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Context and Summary

Although major advances have been made over the past two decades in predicting whether
missense variants in the human exome are deleterious or benign, it remains challenging to
interpret their molecular impact and understand their role in pathogenic mechanisms.

In this paper, we present the MutaFrame web server which is designed to help improve our
understanding of the effects of variants at the molecular level by providing a series of variant
Mapping, Interpretation and Visualization utilities. The integration of these tools in the
MutaFrame framework and its easy-to-use structure are two main characteristics that make
it a powerful instrument for variant interpretation. A summarized description of these three
utilities is given below:

• Interpretation. This utility is built around the results of two complementary predictors,
DEOGEN2 [1] and SNPMuSiC [2], which both predict the deleteriousness of human exome
variants and their impact on the disease phenotype. In addition, this utility provides
information related to protein sequence and structure and to biophysical and contextual
features that drive the prediction, so giving insights into why variants are predicted to
be deleterious or neutral. This information is invaluable to better understand the impact
the mutations might have.

• Mapping. Due to the increasing amount of biological data from e.g. genomics, pro-
teomics and transcriptomics studies, it has become essential to link and cross-reference
the different sources of data and annotations, and integrate them into a common frame-
work. More specifically, this utility maps variants at multiple levels, i.e. in gene sequences,
protein sequences and protein structures. Thus, even though MutaFrame primarily fo-
cuses on proteins, this utility retrieves information about variant characteristics across
several scales, which again can help to contextualise and explain the predictions.

• 3D Visualization. The new graphical interface of MutaFrame is designed to facili-
tate the interpretation of the variant predictions, and is intended for users who do not
necessarily have a background in structural bioinformatics. Of particular interest is the
visualization of the variants in the context of the protein three-dimensional (3D) struc-
tures, which allows users to immediately identify the interactions between the mutated
amino acids and the neighboring residues and their position in the structure.

More details on these three utilities are given in the next section. Moreover, we showcase
in the last section the application of MutaFrame to the Niemann-Pick disease (NPD) through
the analysis of variants in the SMPD1 gene that codes for sphingomyelin phoshodiesterase 1.
This protein is crucial in lipid metabolism and its disruption causes a vast array of symptoms,
ranging from hepatosplenomegaly to mental retardation and infantile death. We show how
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MutaFrame can help interpret the impact of the variants on the molecular phenotypes and on
the disease mechanisms. Note that a predictor of Niemann-Pick disease severity that uses both
SNPMuSiC and DEOGEN2 has recently been developed [3].

MutaFrame Structure

User queries in MutaFrame start from a protein sequence or a UniProt [4] accession number,
and a variant in the protein sequence. Upon submission, MutaFrame automatically maps the
variant position to the corresponding gene and to the protein structure (if available), collects
gene and protein characteristics and annotations, and runs all utilities on the basis of sequence,
structure and contextual features.

MutaFrame first provides three main sections describing the effect of the query variant:

• General information gives insight into the physicochemical characteristics of the wild-
type and mutated residues. It showcases a similarity index between these two residues,
as illustrated in Fig. 1.a. Clicking on the similarity bar unravels it into its components,
including the BLOSUM62 matrix element [5], as well as the difference in residue size,
electric charge and hydrophobicity.

• DEOGEN contains the results related to DEOGEN2. The first output is the predicted
deleteriousness score, between 0 and 1. Scores higher than 0.5 indicate deleterious vari-
ants and scores lower than this threshold, neutral variants. Again, clicking on the bar
unravels into its components, which are listed in Table 1. More information is given in
the Interpretation Utility section.

• SNPMuSiC reports the deleteriousness score of the target variant obtained by the SNPMu-
SiC predictor, if the variant is introduced in a region of the protein with experimental
or modeled structure, as explained in the Interpretation Utility section. Positive and
negative values indicate deleterious and neutral predictions, respectively. The solvent
accessibility (in %) of the wild type residue is also reported.

