. The no overlap group contains all E-values of DCDs not overlapping
any gene. Middle: boxplots show distinct DCD overlaps per gene. Top:
boxplots show gene body length distribution of all genes in the respective
group. Differences in magnitude of E-values were assessed with a two-sided
Mann-Whitney-U test and considered significant (*) with p < 0.01.
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Figure S12: E-value distribution in DEGs by gene body length: genes were strat-
ified into four groups based on expression behavior (stable or differential)
and their gene body length (shortest 40% [lo], middle 40% [mi] and longest
20% [hi] of DEGs according to gene body length). Bottom: boxplots show
distribution of E-values of all DCDs overlapping gene bodies in the respec-
tive groups aggregated over all sample comparisons. The no overlap group
contains all E-values of DCDs not overlapping any gene. Middle: boxplots
show distinct DCD overlaps per gene. Top: boxplots show gene body length
distribution of all genes in the respective group. Differences in magnitude
of E-values were assessed with a two-sided Mann-Whitney-U test and con-
sidered significant (*) with p < 0.01.
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Figure S13: Relaxing E-value threshold does not improve detection of short
DEGs: all DEGs for all six comparisons were binned based on their gene
body size (x-axis) and classified based on overlapping DCDs in their gene
body (y-axis). DCDs were called with the default threshold of E < 1 (blue)
and with a relaxed threshold of E < 100 (orange).

24



10 20 40 60 80 90

100

300

500

# 
DE

Gs
 w

/o
 D

CD

|Mo Ma|
(A)

10 20 40 60 80 90
>X % of gene body in quiescent state

100

300

500
max(|Mo|, |Ma|)

(B)

Bo
dy

En
h.

No
ne

50
100
150

Ex
pr

es
sio

n 
(T

PM
)

**
(C) mean difference

Bo
dy

En
h.

No
ne

DEGs (Mo v Ma) w/ and w/o DCD overlap

5

10

15 *n.s.
(D) min

Bo
dy

En
h.

No
ne

50
100
150
200

**
(E) max

Figure S14: Uninformative chromatin state in gene bodies and moderate
changes in expression complicate DEG recovery: (top) DEGs were
binned according to the fraction of gene body covered with the background
“quiescent” chromatin state (x-axis). (A) Height of bars depicts number
of genes in intersection between monocyte and macrophage samples. (B)
Height of bars depicts maximal number of genes either from monocyte or
from macrophage samples. (bottom) DEGs were stratified according to
DCD overlap in gene body/promoter (Body), or in at least one enhancer
(Enh.) or no DCD overlap (None). Box plots show distribution of gene
expression values for absolute mean differences (C) between monocyte and
macrophage samples, and for minimal expression (D) and for maximal ex-
pression (E) in any sample. Differences in magnitude were assessed using a
two-sided Mann-Whitney-U test and considered significant “*” at p < 0.01
and not significant (n.s.) otherwise.
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Figure S15: Difference in annotated miRNA targets and 3p UTR length: genes
overlapping a DCD in their gene body were split into two groups based on
expression behavior (stable or differential) for the monocyte to macrophage
comparison. (top) box plots show distribution of 3p UTR length as anno-
tated in Ensembl v78 for the genes in the respective groups. (bottom) box
plots show distribution of number of annotated miRNA targets per genes
in the respective groups (TargetScan v7.2). Differences in magnitude be-
tween the two groups were assessed with a one-sided Mann-Whitney-U test
(alternative less or greater as indicated) and considered significant “*” at
p < 0.01.
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Figure S16: SCIDDO shows more stable performance at detecting DEGs: box
plots depict SCIDDO’s and PePr’s (light grey) performance of detecting
DEGs quantified as F1 score (left) and as accuracy (right). Performance
values are summarized over all sample group comparisons and for different
thresholds on gene expression fold change (0.5, 1, 2 and 4) and on ad-
justed p-values (0.1, 0.05, 0.01 and 0.001) computed with DESeq2 to call
DEGs. At least one DCD/differential H3K36me3 peak (PePr) in the gene
body and at least three DCDs/differential H3K27ac peaks (PePr) in gene-
associated enhancers were required for a DEG to be considered detected
on the chromatin level. Differences in performance were assessed with a
one-sided Mann-Whitney-U test and considered significant “*” at p < 0.01
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Figure S17: SCIDDO shows more stable performance at detecting DEGs: box
plots depict SCIDDO’s and PePr’s (light grey) performance of detecting
DEGs quantified as F1 score (left) and as accuracy (right). Performance
values are summarized over all sample group comparisons and for different
thresholds on gene expression fold change (0.5, 1, 2 and 4) and on adjusted
p-values (0.1, 0.05, 0.01 and 0.001) computed with DESeq2 to call DEGs.
At least one DCD/differential H3K36me3 peak (PePr) in the gene body was
required for a DEG to be considered detected on the chromatin level. The
quiescent chromatin state was not treated as “not differential” by default
in the SCIDDO analysis. Differences in performance were assessed with a
one-sided Mann-Whitney-U test and considered significant “*” at p < 0.01
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Figure S18: SCIDDO shows more stable performance at detecting DEGs: box
plots depict SCIDDO’s and PePr’s (light grey) performance of detecting
DEGs quantified as F1 score (left) and as accuracy (right). Performance
values are summarized over all sample group comparisons and for different
thresholds on gene expression fold change (0.5, 1, 2 and 4) and on adjusted
p-values (0.1, 0.05, 0.01 and 0.001) computed with DESeq2 to call DEGs. At
least one DCD/differential H3K36me3 peak (PePr) in the gene body and at
least three DCDs/differential H3K27ac peaks (PePr) in gene-associated en-
hancers were required for a DEG to be considered detected on the chromatin
level. The quiescent chromatin state was not treated as “not differential” by
default in the SCIDDO analysis. Differences in performance were assessed
with a one-sided Mann-Whitney-U test and considered significant “*” at
p < 0.01
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4 Supplementary Tables

