
Exploring PGS scores by Mavaddat et
al. (2018)

Introduction
Let us assume that you are a breast cancer researcher, and that you are interested in studying the

screening and prevention of this disease. Now, imagine you have just recently noticed a new publication

that claims to have developed a set of new polygenic risk scores that are both powerful and reliable

predictors of breast cancer risk, e.g., Mavaddat et al. (2018) (https://doi.org/10.1016/j.ajhg.2018.11.002).

Perhaps now you would like to investigate a bit more about these new polygenic risk scores to assess their

potential application. You know that the performance of these scores is dependent on various aspects,

such as study design, participant demographics, case definitions, and covariates that have been adjusted

for. In general, to access this information, you will have to carefully read the paper searching for these

details, and usually get them from the supplementary material, with all the extra e�ort it takes. 

However, if these scores have already been indexed and manually curated by the PGS Catalog

(https://www.pgscatalog.org/) team, then you can benefit by using this free and open resource to quickly

gather relevant data about these scores. And if you happen to be an R user, then you can use the R Package

quincunx and its retrieval functions to fetch the polygenic score metadata associated with the publication

of interest from the PGS Catalog REST API server. This is what we will be doing next.

Finding polygenic risk scores by publication
Searching for publications by author name

To check if we are fortunate enough to have the polygenic risk scores for breast cancer (Mavaddat et

al. (2018) (https://doi.org/10.1016/j.ajhg.2018.11.002)) in the PGS Catalog, we start by loading the

quincunx package and by searching for this publication in the PGS Catalog. To do this we will use the

function get_publications()  and start by searching by the first author’s last name, i.e. “Mavaddat”:

https://doi.org/10.1016/j.ajhg.2018.11.002
https://www.pgscatalog.org/
https://doi.org/10.1016/j.ajhg.2018.11.002
https://maialab.org/quincunx/reference/get_publications.html


When you ask the PGS Catalog for publications, it returns an S4 publications  object with two tables

(slots): publications  and pgs_ids . You can access these tables with the @  operator.

The publications  table (data frame) contains all the publications added to the PGS Catalog that contain

an author whose last name is “Mavaddat”:

Seemingly there are 6 publications indexed in the PGS Catalog. Each publication added to the PGS Catalog

gets an unique identifier. This identifier is in the first column ( pgp_id ) of the publications  table. The

number of publications can be obtained by using the function n()  on the S4 object pub_by_mavaddat ,

or by asking directly the number of rows of the publications  table:

library(quincunx)

library(dplyr)

pub_by_mavaddat <- get_publications(author = 'Mavaddat') # Not case sensitive,

                                                         # so "mavaddat" would

                                                         # have worked just fine.

pub_by_mavaddat@publications

#> # A tibble: 6 x 8

#>   pgp_id  pubmed_id publication_date publication title    author_fullname doi   

#>   <chr>   <chr>     <date>           <chr>       <chr>    <chr>           <chr> 

#> 1 PGP000… 25855707  2015-04-08       J Natl Can… Predict… Mavaddat N      10.10…

#> 2 PGP000… 30554720  2018-12-13       Am J Hum G… Polygen… Mavaddat N      10.10…

#> 3 PGP000… 28376175  2017-07-01       J Natl Can… Evaluat… Kuchenbaecker … 10.10…

#> 4 PGP000… 33022221  2020-10-05       Am J Hum G… Breast … Kramer I        10.10…

#> 5 PGP000… 32737321  2020-07-31       Nat Commun  Europea… Ho WK           10.10…

#> 6 PGP000… 32665703  2020-07-15       Genet Med   Polygen… Barnes DR       10.10…

#> # … with 1 more variable: authors <chr>

quincunx::n(pub_by_mavaddat) # Here we use quincunx::n() instead of n() to avoid name

space collisions with dplyr::n().

#> [1] 6

nrow(pub_by_mavaddat@publications)

#> [1] 6

https://rdrr.io/r/base/slotOp.html
https://maialab.org/quincunx/reference/n.html
https://rdrr.io/r/base/library.html
https://rdrr.io/r/base/library.html
https://dplyr.tidyverse.org/
https://maialab.org/quincunx/reference/get_publications.html
https://maialab.org/quincunx/reference/n.html
https://rdrr.io/r/base/nrow.html


Moreover, we can see that Nasim Mavaddat is not the first author in all these publications because her

name is not always present in the column author_fullname  (which contains the name of the first author

only). If you want to know all the authors you can access the column authors  (contains a string of comma

separated author names).

Now, to identify our publication of interest amongst these 6 publications, we can check, for example, the

PubMed identifier of Mavaddat et al. (2018) (https://doi.org/10.1016/j.ajhg.2018.11.002) (column

pubmed_id ), or check other information such as journal name (column publication ), the publication

title (column title ) or the publication date (column publication_date ). The most unambiguous

approach is to use the PubMed identifier. The PubMed identifier for Mavaddat et al. (2018)

(https://doi.org/10.1016/j.ajhg.2018.11.002) is "30554720" . So the publication of interest corresponds to

the one returned in row number 2 of the publications  table:

To focus now on this publication and filter out the others, we can subset the publications  object

pub_by_mavaddat , e.g., by position, and get a new object with both tables ( publications  and pgs_ids )

filtered for only this publication:

publication_row_index <- which(pub_by_mavaddat@publications$pubmed_id == "30554720")

publication_row_index

#> [1] 2

https://doi.org/10.1016/j.ajhg.2018.11.002
https://doi.org/10.1016/j.ajhg.2018.11.002
https://rdrr.io/r/base/which.html


We see now that the publications  table contains one entry only, and that the PGS Catalog identifier

assigned to this publication is PGP000002:

mavaddat2018 <- pub_by_mavaddat[publication_row_index]

mavaddat2018

#> An object of class "publications"

#> Slot "publications":

#> # A tibble: 1 x 8

#>   pgp_id  pubmed_id publication_date publication title    author_fullname doi   

#>   <chr>   <chr>     <date>           <chr>       <chr>    <chr>           <chr> 

#> 1 PGP000… 30554720  2018-12-13       Am J Hum G… Polygen… Mavaddat N      10.10…

#> # … with 1 more variable: authors <chr>

#> 

#> Slot "pgs_ids":

#> # A tibble: 15 x 3

#>    pgp_id    pgs_id    stage   

#>    <chr>     <chr>     <chr>   

#>  1 PGP000002 PGS000004 gwas/dev

#>  2 PGP000002 PGS000005 gwas/dev

#>  3 PGP000002 PGS000006 gwas/dev

#>  4 PGP000002 PGS000007 gwas/dev

#>  5 PGP000002 PGS000008 gwas/dev

#>  6 PGP000002 PGS000009 gwas/dev

#>  7 PGP000002 PGS000001 eval    

#>  8 PGP000002 PGS000002 eval    

#>  9 PGP000002 PGS000003 eval    

#> 10 PGP000002 PGS000004 eval    

#> 11 PGP000002 PGS000005 eval    

#> 12 PGP000002 PGS000006 eval    

#> 13 PGP000002 PGS000007 eval    

#> 14 PGP000002 PGS000008 eval    

#> 15 PGP000002 PGS000009 eval

mavaddat2018@publications$pgp_id

#> [1] "PGP000002"



In the pgs_ids  we see that there are several PGS scores associated with publication PGP000002. Besides

listing the score identifiers ( pgs_id ), it also includes the stage  column that annotates the polygenic

score relative to the PGS construction process (check page 2 of the quincunx cheatsheet

(https://github.com/ramiromagno/cheatsheets/blob/master/quincunx/quincunx_cheatsheet.pdf) for a

visual illustration).

