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A Estimation of Composition Parameters

To estimate the parameters in Model (1), we propose the following objective function, which mini-
mizes the composition norm of the difference between observed and estimated compositions,
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The objective function (S1) is convex in terms of alt(a);, alt(my);, and alt(h,); for j=1,...,k—1;
r=1,...,q. Thus, the optimal solution can be obtained by solving the following system of linear
equations with constraints my, a, h, € S¥~1:
D(1) D(T) D(X;) - D(X,) alt(my) ¢o
D(T) D(T?) D(T'X:) --- D(TX,) alt(a) ¢,
D(X:) D(TX:) D(XF) -+ D(XiXy)| |alt(h) | = |&
D(X,) D(TX,) D(X1Xy) - D(X,) alt(hy) £q

where Go; = k Y0i log My; — Y5y S0t log Mie, Gy = ki, Tilog My — Yop_y Yoiy Ty log My,
&j=kY i Xirlog M;; — ZIZ=1 Sor Xirlog My, and for any v, D(v) is defined as

(k — é):zg;l v; ( — Z):lzzjl v; v — %?:1 V;
— TL V; k—1 ?7 v ... — ?7 V;
D(v) = = T .
“Yw =X (k=D)L w
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B Estimation of Regression Parameters

Let i = 2y1 - 17 z; = (17tialog(mi)TﬂmiT)T’ /6 = (C(),C, bTng)T7 and Q(mzjﬂ) = _IOg(I)(mzzTﬁ)
Then, an L;-penalized log-likelihood function for Model (2) is given by

~ 1 &
3 = argmin { Zq(mzjﬂ)} , subject to [|B]1 <tand 1} b =0, (S2)
J¢] n

=1

where t > 0 is some constant. By the Taylor expansion, we have
alw=] B) = almiz] B) + (8~ B0) Gz By) + 5(8— Bo) Hlm=! 87)(8 - Bo)
= S BT H=] 88+ 2[Gn=] o)~ Hlniz 57)8,] 6+ C}

where G(n:2] By) = Vaa(niz{ By), Hniz] B*) = V%q(niz;r,ﬂ*), B* a vector that lies between 3,
and B, and C is a constant with respect to B. Since Y.I | H(n;z] 8%) = 0, finding a solution
minimizing Y., ¢(n;z] B) is equivalent to finding a solution of Vzq(n;z] B) = 0, that is,

n

B= argmin {111 ZCJ(mziTﬁ)} e B=p- (Z H(mﬁﬁ)) (Z G(mz?ﬁo)> ,
i=1 1=1

i=1

where A~ is the Moore-Penrose inverse of a matrix A. Note that Vgq(n;z] B) = —&(niz] B)zi,
where & (niz{ B) = nigp(niz] B)/®(niz{ B) and Viq(niz] B) = &(miz/ B)z] B + &i(niz] B)lziz] .
Substituting these terms, we have

B=0y+(2722)"27E(By) = (2T22)" 2" Eu,

where = is an n xn diagonal matrix with the i diagonal term =;; = &;(niz] 8%)[2] B*+& (n:iz] B")],

£(Bo) = (61(771Z1Tﬁo), e 751(7]nzr—1rﬂo))Ta and u = ZB, + E7&(B,). This is, given 8 and S, the
solution of a weighted least squares problem with a weight matrix =, a dependent variable u, and
independent variables Z, that is,

B = argmin|Z/(u — ZB) 3.
B

Therefore, optimization problem (S2) can be expressed as

1 -
B = argmin { 1= ZB)F + 281, | st T8 =0, (53)
B

where Z = Z(Z, —w' /k) and " = (0,0,1,...,1,0,...,0). Note that Z3 = Zﬁ because ¢ 3 =
0. The objective function in this alternative optimization problem, particularly = and u, depend
on unknown quantities, 3% and B,. Therefore, we propose a method that combines iteratively
reweighted least squares and coordinate descent method of multipliers (IRLS-CDMM). To derive an
algorithm for this constrained optimization problem, we first form the augmented Lagrangian,

1 ~
Lu(B.s) = 52w = ZB) 3+ MBI, + B+ 5T B),

where ¢ is the Lagrange multiplier and p > 0 is a penalty parameter. Defining a scaled Lagrange
multiplier a = ¢/, we obtain the solution of optimization problem (S3) given = and u by iterating

. 1 - > 2
B argmin {2n|:1/2<u —ZBB+ MBI, + 578 +a) } : (84)

QD) o0 4, T e, (s5)
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Since the L; terms are now separable, optimization problem (S4), can be solved by the coordinate
decent method,

11 IO GRE 2 '
5§e+1) R -0 <u(6) _ Bi(IH-l)zi) - ﬂ<2ﬁ£€+l)w + a(f)LJ> , (S6)
w; i 7 ' .

where Zj, is the k" column vector of Z, w; = ||E]||§/n + u/k, and Sx(t) = sgn(®)(Jt| — A)4+. We
repeat Iterations (S4)-(S5) with the updated Z() and u(¥), as in Algorithm 1.