MutaFrame does not only give DEOGEN2 and SNPMuSiC predictions on the target variant,
but also average per-residue predictions on all possible variants in the target sequence, which
is very useful to obtain a global view of the susceptibility of the protein to deleterious variants.
We describe in detail below the different utilities of MutaFrame.

All the MutaFrame results are easily downloadable for offline analyses. Clicking on the
gear next to a figure opens a new panel which allows the user to download the figure and the
data used to construct it. The ”json” and ”csv” buttons download the data in JSON and CSV
formats, respectively, and the ”camera” button downloads the figure in SVG format.

1. 3D Visualisation Utility

The MutaFrame webserver has a user-friendly web interface which facilitates decryption and
interpretation of the results. A very useful utility is the visualisation of protein 3D structures
and the localization of target variants, as illustrated in Fig. 2, since this greatly helps con-
textualising the amino acid within the protein, and the molecular effects of the variant. We
describe below in more detail how the structures of target sequences are retrieved and the main
associated tools.
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(a) (b)

Figure 1: Visualization of MutaFrame’s results. (a) General information about wild-type and
variant residues; (b) DEOGEN2 score for all possible variants as a function of the position in
the sequence, where red means deleterious and blue benign.

• Protein 3D structures of the human proteome

We retrieved structural information of the full human proteome from the Interactome3D dataset
[16]. This dataset contains a set of experimentally resolved protein structures as well as
homology-modeled structures for which a structural template with a sufficient level of sequence
identity and coverage with respect to the target sequence was found in the PDB. When several
models were found in Interactome3D for the same protein region, we selected a single represen-
tative structure based of Interactome3D’s ranking system that uses a combination of sequence
identity and coverage with respect to the template.

As the residue numbers are generally different for protein sequences retrieved from UniProt
and from experimental or modeled PDB files, we aligned them using ClustalW [17]. This
alignment is shown under the structures (Fig. 2.a).

The final set of structures includes 15,635 entries for the 59,262 UniProt sequences. Out of
these 15,635 structures, one half (7,789) are experimental structures and the other half (7,846)
are homology models.

• Structure information

Information about the protein structure is given in the structure visualizer (Fig. 2.a). First, the
PDB code and chain name of the experimental structure or of the template used for homology
modeling are indicated. In the latter case, the modeling scores GA431 and MPQS obtained
from the Interactome3D database are also shown, as well as the start and end residues of the
alignment between the target and template sequences, and the sequence identity and coverage.

If several structures exist for the different regions of the target protein, all are shown and it
is possible to switch from one to the others without restarting the visualizer. These structures
in PDB format and the scripts to color them using PyMol (The PyMOL Molecular Graphics
System, Version 1.2r3pre, Schrödinger, LLC) based on the DEOGEN2, SNPMuSiC or heuristic
scores can be downloaded by clicking on the download button in the top right corner of the
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(a)

(b)

Figure 2: Protein structure visualizer. The ”eye” buttons are used to display or hide the
different panels. (a) Experimental or modeled 3D structure and sequence alignement between
UniProt and PDB sequences; (b) Option panel. The significance of the buttons is described in
Table 2.
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Features Based on Type Ref.
PRovean Amino acid conservation Sequence [6]

algorithm [PR] in MSA of homologous proteins Per residue
Conservation Index Measure of sequence variability Sequence [7, 8]

[CI] in MSA of homologous proteins Per residue
mutated/wild-type Log-odd ratio of mutated/wild-type Sequence [6]
Log-Odd ratio [LO] residue at given position in MSA Per residue

Early Folding Predicted mutational impact Sequence [9]
[EF] on the protein folding process Per residue

Residual Variation Gene ranking based on tolerance Sequence [10]
intolerance [RV] to functional genetic variation Per gene

PFam score Log-odd ratio of frequency of neutral/ Context [11]
[PF] deleterious variants in PFAM domains Per domain

INteraction patches Annotations of residues belonging to Context [12]
[IN] protein-protein interaction patches Per residue

Gene Damage index Cumulative mutational gene damage Context [13]
[GD] in the general population Per gene

REcessiveness index Predicted degree of tolerance Context [14]
[RE] to loss of gene function Per gene

gene ESsentiality Degree of essentiality from Context [15]
[ES] knock-out experiments in mice Per gene

PAthway score Log-odd ratio of pathway Context [7, 8]
[PA] sensitivity to deleterious variants Per pathway

Table 1: List of features used by DEOGEN2 to predict the deleterious impact of variants. The
sequence-based information is in blue and the contextual information in green. MSA means
Multiple Sequence Alignments, and PFAM Protein Families.

viewer window.