Searching for publications by PubMed ID

An alternatively, albeit more direct, route to get this publication by Mavaddat et al. (2018)

(https://doi.org/10.1016/j.ajhg.2018.11.002) could have been to query for publications directly by the

corresponding PubMed ID (30554720):

https://github.com/ramiromagno/cheatsheets/blob/master/quincunx/quincunx_cheatsheet.pdf
https://doi.org/10.1016/j.ajhg.2018.11.002


To get an overview of the possible search criteria for get_publications  you can use the help function

within R.

pub_by_pmid_30554720 <- get_publications(pubmed_id = '30554720')

pub_by_pmid_30554720

#> An object of class "publications"

#> Slot "publications":

#> # A tibble: 1 x 8

#>   pgp_id  pubmed_id publication_date publication title    author_fullname doi   

#>   <chr>   <chr>     <date>           <chr>       <chr>    <chr>           <chr> 

#> 1 PGP000… 30554720  2018-12-13       Am J Hum G… Polygen… Mavaddat N      10.10…

#> # … with 1 more variable: authors <chr>

#> 

#> Slot "pgs_ids":

#> # A tibble: 15 x 3

#>    pgp_id    pgs_id    stage   

#>    <chr>     <chr>     <chr>   

#>  1 PGP000002 PGS000004 gwas/dev

#>  2 PGP000002 PGS000005 gwas/dev

#>  3 PGP000002 PGS000006 gwas/dev

#>  4 PGP000002 PGS000007 gwas/dev

#>  5 PGP000002 PGS000008 gwas/dev

#>  6 PGP000002 PGS000009 gwas/dev

#>  7 PGP000002 PGS000001 eval    

#>  8 PGP000002 PGS000002 eval    

#>  9 PGP000002 PGS000003 eval    

#> 10 PGP000002 PGS000004 eval    

#> 11 PGP000002 PGS000005 eval    

#> 12 PGP000002 PGS000006 eval    

#> 13 PGP000002 PGS000007 eval    

#> 14 PGP000002 PGS000008 eval    

#> 15 PGP000002 PGS000009 eval

?get_publications

# or alternatively

help("get_publications")

https://maialab.org/quincunx/reference/get_publications.html
https://rdrr.io/r/utils/help.html


From publication to polygenic risk scores
Now that we have found that our publication of interest exists in the PGS Catalog, with identifier

PGP000002, we can check now which polygenic risk scores are annotated in the Catalog. Polygenic scores

(PGS) in the PGS Catalog are indexed by an unique accession identifier of the form: “PGS000000” (“PGS”

followed by six digits).

To get all PGS identifiers associated with Mavaddat’s publication we turn to the second table pgs_ids  that

maps publication identifiers (PGP) to PGS identifiers:

Please note that there are 9 unique scores, both from the development and the evaluation stages, meaning

that this paper published new polygenic scores (development stage), and tested them (evaluation stage).

But this paper has also evaluated 3 other polygenic scores previously developed (and firstly published in

another publication by the same author). 

pub_by_pmid_30554720@pgs_ids

#> # A tibble: 15 x 3

#>    pgp_id    pgs_id    stage   

#>    <chr>     <chr>     <chr>   

#>  1 PGP000002 PGS000004 gwas/dev

#>  2 PGP000002 PGS000005 gwas/dev

#>  3 PGP000002 PGS000006 gwas/dev

#>  4 PGP000002 PGS000007 gwas/dev

#>  5 PGP000002 PGS000008 gwas/dev

#>  6 PGP000002 PGS000009 gwas/dev

#>  7 PGP000002 PGS000001 eval    

#>  8 PGP000002 PGS000002 eval    

#>  9 PGP000002 PGS000003 eval    

#> 10 PGP000002 PGS000004 eval    

#> 11 PGP000002 PGS000005 eval    

#> 12 PGP000002 PGS000006 eval    

#> 13 PGP000002 PGS000007 eval    

#> 14 PGP000002 PGS000008 eval    

#> 15 PGP000002 PGS000009 eval



This distinction between stages is important because when we query the database for the scores from

all the pgp_ids present in this publication, only the newly developed ones (from the development

stage) will be retrieved. (See below: section about the get_scores()  function).

If we knew, before hand, that PGP000002 was associated with Mavaddat’s publication, we could have also

taken advantage of the neat function pgp_to_pgs()  to quickly get all the associated polygenic score ids:

# Newly published PGS scores (development stage)

pub_by_pmid_30554720@pgs_ids %>% dplyr::filter(stage == "development")

#> # A tibble: 0 x 3

#> # … with 3 variables: pgp_id <chr>, pgs_id <chr>, stage <chr>

# All PGS scores evaluated (evaluation stage)  

pub_by_pmid_30554720@pgs_ids %>% dplyr::filter(stage == "evaluation") 

#> # A tibble: 0 x 3

#> # … with 3 variables: pgp_id <chr>, pgs_id <chr>, stage <chr>

pgp_to_pgs('PGP000002')

#> # A tibble: 15 x 3

#>    pgp_id    pgs_id    stage   

#>    <chr>     <chr>     <chr>   

#>  1 PGP000002 PGS000004 gwas/dev

#>  2 PGP000002 PGS000005 gwas/dev

#>  3 PGP000002 PGS000006 gwas/dev

#>  4 PGP000002 PGS000007 gwas/dev

#>  5 PGP000002 PGS000008 gwas/dev

#>  6 PGP000002 PGS000009 gwas/dev

#>  7 PGP000002 PGS000001 eval    

#>  8 PGP000002 PGS000002 eval    

#>  9 PGP000002 PGS000003 eval    

#> 10 PGP000002 PGS000004 eval    

#> 11 PGP000002 PGS000005 eval    

#> 12 PGP000002 PGS000006 eval    

#> 13 PGP000002 PGS000007 eval    

#> 14 PGP000002 PGS000008 eval    

#> 15 PGP000002 PGS000009 eval

https://maialab.org/quincunx/reference/get_scores.html
https://maialab.org/quincunx/reference/pgp_to_pgs.html
https://dplyr.tidyverse.org/reference/filter.html
https://dplyr.tidyverse.org/reference/filter.html
https://maialab.org/quincunx/reference/pgp_to_pgs.html


Polygenic Scores published by Mavaddat et al. (2018)
To dive into the metadata about these polygenic scores, we use the quincunx function get_scores() :

This returns the S4 object scores  which contains six tables (slots): scores, publications, samples,

demographics, cohorts, traits, stages_tally, ancestry_frequencies, multi_ancestry_composition. 

You can quickly check all variables from each table by consulting quincunx cheatsheet

(https://github.com/ramiromagno/cheatsheets/blob/master/quincunx/quincunx_cheatsheet.pdf). 

A description of each variable is annotated in the scores  object help page that can be accessed with

class?scores .

Polygenic Scores Metadata
scores object | scores table

The S4 scores object mavaddat2018_scores  starts with a table named scores  that lists each score in one

row. All scores are identified by a PGS identifier ( pgs_id  column). Note that, as previously explained, only

the polygenic scores newly developed in this publication (developmental stage) are retrieved, and not all

the PGS scores that were evaluated in this publication.

In addition, scores can have a name ( pgs_name  column). This may be the name assigned by authors of the

source publication, or a name assigned by a PGS Catalog curator in order to identify that particular score

throughout the curating process.

mavaddat2018_scores <- get_scores(pubmed_id = "30554720")

slotNames(mavaddat2018_scores)

#> [1] "scores"                     "publications"              

#> [3] "samples"                    "demographics"              

#> [5] "cohorts"                    "traits"                    

#> [7] "stages_tally"               "ancestry_frequencies"      

#> [9] "multi_ancestry_composition"

https://maialab.org/quincunx/reference/get_scores.html
https://github.com/ramiromagno/cheatsheets/blob/master/quincunx/quincunx_cheatsheet.pdf
https://maialab.org/quincunx/reference/scores-class.html
https://maialab.org/quincunx/reference/get_scores.html


From the PGS names we can already see the presence of the su�ixes “ERpos” and “ERneg”, suggestive of

specialized polygenic risk scores for estrogen-receptor positive and negative samples.