Algorithm 1 IRLS-CDMM

1: Initialize ﬁ(o), a®, 20 and u©
2: repeat
3: for j =1 to p do
Update BJ@H) using (S6)
Update oY) using (S5)
end for
Find 8*“*Y by a line search that maximizes S log®(niz) B)
Update 2+ and w(+Y)
9: L+ 0+1
10: until convergence

NPT e

C De-biasing Procedure

Let & = ZTég/n, where Z is an estimate of Z obtained from Algorithm 1, e; € RP be the vector

with one at the j** position and zero everywhere else, and + be some constant. The matrix O in
Equation (6) can be obtained from Algorithm 2. To describe the logic behind Algorithm 2, define

Algorithm 2 Constructing a de-biased estimator
1: for j =1topdo
2: éj +— mein 6'360 subject to |56 — (Z, — " Jk)ejlloo <
3: end for
4 0« (éi, . ﬁp)T; 0« (T, - w /k)©
: Bay — B+ L0ZTE(u - ZP)

ot

3= ZTEZ/n and suppose that VAV T is the eigenvalue decomposition of . Since (V, L/\/E) is full
rank and orthonormal, ¥ can be expressed as

S avi (5 g ) VBT
where A = diag(A1, ..., \p—1). Defining
o= (Vi (N 0 ) Vi

we have ¥0 =7, — t' /k, i.e., © is the inverse of ¥ in the perpendicular space of ¢.
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D Identification and Asymptotic Properties
D.1 Notations

For an n x m matrix A, ||A||, is the ¢, operator norm defined as

[Allp = sup [|Az|,,

llll,=1

where |||, is the standard ¢,-norm of a vector «, and |A|, is the element-wise £, norm defined as
1/p
Al = (D _1Ayl) ™.
1,3

In particular,
m
|Alloo = lrg%XnZJAiﬂ; |A|oe = Hilgfx|Aij|‘
j=

We denote by 6, 5,(A) the restricted orthogonal constant of s; and so, defined as

7] AT Ary|

051,52 (A) = sup =m0
51,52( ) sSup ”,,,1“2”7‘2“2,

where 7 is a sj-sparse vector, rs is a se-sparse vector, and r; and 2 have non-overlapping support.
The upper and lower restricted isometry property constants of order | are denoted by g;’ (4) and
0; (A), respectively, and defined as

| A |13
o/ (A) = sup ” =
7"||2

and )
[ Ar[|3

(13~

0/ (A) = inf

where 7 € R™ is an [-sparse vector. For a random variable X, || X ||, is the sub-exponential norm
defined as
1X[lgr = supg (E|X|2)!/1,
g1

and || X||y, is the sub-Gaussian norm defined as

1 ||y, = sup g~ /2(B|X|7)1/9.
q>1

For a random vector X € R™, the sub-exponential norm is defined as

1X 1, = sup {[| X Texlly, : @ € R", [lex[|2 = 1}.

D.2 Regularity Conditions
Necessary regularity conditions for asymptotic properties of the de-biased estimator include:

C1. There exist uniform constants, Cpin and Cpax, such that 0 < Cipin < 0min(X) < omax(X) <
Crax < 00, where omax(A)(0min(A4)) is the largest (smallest) non-zero eigenvalue of matrix A.

C2. 2(B) is Lipschitz continuous with a Lipschitz constant v.

C3. | YL, @ZZT/TLLX) < o0, where Z; is a column vector of the I row of Z.

C4. There exists a uniform constant x € (0, 00) such that ||Elll/26)1/221||w2 <gkforalll=1,...,n.
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D.3 Model Assumptions

Combined with the stable unit treatment value assumption (SUTVA) (Imbens and Rubin, 2015) and
the positivity assumption (i.e., 0 < P(T; = t|X; = «) and 0 < P(log M;(t) = logm|T; = t, X, =
x)), the CMM requires the following assumptions:

{Y:(t',1og(m)),log M;(t)} 1L T;| X; = x (S7)

fort,t’ € T,m € M, and & € X. Assumptions (S7)-(S8) basically state no unmeasured confounding
effects after adjusting for X.