• 3D structure visualizer

The visualizer in itself shows the protein structure(s) of the target protein, with the wild-type
residue at the position of the mutation introduced by the user in white (Fig. 2.a). It offers the
possibility to zoom in or out and to rotate the structure. Double clicking on a residue centers
the view around it. Hovering over a residue triggers a display mentioning its position and type.
By default, the structure is colored using a blue to red gradient from N- to C-terminus.

Different buttons are available to modify the display, listed in Table 2 and shown in Fig.
2.b. They allow showing the secondary structures, the residue side chains, and coloring the
protein chain according to the mean per-residue DEOGEN2 or SNPMuSiC score, or according
to the mean similarity heuristics. These options are illustrated in Fig. 2.b and can be displayed
in the visualizer by clicking on the white ”eye” on the right.

• Sequence alignments

The alignment of the target protein sequence with the subset of residues that are part of the
protein structure(s) are shown below the 3D structures, as illustrated in Fig. 1.a. Underneath
the sequence alignment, the mean per-residue scores of the DEOGEN2 and SNPMuSiC predic-
tors and of the heuristic similarity are given, using a light to dark red scale. This color code
can be changed using the binaryColor option, making neutral mean scores green and deleteri-
ous ones red (Table 2). Clicking on one of the colored blocks displays the average per-residue
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Option Name Description
showSideChain Toggle display of the side chains of all residues in the protein structure

showSS Display secondary structures as cartoon
ssSuccession Color successions of secondary structures (if showSS enabled)

drag Alignment can be moved around by if enabled
interact Enables display of residue type (when hovering over structure) and

per-residue scores (when clicking on prediction rows in alignment)
chemical Color the structure according to the physicochemical properties of the residues
heuristic Color the structure according to the mean residue similarity index
deogen2 Color the structure according to the mean DEOGEN2 score per residue

snpMusic Color the structure according to the mean SNPMuSiC score per residue
showRawScores Enables display of raw scores when clicking on the prediction rows (in alignment)

binaryColor Change color of scores in the alignments: red/green or shades of red
autoNavigate Move the alignment when hovering over a residue if enabled (if interact enabled)

Table 2: List of options for the MutaFrame protein structure visualizer.

prediction (deleterious or neutral) for the residue. The showRawScores option can be used to
display the average per-residue scores (numeric values).

2. Interpretation Utility

The core of the MutaFrame webserver provides accurate predictions of the deleterious or neutral
nature of any missense variant in any protein of the human exome. Two complementary
predictors, DEOGEN2 [1] and SNPMuSiC [2], fulfill this role. The features used by these
predictors are of three categories: sequence-, structure- and context-based. We briefly review
how these predictors work, the features they exploit, and the information they provide on the
impact of variants at the molecular and phenotypic levels.

• DEOGEN2 is a deleteriousness variant predictor which requires the protein sequence as
input. It is based on the set of sequence and contextual features listed in Table 1 and a
random forest classifier with 200 trees to construct a prediction model.

The MutaFrame webserver returns not only the overall prediction of DEOGEN2, but
also a careful analysis of the contribution of each of the features to the global score, as
illustrated in Fig. 1.b. In this way, it is possible to rationalize the results and have an
explanation about the reasons behind the deleteriousness or neutrality of the variant. For
example, if one of the features such the protein-protein interaction patch feature (IN, see
Table 1) drives the predictions, it is likely that the variant impacts on the interaction of
its host protein with one of more other proteins.