The column scoring_file  contains the URL for the FTP location containing the corresponding PGS

scoring files. PGS scoring files are the text files provided by the PGS Catalog team containing the source

data that you can use to compute polygenic scores for particular individuals, i.e. that allow you to apply

these scores to your individual samples. Learn more about scoring files in vignette("pgs-scoring-

file") . For a quick consultation of the file format of PGS scoring files you may also check the second

page of quincunx cheatsheet

(https://github.com/ramiromagno/cheatsheets/blob/master/quincunx/quincunx_cheatsheet.pdf).

As an additional feature, quincunx allows you to download the relevant PGS scoring files directly into R

using the function read_scoring_file() , making the data immediately available in R for further

analysis.

mavaddat2018_scores@scores[c('pgs_id', 'pgs_name')]

#> # A tibble: 6 x 2

#>   pgs_id    pgs_name     

#>   <chr>     <chr>        

#> 1 PGS000007 PRS3820_BC   

#> 2 PGS000008 PRS3820_ERpos

#> 3 PGS000005 PRS313_ERpos 

#> 4 PGS000009 PRS3820_ERneg

#> 5 PGS000004 PRS313_BC    

#> 6 PGS000006 PRS313_ERneg

mavaddat2018_scores@scores['scoring_file']

#> # A tibble: 6 x 1

#>   scoring_file                                                                  

#>   <chr>                                                                         

#> 1 http://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS000007/ScoringFiles/PGS…

#> 2 http://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS000008/ScoringFiles/PGS…

#> 3 http://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS000005/ScoringFiles/PGS…

#> 4 http://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS000009/ScoringFiles/PGS…

#> 5 http://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS000004/ScoringFiles/PGS…

#> 6 http://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS000006/ScoringFiles/PGS…

https://maialab.org/quincunx/articles/pgs-scoring-file.html
https://github.com/ramiromagno/cheatsheets/blob/master/quincunx/quincunx_cheatsheet.pdf
https://maialab.org/quincunx/reference/read_scoring_file.html
https://rdrr.io/r/base/c.html


The column matches_publication  is a logical value indicating whether the published polygenic score is

exactly the same as the one present in the PGS scoring file provided by the PGS Catalog. In this case all of

the 6 scores are provided exactly as published (all values are “TRUE”).

Other columns in the scores  table hold relevant information.

For example, columns such as pgs_method_name  and pgs_method_params  provide extra details about

the PGS development method. Finally, n_variants  informs about the number of variants comprising

each polygenic risk score, and assembly  indicates the genome assembly version used.

scores object | publications table

mavaddat2018_scores@scores[c('pgs_id', 'matches_publication')]

#> # A tibble: 6 x 2

#>   pgs_id    matches_publication

#>   <chr>     <lgl>              

#> 1 PGS000007 TRUE               

#> 2 PGS000008 TRUE               

#> 3 PGS000005 TRUE               

#> 4 PGS000009 TRUE               

#> 5 PGS000004 TRUE               

#> 6 PGS000006 TRUE

mavaddat2018_scores@scores[c('pgs_name', 'pgs_method_name', 'pgs_method_params', 'n_v

ariants', 'assembly')]

#> # A tibble: 6 x 5

#>   pgs_name    pgs_method_name               pgs_method_para… n_variants assembly

#>   <chr>       <chr>                         <chr>                 <int> <chr>   

#> 1 PRS3820_BC  LASSO penalized regression    p < 0.001              3820 GRCh37  

#> 2 PRS3820_ER… LASSO penalized regression    p < 0.001              3820 GRCh37  

#> 3 PRS313_ERp… Hard-Thresholding Stepwise F… p < 10^-5               313 GRCh37  

#> 4 PRS3820_ER… LASSO penalized regression    p < 0.001              3820 GRCh37  

#> 5 PRS313_BC   Hard-Thresholding Stepwise F… p < 10^-5               313 GRCh37  

#> 6 PRS313_ERn… Hard-Thresholding Stepwise F… p < 10^-5               313 GRCh37

https://rdrr.io/r/base/c.html
https://rdrr.io/r/base/c.html


The scores  S4 object contains a table dedicated to the source publications used to collect the score(s)

retrieved. In this case, it is not surprising that all PGS scores map to the same publication identifier, i.e.,

PGP000002, as that was our starting point.

scores object | samples table

The third table (slot) of the scores  S4 object pertains to the samples used for the development of the

PGS scores.

There are a total of 15 columns with metadata details about each sample. Each row corresponds to one

sample associated with the polygenic scores, and the combination of values of the first two columns,

pgs_id  and sample_id , uniquely identifies each sample in this table. All samples shown in the samples

table of a scores  object are annotated with a stage , that can take two values: "discovery"  or

"training" .

The "discovery"  samples are typically used in determining the variants that are a�erwards used for

polygenic score development. These variants originate typically from Genome-Wide Association Studies

(GWAS). Hence, these samples might be linked to the GWAS Catalog. If that is the case, this information is

provided in the column study_id , indicating the GWAS Catalog accession identifier. You may find more

information about these GWAS studies by using the function gwasrapidd::get_studies()  from the

gwasrapidd (https://rmagno.eu/gwasrapidd/) R package that we developed previously (described here

(https://doi.org/10.1093/bioinformatics/btz605)). 

The "training"  samples are those that have been used for the training of a particular polygenic score.

Together, these two stages (discovery and training) are referred to as development, in contrast to the later

testing phase of the polygenic scores, i.e., the evaluation phase (or stage). 

mavaddat2018_scores@publications[c('pgs_id', 'pgp_id', 'publication_date', 'author_fu

llname')]

#> # A tibble: 6 x 4

#>   pgs_id    pgp_id    publication_date author_fullname

#>   <chr>     <chr>     <date>           <chr>          

#> 1 PGS000007 PGP000002 2018-12-13       Mavaddat N     

#> 2 PGS000008 PGP000002 2018-12-13       Mavaddat N     

#> 3 PGS000005 PGP000002 2018-12-13       Mavaddat N     

#> 4 PGS000009 PGP000002 2018-12-13       Mavaddat N     

#> 5 PGS000004 PGP000002 2018-12-13       Mavaddat N     

#> 6 PGS000006 PGP000002 2018-12-13       Mavaddat N

https://rdrr.io/pkg/gwasrapidd/man/get_studies.html
https://rmagno.eu/gwasrapidd/
https://doi.org/10.1093/bioinformatics/btz605
https://rdrr.io/r/base/c.html


If this sounds confusing check our cheatsheet

(https://github.com/ramiromagno/cheatsheets/blob/master/quincunx/quincunx_cheatsheet.pdf),

section PGS Construction Process, second page.