ID DEEP sample donor histone mark filename

HG-1 01 HepG2 LiHG Ct1 A H3K27ac 01 HepG2 LiHG Ct1 H3K27ac S 1.GALv2.20150422.grch38.bam
HG-1 01 HepG2 LiHG Ct1 A H3K27me3 01 HepG2 LiHG Ct1 H3K27me3 S 1.bwamem.20170818.grch38.bam
HG-1 01 HepG2 LiHG Ct1 A H3K36me3 01 HepG2 LiHG Ct1 H3K36me3 S 1.GALv2.20150422.grch38.bam
HG-1 01 HepG2 LiHG Ct1 A H3K4me1 01 HepG2 LiHG Ct1 H3K4me1 S 1.bwamem.20170818.bam
HG-1 01 HepG2 LiHG Ct1 A H3K4me3 01 HepG2 LiHG Ct1 H3K4me3 S 1.bwamem.20170818.bam
HG-1 01 HepG2 LiHG Ct1 A H3K9me3 01 HepG2 LiHG Ct1 H3K9me3 S 1.GALv2.20150422.grch38.bam
HG-1 01 HepG2 LiHG Ct1 A Input 01 HepG2 LiHG Ct1 Input S 1.GALv2.20150422.grch38.bam
HG-2 01 HepG2 LiHG Ct2 B H3K27ac 01 HepG2 LiHG Ct2 H3K27ac F 1.bwamem.20170812.bam
HG-2 01 HepG2 LiHG Ct2 B H3K27me3 01 HepG2 LiHG Ct2 H3K27me3 F 1.bwamem.20170812.grch38.bam
HG-2 01 HepG2 LiHG Ct2 B H3K36me3 01 HepG2 LiHG Ct2 H3K36me3 F 1.bwamem.20170812.grch38.bam
HG-2 01 HepG2 LiHG Ct2 B H3K4me1 01 HepG2 LiHG Ct2 H3K4me1 F 1.bwamem.20170812.bam
HG-2 01 HepG2 LiHG Ct2 B H3K4me3 01 HepG2 LiHG Ct2 H3K4me3 F 1.bwamem.20170812.bam
HG-2 01 HepG2 LiHG Ct2 B H3K9me3 01 HepG2 LiHG Ct2 H3K9me3 F 1.bwamem.20170812.bam
HG-2 01 HepG2 LiHG Ct2 B Input 01 HepG2 LiHG Ct2 Input F 1.bwamem.20170812.bam
He-2 41 Hf02 LiHe Ct C H3K27ac 41 Hf02 LiHe Ct H3K27ac F 1.bwamem.20170812.bam
He-2 41 Hf02 LiHe Ct C H3K27me3 41 Hf02 LiHe Ct H3K27me3 F 1.bwamem.20170812.bam
He-2 41 Hf02 LiHe Ct C H3K36me3 41 Hf02 LiHe Ct H3K36me3 F 1.bwamem.20170812.bam
He-2 41 Hf02 LiHe Ct C H3K4me1 41 Hf02 LiHe Ct H3K4me1 F 1.bwamem.20170812.bam
He-2 41 Hf02 LiHe Ct C H3K4me3 41 Hf02 LiHe Ct H3K4me3 F 1.bwamem.20170812.bam
He-2 41 Hf02 LiHe Ct C H3K9me3 41 Hf02 LiHe Ct H3K9me3 F 1.bwamem.20170812.bam
He-2 41 Hf02 LiHe Ct C Input 41 Hf02 LiHe Ct Input F 1.bwamem.20170812.bam
He-3 41 Hf03 LiHe Ct D H3K27ac 41 Hf03 LiHe Ct H3K27ac F 1.bwamem.20170811.bam
He-3 41 Hf03 LiHe Ct D H3K27me3 41 Hf03 LiHe Ct H3K27me3 F 1.bwamem.20170811.bam
He-3 41 Hf03 LiHe Ct D H3K36me3 41 Hf03 LiHe Ct H3K36me3 F 1.bwamem.20170811.bam
He-3 41 Hf03 LiHe Ct D H3K4me1 41 Hf03 LiHe Ct H3K4me1 F 1.bwamem.20170811.bam
He-3 41 Hf03 LiHe Ct D H3K4me3 41 Hf03 LiHe Ct H3K4me3 F 1.bwamem.20170811.bam
He-3 41 Hf03 LiHe Ct D H3K9me3 41 Hf03 LiHe Ct H3K9me3 F 1.bwamem.20170812.bam
He-3 41 Hf03 LiHe Ct D Input 41 Hf03 LiHe Ct Input F 1.bwamem.20170812.bam
Ma-3 43 Hm03 BlMa Ct E H3K27ac 43 Hm03 BlMa Ct H3K27ac F 1.bwamem.20170811.bam
Ma-3 43 Hm03 BlMa Ct E H3K27me3 43 Hm03 BlMa Ct H3K27me3 F 1.bwamem.20170812.bam
Ma-3 43 Hm03 BlMa Ct E H3K36me3 43 Hm03 BlMa Ct H3K36me3 F 1.bwamem.20170811.bam