More precisely, the main DEOGEN section contains the following results:

1. A barplot displaying the contribution of each feature to the global DEOGEN2 score
(Fig. 3.a). These values were obtained by an automated interpretation of the random
forest model used by DEOGEN2; see [1] for details.

2. A barplot displaying the raw values of all features (Fig. 3.b). These are the values
used as input by DEOGEN2.

3. A histogram that displays the number of variants in the target protein that have a
specific deleteriousness score.
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(a) (b)

Figure 3: Feature values and their contributions to DEOGEN2 predictions. The results were
obtained for the N45S variant in the P36897 protein. (a) Individual contribution of each feature
(listed in Table 1) to the final DEOGEN2 prediction; (a) raw values of the features.

4. A heatmap representation of the scores of all possible variants along the protein
sequence (Fig. 1.b). This representation can switch between mean scores per position
or individual variant scores by clicking on the ”mode” button on the graph.

Note that the graphs are interactive and that additional information is displayed by
hovering the cursor over the corresponding bar.

The DEOGEN2 performances are described in a section below. More details about the
model, its characteristics and applications can be found in [1].

• SNPMuSiC [2] is a deleteriousness variant predictor that requires an experimental or
modeled 3D structure of the target protein as input. For experimental structures, SNPMu-
SiC uses the biological unit reported in the PDB, while for modeled structures, it uses the
modeled chain only. SNPMuSiC is based on both structural and evolutionary information
and outputs a stability-driven deleteriousness index of the query variant.

To perform its predictions, SNPMuSiC uses a series of statistical potentials, which are
coarse-grained mean force potentials widely applied in protein science [18]. They are
computed from frequencies of associations between a sequence feature (type of amino
acid(s)) and a structural feature (main chain torsion angle domain(s), residue solvent
accessibility(ies), spatial distance(s) between residue pairs) in a dataset of experimental
3D protein structures, which are turned into folding free energies using the Boltzmann
law (see [19] for technical details).

A series of 13 different potentials are used to estimate the difference in folding free en-
ergy between the wild-type and variant residues (noted ∆∆W ). These energy values
are combined using artificial neural network techniques, and then integrated with the
evolutionary score of the PROVEAN algorithm [6] based on residue conservation across
natural evolution, to predict the deleterious or neutral nature of the target variant. The
list of the features used by SNPMuSiC is showed in Table 3.

SNPMuSiC’s predictions are thus essentially based on the impact that a variant has on
protein stability. This means that, if it predicts a variant to be deleterious, it is likely
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that the mutated protein is destabilized and undergoes a modification in its conformation
that affects function; or, alternatively, that it is too stabilized and lacks the necessary
flexibility and/or the specific functional residues to function properly. As a consequence,
a drawback of this predictor is its inability to predict variants that are deleterious due to
other factors than stability. As an example, SNPMuSiC is unable to predict a mutation
to be deleterious if its molecular effect is to disrupt a protein-protein or protein-ligand
interaction necessary for function. However, its contributions perfectly integrate into the
MutaFrame framework and provide fundamental information about the variant effects,
since stability is well known to be one of the main contributions to folded protein fitness
[20].

Feature type Name Element(s)
Torsion angle ∆Wst t, t′ = backbone torsion angle domain

potentials ∆Wstt′ s, s′ = amino acid type
∆Wss′t

Solvent accessibility ∆Wsa a, a′ = residue solvent accessibility
potentials ∆Wsaa′ s, s′ = amino acid type

∆Wss′a

Torsion angle/ ∆Wsta a = residue solvent accessibility
solvent accessibility t = backbone torsion angle domain

potentials s = amino acid type
Distance ∆Wsd d = distance between residue pair

potentials ∆Wsds′ s, s′ = amino acid type

Distance/ ∆Wsad d = distance between residue pair
torsion angle/ ∆Wstd a, a′ = residue solvent accessibility

solvent accessibility ∆Wsads′a′ t, t′ = backbone torsion angle domain
potentials ∆Wstds′t′ s, s′ = amino acid type
Volume ∆V+ V= amino acid volume
terms ∆V− ∆V+(∆V−) = ∆V if ∆V ≥ 0(< 0)

PROVEAN PR Amino acid conservation
in MSA of homologous proteins

Table 3: List of all the features used in the SNPMuSiC model to predict variant deleteri-
ousness. In green, the structure-based, stability-driven features. In blue, the sequence-based,
evolutionary-driven feature.