The PGS Catalog provides brief records of samples sizes (total number, number of cases, and number of

controls):

dplyr::glimpse(mavaddat2018_scores@samples)

#> Rows: 18

#> Columns: 15

#> $ pgs_id                          <chr> "PGS000007", "PGS000007", "PGS000007",…

#> $ sample_id                       <int> 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1,…

#> $ stage                           <chr> "gwas", "dev", "dev", "gwas", "dev", "…

#> $ sample_size                     <int> 139274, 158648, 10444, 139274, 87368, …

#> $ sample_cases                    <int> NA, 88916, 5159, NA, 55391, 4233, NA, …

#> $ sample_controls                 <int> NA, 69732, 5285, NA, 31977, 926, NA, 3…

#> $ sample_percent_male             <dbl> NA, 0, 0, NA, 0, 0, NA, 0, 0, NA, 0, 0…

#> $ phenotype_description           <chr> NA, "Invasive breast cancer-affected",…

#> $ ancestry_category               <chr> "European", "European", "European", "E…

#> $ ancestry                        <chr> "NR", NA, NA, "NR", NA, NA, "NR", NA, …

#> $ country                         <chr> "Canada, U.S., Australia, Belgium, Fra…

#> $ ancestry_additional_description <chr> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA…

#> $ study_id                        <chr> "GCST004988", NA, NA, "GCST004988", NA…

#> $ pubmed_id                       <chr> "29059683", NA, NA, "29059683", NA, NA…

#> $ cohorts_additional_description  <chr> NA, "Training Cohort", "Validation Coh…

https://github.com/ramiromagno/cheatsheets/blob/master/quincunx/quincunx_cheatsheet.pdf
https://pillar.r-lib.org/reference/glimpse.html


Perhaps, not so surprisingly, the percentage of male participants in the training samples is zero:

mavaddat2018_scores@samples[1:6]

#> # A tibble: 18 x 6

#>    pgs_id    sample_id stage sample_size sample_cases sample_controls

#>    <chr>         <int> <chr>       <int>        <int>           <int>

#>  1 PGS000007         1 gwas       139274           NA              NA

#>  2 PGS000007         2 dev        158648        88916           69732

#>  3 PGS000007         3 dev         10444         5159            5285

#>  4 PGS000008         1 gwas       139274           NA              NA

#>  5 PGS000008         2 dev         87368        55391           31977

#>  6 PGS000008         3 dev          5159         4233             926

#>  7 PGS000005         1 gwas       139274           NA              NA

#>  8 PGS000005         2 dev         87368        55391           31977

#>  9 PGS000005         3 dev          5159         4233             926

#> 10 PGS000009         1 gwas       139274           NA              NA

#> 11 PGS000009         2 dev         87368        15404           71964

#> 12 PGS000009         3 dev          5159          926            4233

#> 13 PGS000004         1 gwas       139274           NA              NA

#> 14 PGS000004         2 dev        158648        88916           69732

#> 15 PGS000004         3 dev         10444         5159            5285

#> 16 PGS000006         1 gwas       139274           NA              NA

#> 17 PGS000006         2 dev         87368        15404           71964

#> 18 PGS000006         3 dev          5159          926            4233



Also, information about the trait or disease studied and ancestry information can be accessed:

mavaddat2018_scores@samples[c('pgs_id', 'sample_id', 'stage', 'sample_percent_male')]

#> # A tibble: 18 x 4

#>    pgs_id    sample_id stage sample_percent_male

#>    <chr>         <int> <chr>               <dbl>

#>  1 PGS000007         1 gwas                   NA

#>  2 PGS000007         2 dev                     0

#>  3 PGS000007         3 dev                     0

#>  4 PGS000008         1 gwas                   NA

#>  5 PGS000008         2 dev                     0

#>  6 PGS000008         3 dev                     0

#>  7 PGS000005         1 gwas                   NA

#>  8 PGS000005         2 dev                     0

#>  9 PGS000005         3 dev                     0

#> 10 PGS000009         1 gwas                   NA

#> 11 PGS000009         2 dev                     0

#> 12 PGS000009         3 dev                     0

#> 13 PGS000004         1 gwas                   NA

#> 14 PGS000004         2 dev                     0

#> 15 PGS000004         3 dev                     0

#> 16 PGS000006         1 gwas                   NA

#> 17 PGS000006         2 dev                     0

#> 18 PGS000006         3 dev                     0

https://rdrr.io/r/base/c.html


Again, not so surprisingly, all samples are of European ancestry, a bias recognized by the research

community. You can find more details about the ancestry variable in the ancestry_categories  column.

These categories have been defined within the NHGRI-EBI GWAS Catalog framework. We provide these

ancestry nomenclature in quincunx as a separate dataset named ancestry_categories . See ?

ancestry_categories  more details. To quickly lookup the definition of the European ancestry:

mavaddat2018_scores@samples[c('pgs_id', 'sample_id', 'stage', 'phenotype_description'

, 'ancestry')]

#> # A tibble: 18 x 5

#>    pgs_id    sample_id stage phenotype_description           ancestry

#>    <chr>         <int> <chr> <chr>                           <chr>   

#>  1 PGS000007         1 gwas  <NA>                            NR      

#>  2 PGS000007         2 dev   Invasive breast cancer-affected <NA>    

#>  3 PGS000007         3 dev   Invasive breast cancer-affected <NA>    

#>  4 PGS000008         1 gwas  <NA>                            NR      

#>  5 PGS000008         2 dev   ER-positive breast cancer cases <NA>    

#>  6 PGS000008         3 dev   ER-positive breast cancer cases <NA>    

#>  7 PGS000005         1 gwas  <NA>                            NR      

#>  8 PGS000005         2 dev   ER-positive breast cancer cases <NA>    

#>  9 PGS000005         3 dev   ER-positive breast cancer cases <NA>    

#> 10 PGS000009         1 gwas  <NA>                            NR      

#> 11 PGS000009         2 dev   ER-negative breast cancer cases <NA>    

#> 12 PGS000009         3 dev   ER-negative breast cancer cases <NA>    

#> 13 PGS000004         1 gwas  <NA>                            NR      

#> 14 PGS000004         2 dev   Invasive breast cancer-affected <NA>    

#> 15 PGS000004         3 dev   Invasive breast cancer-affected <NA>    

#> 16 PGS000006         1 gwas  <NA>                            NR      

#> 17 PGS000006         2 dev   ER-negative breast cancer cases <NA>    

#> 18 PGS000006         3 dev   ER-negative breast cancer cases <NA>

https://maialab.org/quincunx/reference/ancestry_categories.html
https://rdrr.io/r/base/c.html


scores object | demographics table

The demographics table usually lists demographic information about each sample. For this study this

table is however empty, meaning that this information was either not available from Mavaddat’s

publication, or not included in the PGS Catalog.

# Quick look at the ancestries definitions

ancestry_categories

#> # A tibble: 19 x 6

#>    ancestry_category ancestry_class ancestry_class_… ancestry_class_… definition

#>    <chr>             <chr>          <chr>            <chr>            <chr>     

#>  1 Aboriginal Austr… Additional Di… OTH              #999999          "Includes…

#>  2 African American… African        AFR              #FFD900          "Includes…

#>  3 African unspecif… African        AFR              #FFD900          "Includes…

#>  4 Asian unspecified Additional As… ASN              #B15928          "Includes…

#>  5 Central Asian     Additional As… ASN              #B15928          "Includes…

#>  6 East Asian        East Asian     EAS              #4DAF4A          "Includes…

#>  7 European          European       EUR              #377EB8          "Includes…

#>  8 Greater Middle E… Greater Middl… GME              #00CED1          "Includes…

#>  9 Hispanic or Lati… Hispanic or L… AMR              #E41A1C          "Includes…

#> 10 Native American   Additional Di… OTH              #999999          "Includes…

#> 11 Not reported      Ancestry Not … NR               #BBBBBB          "Includes…

#> 12 Oceanian          Additional Di… OTH              #999999          "Includes…

#> 13 Other             Additional Di… OTH              #999999          "Includes…

#> 14 Other admixed an… Additional Di… OTH              #999999          "Includes…

#> 15 South Asian       South Asian    SAS              #984EA3          "Includes…

#> 16 South East Asian  Additional As… ASN              #B15928          "Includes…

#> 17 Sub-Saharan Afri… African        AFR              #FFD900          "Includes…

#> 18 Multi-Ancestry (… Multi-Ancestr… MAE              #A6CEE3          "Combined…

#> 19 Multi-Ancestry (… Multi-Ancestr… MAO              #FF7F00          "Combined…

#> # … with 1 more variable: examples <chr>



Nevertheless, the demographics variables, when present, are follow-up time, and age of study

participants.

