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Figure S1: The empirical type I error rates of D-MANOVA, MDMR and PERMANOVA based on
UniFrac and Bray-Curtis distances at different sample sizes (n=25, 50, 100) and varying α levels of
0.05 (a), 0.01 (b) and 0.005 (c). Simulation was repeated 10,000 times to calculate the empirical
type I error. The error bar represents 95% confidence interval and the dashed line indicates the
target α level.
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Figure S2: Power comparison of D-MANOVA, MDMR and PERMANOVA based on UniFrac and
Bray-Curtis distances under different effect sizes (horizontal axis) and sample sizes (a-c). Three
scenarios ( Scene 1, Scene 2 and Scene 3), where the variable X affects an abundant OTU cluster,
rare OTU cluster and random OTUs, respectively, were investigated. The power calculation was
based on a nominal α level of 0.05 and a repetition of 1,000 simulation runs. The horizontal dashed
line indicates the α level.
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Table S1: P-values for testing the association of the gut microbiome with the demographic and
lifestyle variables based on the American Gut dataset. Bray-Curtis distance was used. The runtime
is expressed relative to the D-MANOVA. The computation was performed under R v3.3.2 on an
iMAC ( 3.2 GHz Intel Core i5, 32 GB 1600 MHz DDR3, EI Capitan v10.11.5).

R2∗ D-MANOVA MDMR PERMANOVA

Sex 0.29% 1.46E-112 0 <0.001
Age 0.27% 8.70E-100 0 <0.001
Race 0.21% 1.31E-45 1.89E-15 <0.001
Exercise frequency 0.17% 6.86E-58 0 <0.001
BMI 0.12% 1.28E-37 0 <0.001
Water source 0.11% 2.03E-18 3.72E-05 <0.001
Alcohol frequency 0.10% 5.73E-30 0 <0.001
Diet type 0.07% 5.51E-17 9.89E-13 <0.001
Tabacco frequency 0.04% 1.90E-09 1.15E-07 <0.001
Sleep duration 0.03% 1.72E-06 1.01E-05 <0.001
C-section 0.03% 1.33E-06 1.23E-05 <0.001
Dog as pet 0.03% 2.26E-05 9.65E-05 <0.001
Handness 0.02% 0.646 0.841 0.644

Runtime - 1 ×12.7 ×567.4
*R2 is the percent of variation explained by a variable, where the variability is summarized by pairwise distances.
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Supplementary Note 1. Proof of Theorem 2.1

LetH be a Hilbert space equipped with the inner product < ·, · > and the inner product induced
norm ‖ · ‖. Assume that

d2ij = ‖φ(Yi)− φ(Yj)‖2, (1)

where φ(·) : Y → H is an embedding from Y to H. Define Φ = (φ(Y1), . . . , φ(Yn))> ∈ H⊗n
with µ = Eφ(Y1) and H⊗n being the n-ary Cartesian power of H. For f = (f1, . . . , fn)>, g =
(g1, . . . , gn)> ∈ H⊗n, let < f, g >=

∑n
i=1 < fi, gi > and ‖f‖2 =

∑n
i=1 ‖fi‖2. Define

f ◦ g> =

(
< f1, g1 > < f1, g2 > · · · < f1, gn >
· · · · · · · · · · · ·

< fn, g1 > < fn, g2 > · · · < fn, gn >

)
,

and we have G = DΦ ◦ Φ>D. We assume that 1 is contained in the column space of Z, which
implies that HX|ZD = HX|Z and HI|X,ZD = HI|X,Z . Consider the linear model,

Φ = XB + ZA+ E,

where B ∈ H⊗p1 , A ∈ H⊗p2 and E = (e1, . . . , en)> ∈ H⊗n. Here e1, . . . , en are independent
mean-zero random variables in H, which are independent of X and Z. Note that

HX|ZΦ = HX|ZXB +HX|ZE.