3. Mapping Utility

MutaFrame provides two computational tools to cross reference different sources of information
at the variant, gene, protein sequence, 3D structure, and phenotypic levels. They are described
below:

• The protein structure visualizer shows the experimental or modeled structures of the
target protein, if available (Fig. 2.a). This tool displays an alignment between the
residues of the target protein sequence and the subset of residues that are part of the
protein structure(s). A detailed description of this tool is given in Section 1.

• VarCraft is a tool that maps the variant residues in the target protein to biocurated
annotations from the Online Mendelian Inheritance in Man database (OMIM) [21]. The
tool can be used in two different ways. Clicking on the VarCraft button opens a small
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window providing the user with two options: starting the VarCraft mapper or labeling
mutations (Fig. 4.a).

1. Labeling mutations. Go to the score distribution or to the heatmap of the DE-
OGEN2 predictor described in Section 2. Enter one or several variants in the white
box of VarCraft shown in Fig. 4.a. When clicking on the purple box ”Label Mu-
tations”, these variants appear in the score distribution or in the heatmap with
their DEOGEN2 and heuristic scores, as shown in Fig 4.b-c. Before entering other
mutations, click on the ”Clear Mutations” box.

2. VarCraft mapper. Clicking on ”Start VarCraft” opens a window and starts a se-
ries of mapping procedures between variants annotated in the genome Aggregation
Database (gnomAD) (using the genome assembly GRCh38) and in ClinVar [22],
the substitutions at the nucleic acid and amino acid levels, the positions in the
chromosomes, genes and proteins, and the OMIM annotations. Once the process
is finished, an interactive graph appears as illustrated in Fig. 5, which shows the
position (Pos) of the variant in the chromosome, the wild-type nucleotide (Ref), the
mutant nucleotide (Alt), its allele frequency (more precisely, − log(allele frequency))
with missing values (indicated as NaN) meaning that the variant was not found in
gnomAD (pAF), the cDNA variant identifier (cDNA), the protein variant in Human
Genome Variation Society (HGVS) format [23] in the gnomAD transcript (pHGVS)
and in the amino acid sequence considered in the MutaFrame database (MtfPos),
the OMIM annotation when available (OMIM), the variant identifier in ClinVar [22]
when available (ClinVar) and the DEOGEN2 score (DEOGEN2).

By hovering the mouse over a particular line, the tool zooms on this line and provides
the numerical values (Fig. 5b). By clicking on the gene symbol, the user can retrieve
the Uniprot file used in MutaFrame database. The gene symbol, gene identifier,
OMIM identifier and transcript identifier are linked to the entry in Ensembl, OMIM
and gnomAD, respectively. All the data shown in VarCraft can be downloaded by
clicking on the download button in the top right corner of the VarCraft window.

(a) (b) (c)

Figure 4: (a) Window appearing when clicking on the VarCraft button. It is possible to label
mutations in the DEOGEN2 heatmap (b) or in the DEOGEN2 scores distribution (c) using the
”Label Mutations” button. The ”Clear Mutations” button removes the label from the graphs.
Here, the variant C106V of Uniprot P36897 was labelled.
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(a) (b)