If you want to confirm that quincunx is retrieving exactly the same info as provided by the PGS Catalog web

interface, you can always check this by showing online the metadata for your PGP publication of interest

using the function open_in_pgs_catalog .

scores object | cohorts table

In the cohorts table you can check which cohorts are associated with which samples. Note that the unique

identification of a sample is given by the combination of the values of the first two columns: pgs_id , and

sample_id .

To learn more about the meaning of cohorts for the PGS Catalog, visit our check our cheatsheet

(https://github.com/ramiromagno/cheatsheets/blob/master/quincunx/quincunx_cheatsheet.pdf),

section Cohorts, Samples and Sample Sets, second page.

mavaddat2018_scores@demographics

#> # A tibble: 0 x 11

#> # … with 11 variables: pgs_id <chr>, sample_id <int>, variable <chr>,

#> #   estimate_type <chr>, estimate <dbl>, unit <chr>, variability_type <chr>,

#> #   variability <dbl>, interval_type <chr>, interval_lower <dbl>,

#> #   interval_upper <dbl>

open_in_pgs_catalog('PGP000002', pgs_catalog_entity = 'pgp')

https://github.com/ramiromagno/cheatsheets/blob/master/quincunx/quincunx_cheatsheet.pdf
https://maialab.org/quincunx/reference/open_in_pgs_catalog.html


scores object | traits table

Finally, in the traits table, you have access to the traits (phenotypes) associated with these polygenic

scores. In this study, all scores indicate “breast cancer” or one of its subtypes (column trait ):

Compared to the author-reported trait (column reported_trait  from table scores ), the trait

description in this table follows the controlled vocabulary of an ontology, i.e., the Experimental Factor

Ontology (EFO) (https://www.ebi.ac.uk/efo/). This way, traits are described objectively. This is very useful

for comparing trait data among di�erent studies where di�erent reported trait descriptions might have

been used. For example, if you want now to know what other polygenic scores may be deposited in the

mavaddat2018_scores@cohorts

#> # A tibble: 558 x 4

#>    pgs_id    sample_id cohort_symbol cohort_name                                

#>    <chr>         <int> <chr>         <chr>                                      

#>  1 PGS000007         2 ABCFS         Australian Breast Cancer Family Study      

#>  2 PGS000007         2 MCCS          Melbourne Collaborative Cohort Study       

#>  3 PGS000007         2 HMBCS         Hannover-Minsk Breast Cancer Study         

#>  4 PGS000007         2 LMBC          Leuven Multidisciplinary Breast Centre     

#>  5 PGS000007         2 MTLGEBCS      Montreal Gene-Environment Breast Cancer St…

#>  6 PGS000007         2 CGPS          Copenhagen General Population Study        

#>  7 PGS000007         2 KBCP          Kuopio Breast Cancer Project               

#>  8 PGS000007         2 OBCS          Oulu Breast Cancer Study                   

#>  9 PGS000007         2 CECILE        CECILE Breast Cancer Study                 

#> 10 PGS000007         2 BBCC          Bavarian Breast Cancer Cases and Controls  

#> # … with 548 more rows

mavaddat2018_scores@traits[c('pgs_id', 'efo_id', 'trait')]

#> # A tibble: 6 x 3

#>   pgs_id    efo_id      trait                                   

#>   <chr>     <chr>       <chr>                                   

#> 1 PGS000007 EFO_0000305 breast carcinoma                        

#> 2 PGS000008 EFO_1000649 estrogen-receptor positive breast cancer

#> 3 PGS000005 EFO_1000649 estrogen-receptor positive breast cancer

#> 4 PGS000009 EFO_1000650 estrogen-receptor negative breast cancer

#> 5 PGS000004 EFO_0000305 breast carcinoma                        

#> 6 PGS000006 EFO_1000650 estrogen-receptor negative breast cancer

https://www.ebi.ac.uk/efo/
https://rdrr.io/r/base/c.html


PGS Catalog that also study breast cancer — namely, breast carcinoma, estrogen-receptor positive breast

cancer, or estrogen-receptor negative breast cancer — then you could use their respective EFO identifiers

(EFO_0000305, EFO_1000649, or EFO_1000650) with the function get_scores() :

So there are 100 scores present in the PGS Catalog. Included in this set are the 6 scores originating from

Mavaddat et al. (2018) (https://doi.org/10.1016/j.ajhg.2018.11.002). If we want to proceed with analysing

these other scores without including those from the Mavaddat’s study, we could use the function

setdiff()  to remove them from the S4 scores  object:

For other set operations, check their documentation page: union() , intersect()  and setequal() .

Performance Metrics

scores_bc <- get_scores(efo_id = unique(mavaddat2018_scores@traits[['efo_id']]))

quincunx::n(scores_bc)

#> [1] 100

# Use quincunx::setdiff to avoid collision with dplyr::setdiff()

bc_scores_not_mavaddat2018 <- quincunx::setdiff(scores_bc, mavaddat2018_scores)

quincunx::n(bc_scores_not_mavaddat2018)

#> [1] 94

bc_scores_not_mavaddat2018@scores[c('pgs_id', 'reported_trait','n_variants')]

#> # A tibble: 94 x 3

#>    pgs_id    reported_trait         n_variants

#>    <chr>     <chr>                       <int>

#>  1 PGS000050 Breast cancer                  44

#>  2 PGS000485 Breast cancer (female)         62

#>  3 PGS000153 Breast cancer                  66

#>  4 PGS000488 Breast cancer (female)         79

#>  5 PGS000773 Breast cancer                 179

#>  6 PGS000335 Breast cancer             1079089

#>  7 PGS000479 Breast cancer (female)       2267

#>  8 PGS000332 Breast cancer             6390808

#>  9 PGS000501 Breast cancer (female)       1142

#> 10 PGS000537 Breast cancer (female)        363

#> # … with 84 more rows

https://maialab.org/quincunx/reference/get_scores.html
https://doi.org/10.1016/j.ajhg.2018.11.002
https://maialab.org/quincunx/reference/setop.html
https://maialab.org/quincunx/reference/setop.html
https://maialab.org/quincunx/reference/setop.html
https://maialab.org/quincunx/reference/setop.html
https://maialab.org/quincunx/reference/get_scores.html
https://rdrr.io/r/base/unique.html
https://maialab.org/quincunx/reference/n.html
https://maialab.org/quincunx/reference/setop.html
https://maialab.org/quincunx/reference/n.html
https://rdrr.io/r/base/c.html


According to the PGS Catalog team (https://doi.org/10.1101/2020.05.20.20108217

(https://doi.org/10.1101/2020.05.20.20108217)):

“Performance Metrics assess the validity of a PGS in a Sample Set, independent of

the samples used for score development. Common metrics include standardised

e�ect sizes (odds/hazard ratios [OR/HR], and regression coe�icients [Beta]),

classification accuracy metrics (e.g. AUROC, C-index, AUPRC), but other relevant

metrics (e.g. calibration [Chi-square]) can also be recorded. The covariates used

in the model (most commonly age, sex, and genetic principal components (PCs)

to account of population structure) are also linking to each set of metrics. Multiple

PGS can be evaluated on the same Sample Set and further indexed as directly

comparable Performance Metrics.”

In this section we will learn how to retrieve details about the evaluation of the polygenic scores developed

in Mavaddat et al. (2018). To do this, we start by querying the performance metrics for our scores of

interest.