Under the null B = 0, we have HX|ZΦ = HX|ZE. In this case, we get

tr(HX|ZGHX|Z) = tr(HX|ZΦ ◦ Φ>HX|Z) = tr(HX|ZE ◦ E>HX|Z) =
n∑

j,k=1

hjkK(ej , ek), (2)

where K(ej , ek) =< ej , ek > . By Mercer’s theorem, K is semi-positive definite and thus admits
the spectral decomposition of the form

K(ej , ek) =
+∞∑
l=1

λlψl(ej)ψl(ek), (3)

where E[ψs(ei)ψl(ei)] = 1{s = l} and E[ψl(ei)] = 0. Based on the setup above, we have the
following theorem.

Theorem 0.1. Assume that E‖e1‖4 <∞ and

‖HX|Z‖2,4 = sup
a:‖a‖2=1

‖HX|Za‖4 → 0. (4)

Then under the null,

tr(HX|ZGHX|Z)/m1

tr(HI|X,ZGHI|X,Z)/(n−m2)
→d T0 =

∑+∞
l=1 λlχ

2
m1,l

/m1∑+∞
l=1 λl

,

where {χ2
m1,l
}+∞l=1 are independent chi-square random variables with m1 degrees of freedom.

Proof. Suppose HX|Z = (ζij) admits the spectral decomposition HX|Z = U>U with U =
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(u1, . . . , um1)> = (uij) ∈ Rm1×n whose rows (i.e., uis) are the eigenvectors of HX|Z . Here U is
only defined up to an m1 ×m1 orthonormal transformation. Condition (4) implies that

‖U‖4 := (

m1∑
i=1

n∑
j=1

u4ij)
1/4 → 0, (5)

which does not depend on the choice of eigenvectors. To see this, let L = (Lij) ∈ Rm1×m1 be an
orthonormal matrix. Note that for any 1 ≤ i ≤ m,

‖
m∑
i=1

Ljiui‖4 ≤
m∑
i=1

|Lji|‖ui‖4 → 0,

which implies that ‖LU‖4 → 0.
In view of (2) and (3), we have

tr(HX|ZGHX|Z) =

+∞∑
l=1

λl

m1∑
i=1

V 2
l,i,n

where Vl,i,n =
∑n

j=1 uijψl(ej). Note that

lim
n

cov(Vl,i,n, Vl′,i′,n) = lim
n

n∑
j,j′=1

uijui′j′Eψl(ej)ψl′(ej′)

= lim
n

n∑
j=1

uijui′jEψl(ej)ψl′(ej)

=1{l = l′, i = i′}.

Under the assumption E‖ϕ(e1)‖4 <∞, we have

EK(e1, e1)
2 = E

(∑
l

λlψl(e1)
2

)2

<∞,

which implies E[ψl(e1)
4] <∞ for any l with λl 6= 0. Together with (5), the Lyapunov condition is

satisfied and thus (Vl,i,n)1≤l≤K,1≤i≤m1 for any finite K converges to a multivariate normal distribu-
tion say (Vl,i)1≤l≤K,1≤i≤m1 by the Cramér-Wold device, where cov(Vl,i, Vl′,i′) = 1{l = l′, i = i′}.

Denote Vn(K) =
∑K

l=1 λl
∑m1

i=1 V
2
l,i,n and define V (K) in the same way by replacing Vl,i,n with

Vl,i. We aim to show that

Vn(∞)→d V (∞). (6)

In view of Theorem 8.6.2 of Resnick (1999), we only need to show

(A) Vn(K)→d V (K) for any K;

(B) E|V (∞)− V (K)|2 → 0 as K → +∞;

(C) limK→+∞ limn→+∞ E|Vn(∞)− Vn(K)|2 = 0.