Ma-3 43 Hm03 BlMa Ct E H3K4me1 43 Hm03 BlMa Ct H3K4me1 F 1.bwamem.20170811.bam
Ma-3 43 Hm03 BlMa Ct E H3K4me3 43 Hm03 BlMa Ct H3K4me3 F 1.bwamem.20170811.bam
Ma-3 43 Hm03 BlMa Ct E H3K9me3 43 Hm03 BlMa Ct H3K9me3 F 1.bwamem.20170811.bam
Ma-3 43 Hm03 BlMa Ct E Input 43 Hm03 BlMa Ct Input F 1.bwamem.20170811.bam
Ma-5 43 Hm05 BlMa Ct F H3K27ac 43 Hm05 BlMa Ct H3K27ac F 1.bwamem.20170812.bam
Ma-5 43 Hm05 BlMa Ct F H3K27me3 43 Hm05 BlMa Ct H3K27me3 F 1.bwamem.20170812.bam
Ma-5 43 Hm05 BlMa Ct F H3K36me3 43 Hm05 BlMa Ct H3K36me3 F 1.bwamem.20170811.bam
Ma-5 43 Hm05 BlMa Ct F H3K4me1 43 Hm05 BlMa Ct H3K4me1 F 1.bwamem.20170811.bam
Ma-5 43 Hm05 BlMa Ct F H3K4me3 43 Hm05 BlMa Ct H3K4me3 F 1.bwamem.20170811.bam
Ma-5 43 Hm05 BlMa Ct F H3K9me3 43 Hm05 BlMa Ct H3K9me3 F 1.bwamem.20170812.bam
Ma-5 43 Hm05 BlMa Ct F Input 43 Hm05 BlMa Ct Input F 1.bwamem.20170812.bam
Mo-1 43 Hm01 BlMo Ct G H3K27ac 43 Hm01 BlMo Ct H3K27ac F 1.bwamem.20170812.bam
Mo-1 43 Hm01 BlMo Ct G H3K27me3 43 Hm01 BlMo Ct H3K27me3 F 1.bwamem.20170812.bam
Mo-1 43 Hm01 BlMo Ct G H3K36me3 43 Hm01 BlMo Ct H3K36me3 F 1.bwamem.20170812.bam
Mo-1 43 Hm01 BlMo Ct G H3K4me1 43 Hm01 BlMo Ct H3K4me1 F 1.bwamem.20170812.bam
Mo-1 43 Hm01 BlMo Ct G H3K4me3 43 Hm01 BlMo Ct H3K4me3 F 1.bwamem.20170812.bam
Mo-1 43 Hm01 BlMo Ct G H3K9me3 43 Hm01 BlMo Ct H3K9me3 F 1.bwamem.20170812.bam
Mo-1 43 Hm01 BlMo Ct G Input 43 Hm01 BlMo Ct Input F 1.bwamem.20170812.bam
Mo-3 43 Hm03 BlMo Ct E H3K27ac 43 Hm03 BlMo Ct H3K27ac F 1.bwamem.20170811.bam
Mo-3 43 Hm03 BlMo Ct E H3K27me3 43 Hm03 BlMo Ct H3K27me3 F 1.bwamem.20170811.bam
Mo-3 43 Hm03 BlMo Ct E H3K36me3 43 Hm03 BlMo Ct H3K36me3 F 1.bwamem.20170811.bam
Mo-3 43 Hm03 BlMo Ct E H3K4me1 43 Hm03 BlMo Ct H3K4me1 F 1.bwamem.20170811.bam
Mo-3 43 Hm03 BlMo Ct E H3K4me3 43 Hm03 BlMo Ct H3K4me3 F 1.bwamem.20170811.bam
Mo-3 43 Hm03 BlMo Ct E H3K9me3 43 Hm03 BlMo Ct H3K9me3 F 1.bwamem.20170812.bam
Mo-3 43 Hm03 BlMo Ct E Input 43 Hm03 BlMo Ct Input F 1.bwamem.20170812.bam
Mo-5 43 Hm05 BlMo Ct F H3K27ac 43 Hm05 BlMo Ct H3K27ac F 1.bwamem.20170811.bam
Mo-5 43 Hm05 BlMo Ct F H3K27me3 43 Hm05 BlMo Ct H3K27me3 F 1.bwamem.20170812.bam
Mo-5 43 Hm05 BlMo Ct F H3K36me3 43 Hm05 BlMo Ct H3K36me3 F 1.bwamem.20170812.bam
Mo-5 43 Hm05 BlMo Ct F H3K4me1 43 Hm05 BlMo Ct H3K4me1 F 1.bwamem.20170811.bam
Mo-5 43 Hm05 BlMo Ct F H3K4me3 43 Hm05 BlMo Ct H3K4me3 F 1.bwamem.20170811.bam
Mo-5 43 Hm05 BlMo Ct F H3K9me3 43 Hm05 BlMo Ct H3K9me3 F 1.bwamem.20170812.bam
Mo-5 43 Hm05 BlMo Ct F Input 43 Hm05 BlMo Ct Input F 1.bwamem.20170812.bam