Please recall that the pgs_ids  and reported_traits  for the polygenic scores newly developed in

Mavaddat’s publication are:

So we use these PGS identifiers to query the PGS Catalog for performance metrics using the function

get_performance_metrics() .

mavaddat2018_scores@scores[c('pgs_id', 'reported_trait')]

#> # A tibble: 6 x 2

#>   pgs_id    reported_trait           

#>   <chr>     <chr>                    

#> 1 PGS000007 Breast Cancer            

#> 2 PGS000008 ER-positive Breast Cancer

#> 3 PGS000005 ER-positive Breast Cancer

#> 4 PGS000009 ER-negative Breast Cancer

#> 5 PGS000004 Breast Cancer            

#> 6 PGS000006 ER-negative Breast Cancer

https://doi.org/10.1101/2020.05.20.20108217
https://maialab.org/quincunx/reference/get_performance_metrics.html
https://rdrr.io/r/base/c.html


The output is an S4 object with 9 tables:

performance_metrics, publications, sample_sets, samples, demographics, cohorts,

pgs_e�ect_sizes, pgs_classification_metrics, and pgs_other_metrics.

Reminder | You can quickly check all variables from each table by consulting quincunx cheatsheet

(https://github.com/ramiromagno/cheatsheets/blob/master/quincunx/quincunx_cheatsheet.pdf). 

Also, a description of each variable is annotated in the performance_metrics  object help page that can

be accessed with class?performance_metrics .

performance_metrics object | performance_metrics table

In the first table performance_metrics  we get one performance metrics entity per row, with the following

columns: ppm_id, pgs_id, reported_trait, covariates, comments. 

Note that all performance metrics are indexed with an unique identifier that starts with “PPM”.

According to the PGS Catalog documentation (http://www.pgscatalog.org/docs/

(http://www.pgscatalog.org/docs/)):

mavaddat2018_ppm <- get_performance_metrics(pgs_id = mavaddat2018_scores@scores$pgs_i

d)

mavaddat2018_ppm@performance_metrics[1:4]

#> # A tibble: 89 x 4

#>    ppm_id   pgs_id   reported_trait                             covariates      

#>    <chr>    <chr>    <chr>                                      <chr>           

#>  1 PPM0000… PGS0000… Invasive breast cancer                     study, genetic …

#>  2 PPM0003… PGS0000… Breast Cancer (personal history)           age at menarche 

#>  3 PPM0003… PGS0000… Breast Cancer (personal history)           age, sex        

#>  4 PPM0003… PGS0000… Breast Cancer (personal history)           <NA>            

#>  5 PPM0000… PGS0000… ER-positive breast cancer                  study, genetic …

#>  6 PPM0000… PGS0000… ER-positive breast cancer                  study, genetic …

#>  7 PPM0006… PGS0000… Breast cancer intrinsic-like subtype (lum… <NA>            

#>  8 PPM0006… PGS0000… Breast cancer intrinsic-like subtype (lum… <NA>            

#>  9 PPM0006… PGS0000… Breast cancer intrinsic-like subtype (lum… <NA>            

#> 10 PPM0006… PGS0000… Breast cancer intrinsic-like subtype (HER… <NA>            

#> # … with 79 more rows

https://github.com/ramiromagno/cheatsheets/blob/master/quincunx/quincunx_cheatsheet.pdf
https://maialab.org/quincunx/reference/performance_metrics-class.html
http://www.pgscatalog.org/docs/
https://maialab.org/quincunx/reference/get_performance_metrics.html


The reported_trait  displays the reported trait, o�en corresponding to the test set names

reported in the publication, or more specific aspects of the phenotype being tested (e.g. if the

disease cases are incident vs. recurrent events). 

The covariates  column lists the covariates used in the prediction model to evaluate the PGS.

Examples include: age, sex, smoking habits, etc. 

The comments  column is a field where additional relevant information can be added to aid with

understanding a particular performance metrics.

Looking at the performance_metrics  table, we can see that one polygenic score ( pgs_id ) can be

associated with several performance metrics ( ppm_id ), e.g., PGS000007 associates with 4 PPMs:

This means that the polygenic score (PGS000007) has been validated several times, using di�erent models.

In this case, we can immediately see that PGS000007 performance has been evaluated, for example, for

alternative breast cancer types (di�erent reported_traits ), namely:

Invasive breast cancer, Breast Cancer (personal history).

Additionally, we can see that the same reported_trait  (Breast Cancer (personal history)) has been

validated by 3 di�erent performance metrics (PPMs): PPM000384, PPM000386, PPM000388; each having

included di�erent covariates in the model: age at menarche, age, sex, NA. (NA means that data for this field

is Not Available in the records).

performance_metrics object | publications table

The publications table is dedicated to hold information related to the publications associated with the

performance metrics. The column pgp_id  links each performance metrics to the respective publication

where that performance metrics was reported and collected.

dplyr::filter(mavaddat2018_ppm@performance_metrics, pgs_id == 'PGS000007')

#> # A tibble: 4 x 5

#>   ppm_id    pgs_id    reported_trait               covariates           comments

#>   <chr>     <chr>     <chr>                        <chr>                <chr>   

#> 1 PPM000008 PGS000007 Invasive breast cancer       study, genetic PCs … <NA>    

#> 2 PPM000384 PGS000007 Breast Cancer (personal his… age at menarche      <NA>    

#> 3 PPM000386 PGS000007 Breast Cancer (personal his… age, sex             <NA>    

#> 4 PPM000388 PGS000007 Breast Cancer (personal his… <NA>                 <NA>

https://dplyr.tidyverse.org/reference/filter.html


Here we can immediately see that there are more publications than just the Mavaddat et al. (pubmed_id =

30554720) that we started with. 

This is expected because we requested all the performance metrics for the PGS scores that were newly

developed by Mavaddat et al.; but these scores have been subsequently evaluated by other posterior

publications, and accordingly have performance metrics reported in these posterior evaluations. 

This is easily confirmed by checking that all other publications are dated a�er December 13th 2018, which

is the date of publication of the original Mavaddat et al. paper.

We can choose to look at those publications later to see what evaluations (performance metrics) were

reported in them (for which traits, adjusting for which covariates, etc.).

But for now, we are only interested in studying the performance metrics reported by Mavaddat et al. for the

PGS scores newly developed in this publication. So, lets proceed with creating a vector containing only the

ppm_ids  of interest. We will do this by filtering the ppm_ids  for the pubmed_id  corresponding to the

Mavaddat publication. We will then use this vector to subset the following tables (to display only the

metrics for these PPMs of interest).

mavaddat2018_ppm@publications

#> # A tibble: 89 x 8

#>    ppm_id  pgp_id pubmed_id publication_date publication title   author_fullname

#>    <chr>   <chr>  <chr>     <date>           <chr>       <chr>   <chr>          

#>  1 PPM000… PGP00… 30554720  2018-12-13       Am J Hum G… Polyge… Mavaddat N     

#>  2 PPM000… PGP00… 31771638  2019-11-26       Genome Med  Low co… Homburger JR   

#>  3 PPM000… PGP00… 31771638  2019-11-26       Genome Med  Low co… Homburger JR   

#>  4 PPM000… PGP00… 31771638  2019-11-26       Genome Med  Low co… Homburger JR   

#>  5 PPM000… PGP00… 30554720  2018-12-13       Am J Hum G… Polyge… Mavaddat N     

#>  6 PPM000… PGP00… 30554720  2018-12-13       Am J Hum G… Polyge… Mavaddat N     

#>  7 PPM000… PGP00… 32424353  2020-05-18       Nat Genet   Genome… Zhang H        

#>  8 PPM000… PGP00… 32424353  2020-05-18       Nat Genet   Genome… Zhang H        

#>  9 PPM000… PGP00… 32424353  2020-05-18       Nat Genet   Genome… Zhang H        

#> 10 PPM000… PGP00… 32424353  2020-05-18       Nat Genet   Genome… Zhang H        

#> # … with 79 more rows, and 1 more variable: doi <chr>

mavaddat2018_ppm@publications$publication_date %>% unique()