(A) follows from the finite dimensional convergence and the continuous mapping theorem. To show
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(B), we note that

E|V (∞)− V (K)|2 = E

(
+∞∑

l=K+1

λlχ
2
m1,l

)2

= m2
1

(
+∞∑

l=K+1

λl

)2

+ 2m1

+∞∑
l=K+1

λ2l → 0,

where we have used the fact that
∑+∞

l=1 λl <∞. Some algebra yields that

m1∑
i,i′=1

cov(V 2
l,i,n, V

2
l′,i′,n)

=cov(ψl(e1)
2, ψl′(e1)

2)
n∑

j=1

m1∑
i,i′=1

u2iju
2
i′j + 2cov(ψl(e1)ψl(e2), ψl′(e1)ψl′(e2))

∑
j 6=j′

m1∑
i,i′=1

uijui′juij′ui′j′

=cov(ψl(e1)
2, ψl′(e1)

2)
n∑

j=1

ζ2jj + 2cov(ψl(e1)ψl(e2), ψl′(e1)ψl′(e2))
∑
j 6=j′

ζ2jj′

≤C1

∑
i,j

ζ2ij = C1m1,

for some constant C1 > 0. Using this result, we have

E|Vn(K)− Vn(∞)|2 =E

(
+∞∑

l=K+1

λl

m1∑
i=1

V 2
l,i,n

)2

≤2m2
1(EV 2

l,i,n)2

(
+∞∑

l=K+1

λl

)2

+ 2E

{
+∞∑

l=K+1

λl

m1∑
i=1

(V 2
l,i,n − EV 2

l,i,n)

}2

≤2m2
1(EV 2

l,i,n)2

(
+∞∑

l=K+1

λl

)2

+ 2

+∞∑
l,l′=K+1

λlλl′
m1∑

i,i′=1

cov(V 2
l,i,n, V

2
l′,i′,n)

≤2m2
1(EV 2

l,i,n)2

(
+∞∑

l=K+1

λl

)2

+ 2C1m1

(
+∞∑

l=K+1

λl

)2

→ 0.

Thus (C) holds as well.
To deal with the denominator of the statistic, we note that

tr(HI|X,ZGHI|X,Z) =

n−m2∑
i=1

∣∣∣∣∣∣
∣∣∣∣∣∣

n∑
j=1

rijϕ(ej)

∣∣∣∣∣∣
∣∣∣∣∣∣
2

=

n−m2∑
i=1

n∑
j,k=1

rijrikK(ej , ek),

where we assume HI|X,Z = (hij) has the spectral decomposition R′R with R = (rij) ∈ R(n−m2)×n.
Note that

1

n−m2
Etr(HI|X,ZGHI|X,Z) = EK(e1, e1),
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and

1

(n−m2)2
var
(

tr(HI|X,ZGHI|X,Z)
)

=
1

(n−m2)2

n−m2∑
i,i′=1

n∑
j,k,j′,k′=1

rijrikri′j′ri′k′cov(K(ej , ek),K(ej′ , ek′))

=
var(K(e1, e1))

(n−m2)2

n−m2∑
i,i′=1

n∑
j=1

r2ijr
2
i′j +

2var(K(e1, e2))

(n−m2)2

n−m2∑
i,i′=1

∑
j 6=k

rijrikri′jri′k

=
var(K(e1, e1))

(n−m2)2

n∑
j=1

h2jj +
2var(K(e1, e2))

(n−m2)2

∑
j 6=k

h2jk

≤ C ′

(n−m2)2

∑
j,k

h2j,k =
C ′

n−m2
→ 0,

where C ′ > 0. Thus by the law of large numbers,

1

n−m2
tr(HI|X,ZGHI|X,Z)→p EK(e1, e1) =

+∞∑
l=1

λl. (7)

The conclusion thus follows from (6), (7), and the Slutsky’s theorem.
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Supplementary Note 2: derivation of the chi-square approximation

The idea of the chi-square approximation is to match the first two moments of the chi-square
distribution with those of T0. To this end, we note that E[T0] = 1 and the variance of m1T0 is equal
to

var(m1T0) =
2m1

∑+∞
l=1 λ

2
l

(
∑+∞

l=1 λl)
2

=
2m1EK(e1, e2)

2

(EK(e1, e1))2
=

2m1

p

with p = (EK(e1, e1))
2/EK(e1, e2)

2. Therefore,

E(pm1T0) = pm1 and var(pm1T0) = 2m1p.

Note that

HI|X,ZΦ = HI|X,ZE.