Table S1: Overview of DEEP histone data used to generate chromatin state segmentation maps. Unique donor
labels A to F have been assigned from top to bottom in lexicographical order of the ID. Access to
the data files listed here is restricted due to patient privacy. Access to the raw data can be requested
under www.ebi.ac.uk/ega/dacs/EGAC00001000179. Processed datasets are publicly available as IHEC
trackhubs under epigenomesportal.ca/ihec.
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ID DEEP sample donor filename

HG-1 01 HepG2 LiHG Ct1 A 01 HepG2 LiHG Ct1 mRNA K 1 ATCACG L001 R1
HG-1 01 HepG2 LiHG Ct1 A 01 HepG2 LiHG Ct1 mRNA K 1 ATCACG L001 R2
HG-2 01 HepG2 LiHG Ct2 B 01 HepG2 LiHG Ct2 mRNA K 1 GAGTGG L002 R1
HG-2 01 HepG2 LiHG Ct2 B 01 HepG2 LiHG Ct2 mRNA K 1 GAGTGG L002 R2
He-2 41 Hf02 LiHe Ct C 41 Hf02 LiHe Ct mRNA K 1 GAGTGG L005 R1
He-2 41 Hf02 LiHe Ct C 41 Hf02 LiHe Ct mRNA K 1 GAGTGG L005 R2
He-2 41 Hf02 LiHe Ct C 41 Hf02 LiHe Ct mRNA K 1 GAGTGG L006 R1
He-2 41 Hf02 LiHe Ct C 41 Hf02 LiHe Ct mRNA K 1 GAGTGG L006 R2
He-2 41 Hf02 LiHe Ct C 41 Hf02 LiHe Ct mRNA K 1 GAGTGG L007 R1
He-2 41 Hf02 LiHe Ct C 41 Hf02 LiHe Ct mRNA K 1 GAGTGG L007 R2
He-2 41 Hf02 LiHe Ct C 41 Hf02 LiHe Ct mRNA K 1 GAGTGG L008 R1
He-2 41 Hf02 LiHe Ct C 41 Hf02 LiHe Ct mRNA K 1 GAGTGG L008 R2
He-3 41 Hf03 LiHe Ct D 41 Hf03 LiHe Ct mRNA K 1 CGATGT L003 R1
He-3 41 Hf03 LiHe Ct D 41 Hf03 LiHe Ct mRNA K 1 CGATGT L003 R2
Ma-3 43 Hm03 BlMa Ct E 43 Hm03 BlMa Ct mRNA M 1 ACTTGA L005 R1
Ma-3 43 Hm03 BlMa Ct E 43 Hm03 BlMa Ct mRNA M 1 ACTTGA L005 R2
Ma-3 43 Hm03 BlMa Ct E 43 Hm03 BlMa Ct mRNA M 1 ACTTGA L006 R1
Ma-3 43 Hm03 BlMa Ct E 43 Hm03 BlMa Ct mRNA M 1 ACTTGA L006 R2
Ma-3 43 Hm03 BlMa Ct E 43 Hm03 BlMa Ct mRNA M 1 ACTTGA L007 R1
Ma-3 43 Hm03 BlMa Ct E 43 Hm03 BlMa Ct mRNA M 1 ACTTGA L007 R2
Ma-3 43 Hm03 BlMa Ct E 43 Hm03 BlMa Ct mRNA M 1 ACTTGA L008 R1
Ma-3 43 Hm03 BlMa Ct E 43 Hm03 BlMa Ct mRNA M 1 ACTTGA L008 R2
Ma-5 43 Hm05 BlMa Ct F 43 Hm05 BlMa Ct mRNA M 1 TTAGGC L001 R1