#>  [1] "2018-12-13" "2019-11-26" "2020-05-18" "2020-10-05" "2020-07-15"

#>  [6] "2021-04-01" "2021-03-26" "2020-12-14" "2020-03-12" "2020-08-20"

https://rdrr.io/r/base/unique.html


Here, we can immediately see that the Mavaddat publication has evaluated the PGS000004 twice, with two

performance metrics (PPM000004 and PPM000005), that are di�erent because they include a di�erent set

of SNPs (see the comments  column for PPM000005).

performance_metrics object | sample_sets table

The PGS Catalog provides a Sample Set Id (PSS) that links the PPMs to the sample sets that were used to

evaluate the corresponding PGS. This mapping is stored in the sample_sets  table.

mavaddat2018_ppm_ids <- mavaddat2018_ppm@publications %>% dplyr::filter(pubmed_id == 

"30554720") %>% dplyr::pull(ppm_id)

mavaddat2018_ppm_ids

#> [1] "PPM000008" "PPM000009" "PPM000006" "PPM000010" "PPM000004" "PPM000005"

#> [7] "PPM000007"

# Find the corresponding pgs_id, reported_trait, covariates, and comments

mavaddat2018_ppm@performance_metrics %>% dplyr::filter(ppm_id %in% mavaddat2018_ppm_i

ds)

#> # A tibble: 7 x 5

#>   ppm_id   pgs_id   reported_trait         covariates       comments            

#>   <chr>    <chr>    <chr>                  <chr>            <chr>               

#> 1 PPM0000… PGS0000… Invasive breast cancer study, genetic … <NA>                

#> 2 PPM0000… PGS0000… ER-positive breast ca… study, genetic … <NA>                

#> 3 PPM0000… PGS0000… ER-positive breast ca… study, genetic … <NA>                

#> 4 PPM0000… PGS0000… ER-negative breast ca… study, genetic … <NA>                

#> 5 PPM0000… PGS0000… Invasive breast cancer study, genetic … <NA>                

#> 6 PPM0000… PGS0000… Incident breast cance… study, genetic … Included only 306 o…

#> 7 PPM0000… PGS0000… ER-negative breast ca… study, genetic … <NA>

https://dplyr.tidyverse.org/reference/filter.html
https://dplyr.tidyverse.org/reference/pull.html
https://dplyr.tidyverse.org/reference/filter.html


performance_metrics object | samples table

The samples  table gathers more relevant information regarding the samples used for the relevant

evaluations. This table contains the following columns:

ppm_id, pss_id, sample_id, stage, sample_size, sample_cases, sample_controls,

sample_percent_male, phenotype_description, ancestry_category, ancestry, country,

ancestry_additional_description, study_id, pubmed_id, cohorts_additional_description.

Please note that the samples are not identified in PGS Catalog with a global unique identifier, but quincunx

assigns a surrogate identifier ( sample_id ) to allow the mapping between tables.

mavaddat2018_ppm@sample_sets %>% dplyr::filter(ppm_id %in% mavaddat2018_ppm_ids) 

#> # A tibble: 7 x 2

#>   ppm_id    pss_id   

#>   <chr>     <chr>    

#> 1 PPM000008 PSS000004

#> 2 PPM000009 PSS000005

#> 3 PPM000006 PSS000005

#> 4 PPM000010 PSS000006

#> 5 PPM000004 PSS000004

#> 6 PPM000005 PSS000007

#> 7 PPM000007 PSS000006

https://dplyr.tidyverse.org/reference/filter.html


Here we can, for example see that the sample sizes are very di�erent for each evaluation. Let’s take a quick

look at their values.

mavaddat2018_ppm@samples %>% dplyr::filter(ppm_id %in% mavaddat2018_ppm_ids)

#> # A tibble: 7 x 16

#>   ppm_id    pss_id    sample_id stage sample_size sample_cases sample_controls

#>   <chr>     <chr>         <int> <chr>       <int>        <int>           <int>

#> 1 PPM000008 PSS000004         1 eval        29751        11428           18323

#> 2 PPM000009 PSS000005         1 eval        11428         7992            3436

#> 3 PPM000006 PSS000005         1 eval        11428         7992            3436

#> 4 PPM000010 PSS000006         1 eval        11428         1259           10169

#> 5 PPM000004 PSS000004         1 eval        29751        11428           18323

#> 6 PPM000005 PSS000007         1 eval       190040         3215          186825

#> 7 PPM000007 PSS000006         1 eval        11428         1259           10169

#> # … with 9 more variables: sample_percent_male <dbl>,

#> #   phenotype_description <chr>, ancestry_category <chr>, ancestry <chr>,

#> #   country <chr>, ancestry_additional_description <chr>, study_id <chr>,

#> #   pubmed_id <chr>, cohorts_additional_description <chr>

mavaddat2018_ppm@samples %>%

  dplyr::filter(ppm_id %in% mavaddat2018_ppm_ids) %>%

  dplyr::select(ppm_id, sample_cases, sample_controls) %>%

  tidyr::pivot_longer(!ppm_id, names_to = "sample_type", values_to = "count") %>%

  ggplot2::ggplot(ggplot2::aes(fill=sample_type, y=count, x=ppm_id)) + 

  ggplot2::geom_bar(position="dodge", stat="identity") +

  ggplot2::theme(axis.text.x = ggplot2::element_text(angle = 20, vjust = 0.5, hjust=

0.5))

https://dplyr.tidyverse.org/reference/filter.html
https://dplyr.tidyverse.org/reference/filter.html
https://dplyr.tidyverse.org/reference/select.html
https://tidyr.tidyverse.org/reference/pivot_longer.html
https://ggplot2.tidyverse.org/reference/ggplot.html
https://ggplot2.tidyverse.org/reference/aes.html
https://ggplot2.tidyverse.org/reference/geom_bar.html
https://ggplot2.tidyverse.org/reference/theme.html
https://ggplot2.tidyverse.org/reference/element.html


This plot clearly shows that PPM000005 uses a very large sample (particularly regarding the number of

controls) when compared with all other reported PPMs.

performance_metrics object | demographics table

The demographics  table holds information regarding the demographics’ variables of each sample . Each

demographics’ variable (row) is uniquely identified by the combination of values from the columns:

ppm_id , pss_id , sample_id , and variable . Currently, the PGS Catalog only describes two

demographic variables: age of participants and follow-up time.

The columns presented in the table are:

ppm_id, pss_id, sample_id, variable, estimate_type, estimate, unit, variability_type, variability,

interval_type, interval_lower, interval_upper



Here we can see that neither of the PPMs shown is from the Mavaddat paper. This means that the

performance metrics reported in the paper do not have any information regarding the demographics’

variables that belong in this table (age and follow-up time).

performance_metrics object | cohorts table

Similarly to the cohorts  table described above (in the scores  object class), this table shows which

cohorts are associated with each sample. However here, the unique identification of a sample can be

obtained by combining the values of the first three columns: ppm_id , pss_id  and sample_id .

mavaddat2018_ppm@demographics %>% dplyr::glimpse()

#> Rows: 2

#> Columns: 12

#> $ ppm_id           <chr> "PPM001345", "PPM001347"

#> $ pss_id           <chr> "PSS000450", "PSS000450"

#> $ sample_id        <int> 1, 1

#> $ variable         <chr> "age", "age"

#> $ estimate_type    <chr> "mean age (at the end of follow-up)", "mean age (at t…

#> $ estimate         <dbl> 58.5, 58.5

#> $ unit             <chr> "years", "years"

#> $ variability_type <chr> NA, NA

#> $ variability      <dbl> NA, NA

#> $ interval_type    <chr> "iqr", "iqr"

#> $ interval_lower   <dbl> 45.1, 45.1

#> $ interval_upper   <dbl> 72.2, 72.2

https://pillar.r-lib.org/reference/glimpse.html


performance_metrics object | PGS e�ect sizes & PGS classification metrics &
PGS other metrics tables

The three final tables of the performance_metrics  object hold the performance metrics themselves used

in the validation. Each table presents the same column structure with 11 total columns, where the second

column is di�erent between the three tables. This column shows an id created by quincunx that is used to

identify each of the individual metrics tables ( effect_size_id , classification_metrics_id , or

other_metrics_id ). All other columns are for the same variables:

ppm_id, e�ect_size_id, estimate_type_long, estimate_type, estimate, unit, variability_type,

variability, interval_type, interval_lower, interval_upper.