Figure 5: VARCRAFT interactive visualization of annotations. (a) Annotations for the SMPD1
gene. ”Pos” column: position number in the chromosome; ”Ref”: reference nucleotide (green =
”A”, black = ”G”, blue = ”C”, red = ”T”); ”Alt”: variant nucleotide (same color code); ”pAF”:
-log(Allele Frequency) (blue/yellow scale with blue meaning high allele frequency and low pAF;
NaN means that the variant is not in gnomAD and thus that we do not have access to its allele
frequency; ”cDNA” variant identifier in the cDNA sequence; ”pHGVS” and ”MtfPos”: variant
identifier at protein level in HGVS nomenclature [23] in the gnomAD transcript and in the
transcript considered in MutaFrame, respectively (blue/red scale depending on similarity be-
tween reference and variant residues, with blue meaning high similarity); ”OMIM”: annotation
identifier in the OMIM database; ”ClinVar”: variant identifier in the ClinVar database (color
showing the presence or absence of an identifier); ”Deogen2”: DEOGEN2 score (blue/red scale
depending on the DEOGEN2 score, where blue is neutral and red deleterious). (b) Hovering
the cursor over a variant unfolds the row to show more details.

DEOGEN2 and SNPMuSiC performances

An extensive evaluation of the performances of both deleteriousness predictors DEOGEN2 and
SNPMuSiC has been presented in [1] and [2], respectively. Here we compared the predictions
of these two methods to assess their strengths, weaknesses and complementarity. We did this
analysis on the basis of the dataset constructed in [2], which contains 5,192 human variants for
which the predictions of both predictors are available.

Predictor BACC PPV
SNPMuSiC 77% 90%
DEOGEN2 89% 95%
Consensus 92% 97%

Table 4: Balanced Accuracy (BACC) and Positive-Predictive Value (PPV) of DEOGEN2 and
SNPMuSiC, computed on SNPMuSiC’s learning dataset [2]. Consensus is computed on the
subset of variants for which the predictions of DEOGEN2 and SNPMuSiC both agree.

The overall performances of SNPMuSiC and especially DEOGEN2 are good, as shown in
Table 4. The balanced accuracy (BACC) is equal to 77% and 89% and the positive predicted
value (PPV) is above 90% for both predictors. Note that these values are in direct validation,
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but that cross-validated scores are only 2% lower at most [1, 2]. In the subset of variants
for which the two predictors agree, which contains 4,123 of the 5,192 variants, the scores
significantly improve: the BACC reaches 92% and the PPV 97%.

The confusion matrices for SNPMuSiC, DEOGEN2 and the consensus predictions are re-
ported in Tables 5, 6. and 7. The lesser performances of SNPMuSiC are likely related to its
ability to only predict variants of which the deleteriousness is caused by stability issues of the
3D structure, as previously discussed [2]. It is thus expected that SNPMuSiC overpredicts
neutral mutations.

This effect is clearly visible in Fig. 6, where the distribution of the SNPMuSiC and DE-
OGEN2 scores are shown separately for neutral and deleterious mutations. Indeed, for the
whole series of deleterious variants that are correctly predicted by DEOGEN2, but not by
SNPMuSiC, we can assume they are likely deleterious for other reasons than stability. There
are also some mutations that are correctly predicted by SNPMuSiC and not by DEOGEN2, in
which stability is expected to play a central role.

In conclusion, there are several advantages to the combination of the two predictors: (1)
when there is a consensus between the predictors, the prediction reliability is very high; (2)
when SNPMuSiC predicts a variant as deleterious, we can interpret its molecular effect to be
a significant change in stability; (3) the predictions of DEOGEN2 can be unraveled in terms
of contextual or evolutionary features. We thus get an improved explanatory power due to the
combination of the two predictors that integrate structure-based information from SNPMuSiC
and evolutionary and contextual information from DEOGEN2.

SNPMuSiC Annotation
Predicted Disease Neutral Total
Disease 3122 353 3475
Neutral 769 948 1717
Total 3891 1301 5192

Table 5: SNPMuSiC’s confusion matrix, computed on SNPMuSiC’s learning dataset [2].

DEOGEN2 Annotation
Predicted Disease Neutral Total
Disease 3611 181 3792
Neutral 280 1120 1400
Total 3891 1301 5192

Table 6: DEOGEN2’s confusion matrix, computed on SNPMuSiC’s learning dataset [2].