Ma-5 43 Hm05 BlMa Ct F 43 Hm05 BlMa Ct mRNA M 1 TTAGGC L001 R2
Ma-5 43 Hm05 BlMa Ct F 43 Hm05 BlMa Ct mRNA M 1 TTAGGC L002 R1
Ma-5 43 Hm05 BlMa Ct F 43 Hm05 BlMa Ct mRNA M 1 TTAGGC L002 R2
Ma-5 43 Hm05 BlMa Ct F 43 Hm05 BlMa Ct mRNA M 1 TTAGGC L003 R1
Ma-5 43 Hm05 BlMa Ct F 43 Hm05 BlMa Ct mRNA M 1 TTAGGC L003 R2
Ma-5 43 Hm05 BlMa Ct F 43 Hm05 BlMa Ct mRNA M 1 TTAGGC L004 R1
Ma-5 43 Hm05 BlMa Ct F 43 Hm05 BlMa Ct mRNA M 1 TTAGGC L004 R2
Mo-1 43 Hm01 BlMo Ct G 43 Hm01 BlMo Ct mRNA M 1 AGTCAA L005 R1
Mo-1 43 Hm01 BlMo Ct G 43 Hm01 BlMo Ct mRNA M 1 AGTCAA L005 R2
Mo-1 43 Hm01 BlMo Ct G 43 Hm01 BlMo Ct mRNA M 1 AGTCAA L006 R1
Mo-1 43 Hm01 BlMo Ct G 43 Hm01 BlMo Ct mRNA M 1 AGTCAA L006 R2
Mo-1 43 Hm01 BlMo Ct G 43 Hm01 BlMo Ct mRNA M 1 AGTCAA L007 R1
Mo-1 43 Hm01 BlMo Ct G 43 Hm01 BlMo Ct mRNA M 1 AGTCAA L007 R2
Mo-1 43 Hm01 BlMo Ct G 43 Hm01 BlMo Ct mRNA M 1 AGTCAA L008 R1
Mo-1 43 Hm01 BlMo Ct G 43 Hm01 BlMo Ct mRNA M 1 AGTCAA L008 R2
Mo-3 43 Hm03 BlMo Ct E 43 Hm03 BlMo Ct mRNA M 1 ATCACG L005 R1
Mo-3 43 Hm03 BlMo Ct E 43 Hm03 BlMo Ct mRNA M 1 ATCACG L005 R2
Mo-3 43 Hm03 BlMo Ct E 43 Hm03 BlMo Ct mRNA M 1 ATCACG L006 R1
Mo-3 43 Hm03 BlMo Ct E 43 Hm03 BlMo Ct mRNA M 1 ATCACG L006 R2
Mo-3 43 Hm03 BlMo Ct E 43 Hm03 BlMo Ct mRNA M 1 ATCACG L007 R1
Mo-3 43 Hm03 BlMo Ct E 43 Hm03 BlMo Ct mRNA M 1 ATCACG L007 R2
Mo-3 43 Hm03 BlMo Ct E 43 Hm03 BlMo Ct mRNA M 1 ATCACG L008 R1
Mo-3 43 Hm03 BlMo Ct E 43 Hm03 BlMo Ct mRNA M 1 ATCACG L008 R2
Mo-5 43 Hm05 BlMo Ct F 43 Hm05 BlMo Ct mRNA M 1 ATCACG L001 R1
Mo-5 43 Hm05 BlMo Ct F 43 Hm05 BlMo Ct mRNA M 1 ATCACG L001 R2
Mo-5 43 Hm05 BlMo Ct F 43 Hm05 BlMo Ct mRNA M 1 ATCACG L002 R1
Mo-5 43 Hm05 BlMo Ct F 43 Hm05 BlMo Ct mRNA M 1 ATCACG L002 R2
Mo-5 43 Hm05 BlMo Ct F 43 Hm05 BlMo Ct mRNA M 1 ATCACG L003 R1
Mo-5 43 Hm05 BlMo Ct F 43 Hm05 BlMo Ct mRNA M 1 ATCACG L003 R2
Mo-5 43 Hm05 BlMo Ct F 43 Hm05 BlMo Ct mRNA M 1 ATCACG L004 R1
Mo-5 43 Hm05 BlMo Ct F 43 Hm05 BlMo Ct mRNA M 1 ATCACG L004 R2