Suppose G̃ = (g̃ij) = HI|X,ZGHI|X,Z with HI|X,Z = (hij). Then we have

G̃ = HI|X,ZE ◦ E>HI|X,Z .

We can estimate EK(e1, e1) by

µ̂1 =
1

n−m2
tr(G̃).

To estimate EK(e1, e2)
2, we note that

∑
i 6=k

Eg̃2ik =
∑
i 6=k

E

∑
j1,j2

hi,j1hk,j2K(ej1 , ej2)

2

=
∑
i 6=k

E
∑

j1,j2,j3,j4

hi,j1hk,j2hi,j3hk,j4K(ej1 , ej2)K(ej3 , ej4)

=EK(e1, e2)
2
∑
i 6=k

∑
j1 6=j2

h2i,j1h
2
k,j2 + EK(e1, e2)

2
∑
i 6=k

∑
j1 6=j2

hi,j1hk,j1hi,j2hk,j2

+ {EK(e1, e1)}2
∑
i 6=k

∑
j1 6=j2

hi,j1hk,j1hi,j2hk,j2 + EK(e1, e1)
2
∑
i 6=k

∑
j1

h2i,j1h
2
k,j1

=EK(e1, e2)
2

∑
i 6=k

∑
j1 6=j2

h2i,j1h
2
k,j2 +

∑
i 6=k

∑
j1 6=j2

hi,j1hk,j1hi,j2hk,j2


+ {EK(e1, e1)}2

∑
i 6=k

∑
j1 6=j2

hi,j1hk,j1hi,j2hk,j2 + EK(e1, e1)
2(
∑
j

h2jj −
∑
i,j

h4ij).

where the last three terms are of smaller order O(n). Thus a natural estimator for EK(e1, e2)
2

would be

µ̂2 =

∑
i 6=k g̃

2
ik∑

i 6=k

∑
j1 6=j2

h2i,j1h
2
k,j2

=

∑
i 6=k g̃

2
ik

(n−m2)2 +
∑

i,j h
4
i,j − 2

∑
i h

2
ii

.
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We then estimate p by

p̂ =
µ̂21
µ̂2
.

Therefore, we can approximate the distribution of pm1T0 by χ2
p̂m1

.
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Supplementary Note 3: Simulation setup

We study the type I error control and power ( i.e., the probability of rejecting the null hypothesis
under the alternative) using simulations. We simulate a covariate of interest (X) and a confounder
(Z), which are bivariate normally distributed with mean 0, sd 1 and correlation 0.5. We use the
Dirichlet distribution to simulate the baseline microbiome composition, following the same strategy
as described in [2]. The parameters of the Dirichlet distribution were estimated based on a human
upper respiratory microbiome dataset (60 subjects, 856 OTUs) [1], which can be accessed in the R
GUniFrac package. Next, we let X and Z affect the abundances of a subset of OTUs. Depending on
how the affected OTUs are distributed on the phylogenetic tree, we study three scenarios: Scene
1. X and Z affect a cluster of abundant OTUs (38 OTUs, 11.9% of total abundance), Scene 2.
X and Z affect a cluster of rare OTUs (42 OTUs, 2.6% of total abundance), and Scene 3. X and
Z affect 39 OTUs randomly distributed on the tree. The OTU clusters are formed by applying
the Partitioning Around Medoid algorithm (20 clusters) based on the patristic distances among
OTUs. For those affected OTUs, we apply a fold change of eaX+0.5Z to their proportions. We
vary the coefficient a to create different levels of signal strength. The null situation is simulated by
setting a = 0. Finally, we normalize the proportion data to sum one and generate the counts using
the multinomial distribution with a sequencing depth of 10,000. We calculate the UniFrac and
Bray-Curtis (BC) distances, two most widely used distance metrics, based on the OTU count data
and the phylogenetic tree. We compare the proposed method (D-MANOVA, dmanaova function in
R GUniFrac package) to PERMANOVA (999 permutations, adonis function in R vegan package)
and MDMR (mdmr function, R MDMR package) based on these distance matrices.
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