D.4 Identification of Direct and Indirect Effects
Proof. With the causal assumptions in Section D.3, we have
5(1) = E[Y;(1,log M ;(t)) — Y;(1,log M ;(t'))| X; = x|
= /--~/E(Yi|alt(Mi) =alt(m), T, =7,X,;, = x)
[dFalt(Mz)‘T1:t7X12$ (alt(m)) o dFalt(Mi)\let’,Xlza: (a‘lt(m)):| dFX7 (m)
= / . ./Pr{co +er+balt(M;) + gz + Uy > 0}
[dFalt(Mi)\Ti:t,wa(alt(m)) - dFalt(Mi)\Tizt/,Xizw(alt(m))} dFx, ()
= /---/Pr{f5(r, x) + b alt(a)t + b alt(Uy,) + Uy > 0} dF (alt(U ;)

- / . /pr{f(;(f, x) + b alt(a)t’ + b alt(Uy;) + Uy > 0} dF (alt(U7;))

= / . ~/1{bjkalt(U1i) + Uy > —bjkalt(a)t - fé(Ta w)}dF(U%) dF(alt(Uli))
—/-n/l{bfkalt(Uu) + Uy > —b'alt(a)t' — f5(r, @)} dF (Uy;) dF (alt(U ;)

=Pr{e; < —balt(a)t’ — f5(r,2)} — Pr{e; < —b ,alt(a)t — fs(r,z)}

where f5(7,2) = co + 7 + bl (alt(mg) + 3.1, z,alt(h,)) + g 2 and €; = b ,alt(Uy;) + Us; The
second equality is given in Sohn and Li (2019). The fourth equality follows from changing of variables
and the independence between T; and alt(Ui;). The fifth equality is due to the independence
between alt(Uy;) and Usy;. Since we assume Us; ~ N(0,1) and Uy; ~ LN(0,X), we have g; ~
N(0,b",%b_; +1). Note that alt(Uy;) ~ N(0,%) if and only if Uy; ~ LN (0, %) (Aitchison, 1986).
Thus, we have

5(r) —E{ ® (loga) "ot + fs(, Xi) | cp (loga)Tbt' + f5(1, X;) . (59)

b, Yb_j +1 \/bL by +1

ct + fe(r, X;) . ct' + fe(m, X5)

\/bL b +1 \/b  Zb_ +1

Similarly, we have

((r)=E{ & (S10)
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D.5 Asymptotic Properties of Debiased Estimators

To show asymptotic behaviors of debiased estimators, we will use the following Theorem S1 and
Lemma S1.

Theorem S1. Let 3 be s-sparse, ,@ be the estimator for Objective function (5) given u and E, and
€ =u— ZB3 be sub-Gaussian. If (37 — 1)@2_8(51/22/\/5) —(r+ 1)@3'3(51/22/\/5) > 4d7¢g for some
constant ¢o > 0 and || ZTZe€|| o < nA/7, then, with X\ = 1i+\/(log p)/n for some constant & > 0, the
following holds true:

P([1B - Bl > sA2+1/7)/60) <257,

where UJ/ = (:12/(2[(2) —1 and K2 = maXji<;j<p ij-

Proof. Theorem S1. Let h = ,[Ai — 3, and S;, be the set of indices of the s largest absolute values of
h. Then, given = and u, we have the following inequality

1 ~~ ~ 1, ~
%H:”z(u —ZB)|I5+ MBI < %Ildm(u ~ZB)|I5 + MBI
Thus, we have

1 _ ~ _ ~
5 (IE72(e = ZR)II3 — |I2'/%€l3) < MBI — 11BI]1)

1

= - %(Zh)TE(QG - Zh’) < /\(Hﬁeupp(ﬁ’)Hl - H/Bsupp(ﬂ)”l - ||6supp(,8)c||1)

1 ~ ~
= - EhTZT‘:‘E < >‘(||ﬂsupp(,3) - Igsupp(ﬁ)”l - ||h3upp(/3)c||1)

Lizre
= = 12 ZellcllPlli < M1Paupp)ll = 1Pouppis)e

1)
1 =1
= - EHZT:GHoo(HhShHl + [lhse 1) < A[[hs, 1 — [[hsg 1)

= = (lhs,ll + Ihsg 1) < (s, |l = hsg 1) since | ZTEe]oe < nA/7

T+1

s, (s11)