DEOGEN2 & SNPMuSiC Annotation
Predicted Disease Neutral Total
Disease 3005 94 3099
Neutral 163 861 1024
Total 3168 955 4123

Table 7: DEOGEN2 and SNPMuSiC confusion matrix for consensus predictions, computed on
SNPMuSiC’s learning dataset [2].

11



Figure 6: Distribution of DEOGEN2 scores (x-axis) and SNPMuSiC scores (y-axis) scores for
deleterious variants (in red) and neutral variants (in blue), computed on SNPMuSiC’s learning
dataset [2]. Dotted lines represent the prediction thresholds of the predictors.

Case study

In this section, we illustrate the application of the MutaFrame webserver to variants in lysosomal
acid sphingomyelinase, also known as sphingomyelin phosphodiesterase (SMPD1, UniProt id
P17405). Variants in SMPD1 are known to cause the Niemann-Pick disease (NPD) of types A
and B, which are lipid storage disorders characterized by various clinical phenotypes such as
hepatosplenomegaly and pulmonary insufficiency [24]. A computational variant analysis related
to NPD severity can be found in [3].

More precisely, we show here how to use MutaFrame to investigate the impact of the two
variants Arg228Cys and Trp244Cys in SMPD1.

• Arg228Cys is a known deleterious mutation [25, 26, 27] reported in gnomAD and Clin-
Var and its molecular effect results in a residual activity of about 5% with respect to
the wild type protein [25]. Submitting this variant to the MutaFrame webserver yields
the consensus prediction that it is deleterious. Indeed, DEOGEN2 classifies the vari-
ant as highly deleterious with a score of 0.906 (with respect to a threshold value of 0.5)
and SNPMuSiC classifies it as strongly deleterious with a score 0.64 (with respect to a
threshold value of 0).

To gain insight into the molecular effect of the variant, we analyzed further information
provided by MutaFrame. From the DEOGEN2 feature analysis, we learned that the
prediction is dominated by evolutionary terms, especially the PROVEAN score and the
mutated/wild-type log-odd ratio. This suggests that the wild-type Arg has a functional
or structural role. In addition, SNPMuSiC predicts the Arg228Cys variant protein to
be substantially less stable than the wild-type. This suggests an impact of this variant
on protein stability. Using the 3D visualization tool, we can furthermore zoom on the
spatial region surrounding Arg228 as illustrated in Fig. 7. We can clearly see that this
Arg interacts with Asp210, forming a salt bridge, which is broken upon mutation. These
different results thus point towards structure destabilisaton upon mutation.
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• Trp244Cys is another known deleterious mutation reported in UniProt (but not in gno-
mAD and ClinVar, which explains that it is absent from VarCraft), which reduces the
relative enzymatic activity to less than 10% [28, 29]. Again, both predictors predict the
Trp244Cys variant as strongly deleterious, DEOGEN2 with a score of 0.881 and SNPMu-
SiC with a score of 1.06. The evolutionary features of DEOGEN2 indicate that Trp244
is strongly conserved, and SNPMuSiC predicts that the Trp244Cys mutation has an im-
portant impact on protein stability.

The structural analysis using MutaFrame’s visualization tool shows that Trp244 is in-
volved in an interaction network of aromatic and positively charged residues, as illustrated
in Fig. 7. Indeed, Trp244 forms a cation-π interaction with Arg255 and a T-shaped π-π
interaction with Tyr243. Breaking these interactions upon Trp244Cys mutation has an
impact on the ability of SMPD1 to maintain its conformation and enzymatic function,
even though the mutation is relatively far from the functional site.

D210

R228

R255
Y243

W244

(a) (b)

Figure 7: Sphingomyelin phosphodiesterase (SMPD1) involved in the Niemann-Pick disease
(PDB code 5JG8). (a) Environment of Arg 228, which interacts with Asp 210 through a salt
bridge. (b) Environment of Trp 244, which forms a cation-π interaction with Arg 255 and a
π-π interaction with Tyr 243.
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