(These column names are specifically from the pgs_effect_sizes  table, as indicated by the second

column name. All other columns are equally named in all three tables).

According to the PGS Catalog online documentation (http://www.pgscatalog.org/docs/

(http://www.pgscatalog.org/docs/)):

mavaddat2018_ppm@cohorts %>% dplyr::filter(ppm_id %in% mavaddat2018_ppm_ids)

#> # A tibble: 61 x 5

#>    ppm_id   pss_id  sample_id cohort_symbol cohort_name                         

#>    <chr>    <chr>       <int> <chr>         <chr>                               

#>  1 PPM0000… PSS000…         1 AHS           Agricultural Health Study           

#>  2 PPM0000… PSS000…         1 BGS           Breakthrough Generations Study      

#>  3 PPM0000… PSS000…         1 EPIC          European Prospective Investigation …

#>  4 PPM0000… PSS000…         1 FHRISK        Family History Clinic in Manchester 

#>  5 PPM0000… PSS000…         1 NHS           Nurses Health Study                 

#>  6 PPM0000… PSS000…         1 PLCO          Prostate, Lung, Colorectal, and Ova…

#>  7 PPM0000… PSS000…         1 PROCAS        Breast Screening Programme (NHSBSP)…

#>  8 PPM0000… PSS000…         1 NHS2          Nurses Health Study II              

#>  9 PPM0000… PSS000…         1 KARMA         Karolinska Mammography Project for …

#> 10 PPM0000… PSS000…         1 SISTER        The Sister Study                    

#> # … with 51 more rows

http://www.pgscatalog.org/docs/
https://dplyr.tidyverse.org/reference/filter.html


“The reported values of the performance metrics are all reported similarly

(e.g. the estimate is recorded along with the 95% confidence interval (if supplied))

and grouped according to the type of statistic they represent: 

- PGS E�ect Sizes (per SD change) | Standardized e�ect sizes, per standard

deviation [SD] change in PGS. Examples include regression coe�icients (Betas) for

continuous traits, Odds ratios (OR) and/or Hazard ratios (HR) for dichotomous

traits depending on the availability of time-to-event data. 

- PGS Classification Metrics | Examples include the Area under the Receiver

Operating Characteristic (AUROC) or Harrell’s C-index (Concordance statistic). 

- Other Metrics | Metrics that do not fit into the other two categories. Examples

include: R2 (proportion of the variance explained), or reclassification metrics.”

Now, lets briefly explore the data in these tables (as usual filtered for only the PPMs that were newly

reported in Mavaddat et al.).



We can immediately see that the third table (reserved for metrics other than e�ect sizes and classification

metrics) is empty; and that the e�ect sizes were estimated using Odds Ratio and Hazard Ratio, and the

classification metric applied was AUROC.

mavaddat2018_ppm@pgs_effect_sizes %>% dplyr::filter(ppm_id %in% mavaddat2018_ppm_ids)

#> # A tibble: 7 x 11

#>   ppm_id    effect_size_id estimate_type_long estimate_type estimate unit 

#>   <chr>              <int> <chr>              <chr>            <dbl> <chr>

#> 1 PPM000008              1 Odds Ratio         OR                1.66 <NA> 

#> 2 PPM000009              1 Odds Ratio         OR                1.73 <NA> 

#> 3 PPM000006              1 Odds Ratio         OR                1.68 <NA> 

#> 4 PPM000010              1 Odds Ratio         OR                1.44 <NA> 

#> 5 PPM000004              1 Odds Ratio         OR                1.61 <NA> 

#> 6 PPM000005              1 Hazard Ratio       HR                1.59 <NA> 

#> 7 PPM000007              1 Odds Ratio         OR                1.45 <NA> 

#> # … with 5 more variables: variability_type <chr>, variability <dbl>,

#> #   interval_type <chr>, interval_lower <dbl>, interval_upper <dbl>

mavaddat2018_ppm@pgs_classification_metrics %>% dplyr::filter(ppm_id %in% mavaddat201

8_ppm_ids)

#> # A tibble: 6 x 11

#>   ppm_id  classification_me… estimate_type_long     estimate_type estimate unit 

#>   <chr>                <int> <chr>                  <chr>            <dbl> <chr>

#> 1 PPM000…                  1 Area Under the Receiv… AUROC            0.636 <NA> 

#> 2 PPM000…                  1 Area Under the Receiv… AUROC            0.647 <NA> 

#> 3 PPM000…                  1 Area Under the Receiv… AUROC            0.641 <NA> 

#> 4 PPM000…                  1 Area Under the Receiv… AUROC            0.6   <NA> 

#> 5 PPM000…                  1 Area Under the Receiv… AUROC            0.63  <NA> 

#> 6 PPM000…                  1 Area Under the Receiv… AUROC            0.601 <NA> 

#> # … with 5 more variables: variability_type <chr>, variability <dbl>,

#> #   interval_type <chr>, interval_lower <dbl>, interval_upper <dbl>

mavaddat2018_ppm@pgs_other_metrics %>% dplyr::filter(ppm_id %in% mavaddat2018_ppm_ids

)

#> # A tibble: 0 x 11

#> # … with 11 variables: ppm_id <chr>, other_metrics_id <int>,

#> #   estimate_type_long <chr>, estimate_type <chr>, estimate <dbl>, unit <chr>,

#> #   variability_type <chr>, variability <dbl>, interval_type <chr>,

#> #   interval_lower <dbl>, interval_upper <dbl>

https://dplyr.tidyverse.org/reference/filter.html
https://dplyr.tidyverse.org/reference/filter.html
https://dplyr.tidyverse.org/reference/filter.html


Now we can look at the reported values for each PPM metrics and decide if the validation is relevant, and

therefore make an informed choice to use the associated PGS score for our own study, and eventually

apply it to our own dataset.

Concluding remarks
Useful reminders:

You can quickly check all variables from each table by consulting quincunx cheatsheet

(https://github.com/ramiromagno/cheatsheets/blob/master/quincunx/quincunx_cheatsheet.pdf). 

All quincunx functions are annotated with help pages accessed with ?function_name  (e.g.  ?

get_scores , ?get_traits , ?get_performance_metrics ).

All tables retrieved by quincunx’s functions are annotated with help files that describe all variables

present. These are accessible via class?object_name  (e.g.  class?scores , class?

performance_metrics ).

The quincunx package has been published in a peer-reviewed journal. Use

citation(package="quincunx")  to get the full paper citation.

https://github.com/ramiromagno/cheatsheets/blob/master/quincunx/quincunx_cheatsheet.pdf
https://maialab.org/quincunx/reference/get_scores.html
https://maialab.org/quincunx/reference/get_traits.html
https://maialab.org/quincunx/reference/get_performance_metrics.html
https://maialab.org/quincunx/reference/scores-class.html
https://maialab.org/quincunx/reference/performance_metrics-class.html
https://rdrr.io/r/utils/citation.html