Table S2: Overview of DEEP expression data used used to compute differentially expressed genes. Unique donor
labels A to F have been assigned from top to bottom in lexicographical order of the ID. Access to
the data files listed here is restricted due to patient privacy. Access to the raw data can be requested
under www.ebi.ac.uk/ega/dacs/EGAC00001000179. Processed datasets are publicly available as IHEC
trackhubs under epigenomesportal.ca/ihec.
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number mnemonic description

1 TssA Active TSS
2 TssFlnk Flanking TSS
3 TssFlnkU Flanking TSS upstream
4 TssFlnkD Flanking TSS downstream
5 Tx Strong transcription
6 TxWk Weak transcription
7 EnhG1 Genic enhancer1
8 EnhG2 Genic enhancer2
9 EnhA1 Active enhancer 1

10 EnhA2 Active enhancer 2
11 EnhWk Weak enhancer
12 ZNF/Rpts ZNF genes & repeats
13 Het Heterochromatin
14 TssBiv Bivalent/Poised TSS
15 EnhBiv Bivalent enhancer
16 ReprPC Repressed PolyComb
17 WkReprPC Weak repressed PolyComb
18 Quies Quiescent/Low

Table S3: State numbers, mnemonics and concise descriptions of the chromatin states
of the ChromHMM CMM18 model as provided by the REMC under
egg2.wustl.edu/roadmap/web portal/chr state learning.html

command cores samples runtime (min)

convert 7 9 < 3
stats 7 9 < 1
score 1 n/a < 1
scan 15 2 v 2 < 4
scan 15 4 v 5 < 7

Table S4: Runtime (in minutes of wall clock time) of individual SCIDDO commands
executed in order from top to bottom to perform the differential analysis.
The runtime for the scan command refers to a single comparison of two versus
two samples. The last scan command is provided as an example of the scaling
behavior of SCIDDO (scanning for differential chromatin domains between the
four liver and the five blood samples in the dataset). Note that the runtime
includes I/O.
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group1 group2 Spearman’s ρ unique regions %

HG He 0.67 (0.06) 10.85 (3.14)
HG Ma 0.7 (0.04) 7.51 (3.6)
HG Mo 0.73 (0.04) 3.92 (1.68)
He Ma 0.68 (0.04) 5.99 (1.35)
He Mo 0.7 (0.03) 3.27 (0.39)
Mo Ma 0.7 (0.04) 17.68 (3.17)

Table S5: Average Spearman correlation of E–values of all overlapping candidate regions
identified in individual replicate comparisons. Rightmost column indicates
the average percentage of unique candidate regions per comparison. Values in
parentheses give +/- 1 standard deviation for the respective statistic.
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