= |hselr <

From the KKT condition of Objective function (5), we have ||ZTZ(u — ZB) —Nt|lo < nA for some
7 € R, which provides the following inequalities:

1Z7E(w = ZB) oo = I(Z, — " /E)(Z T2 (w — ZB) — 1) oo
= (Z"2(w — ZB) —m) — ' (Z"E(u — ZB) —ne) /K|
<NZTE(u—ZB) = ntlloo + lee T (ZTE(w = ZB) — 1) /oo
=2 Z"E(u — ZB) — ne

< 2nA,
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and

1Z7EZN|oe <127 E(u = ZB) oo + |2 E(w = ZB)||oe < 20X+ |12 Ze]|

<nA(2+1/7). (S12)
Thus, we have
nA2+1/7) ks, |l > 12722kl |olihs, s > (ZTEZR, hs,)
= (2'2Zhs,,E'?Zhs,) + (EY/*Zhs, =/ Zhs, ).

By Lemma 5.1 in Cai and Zhang (2013), we have

(EY2Zhs, . EY* Zhsg)| < Vsb,,s(EY?Z) | hs, |2 - max(|[ s [loos [ asg 11/5)
T+1

< Voo (B2 D)y o - s, 1/
T+1 /05
< 50,422 D)hs, .

Thus,

T+ 1

nA2+ 1/7)llhs, |l = |EY?Zhs, |5 - — 19s,s(51/25)\\hsh||§

— 25, THI1 —1/25
> |02(222) - T0,2 D) s,
3r—1 _ 195 T+1 -
> =1/27) +(g1/2 2
> |5 gen(EPD) - S D) | Ins s s13)

The last inequality comes from Lemma 1 of Kang et al. (2016) that shows a relationship between
0s,s and gi, e, Ok, 1 (4) < [g;:ﬁkz) (A) = oy, 41, (A)]/2 for any matrix A. By rearranging Inequal-
ity (S13), we have

s, [ < _ snA(2+1/1) _ < sA(2+1/7) .
U nlBr = 105, (EV2Z/vn) — (7 + 1)eg,(BV2Z /)] /(21 — 2) T 2760/ (T — 1)
Therefore,
1B~ Bl = s, + s s <~ s, | < sA@+1/7)/60,
SO

P(IB = Bl = sA2+1/7)/60) < P12 Zellow > n/7) < 3 P((Z"Z€)s| > nd/7)

2

n _o? 2
< 2pexp <_27—2[{2) = 2p1 /(2K )
O

Lemma S1. Suppose the reqularity conditions hold, then for any constant w > 0, the following
inequality holds:

P{’@i —(Z, - LLT/]{})‘OO > w (logp)/n} < op (i)

where Wy = wW?Cuin/ (24264 Craax) — 2 and wl = (wgo)?/[2(v's(2T + 1)K)?] — 1.
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Proof. Lemma S1.
0% — (T, —w' /k)|_ < |02 — (T, —w /k)|_ + |02 - )|

Since $1/201V27, = (T, —w" Jk)Z; = Z; for | = 1,...,n, we have
T L~ fo 0557 T
O~ (Z,—u' /k) = =3 {:”@ZIZI S — /k)}
=1
1

- Z {Euel/?@l/?ZZf@l/?El/? (T, - LLT/k)}

Fori,j =1,...,p, define vl(i ) = = @1/291/22 ZT@1/221/2 (Z, — e /k);j, where Ay. is the k"

row vector of matrix A and A.j, is the k" column vector of matrix A. Notice that Evl(ij ) — 0 since

E(E”(%ZZT) = 0OX =7, — w' /k. Following the proof of Lemma 23 in Javanmard and Montanari
(2014), we have

[0, < 21Eu0,/0V22,Z7 0251,
,—1 2~1/2 —\1 2«1/2 ~
<2|5)/%0,/20'2Z)||y, |5,/ *5} 2012 2y,
1/2 1/2 Hl 2 Hl 2 >
< 210}2| 1= % 2115/ @1/QZZ||¢2|| 2027l

S 25 V max/cmin-

Let & = 2/Chmax/Cmink?. Then, by the Bernstein-type inequality for centered sub-exponential
random variable (Biithlmann and van de Geer, 2011), we have

ij on TV
{ ‘Zv ‘>7}<2exp{ Gmm[(e/{)’eﬁ’}}'
Choosing v = w+/(log p)/n with w < e’ /n/log p, we have
{7‘ Z \/W} < 9pw/(66*K"%) _ 9= Cmin/ (24¢* K Conax)

By union bounding over all pairs of (i, ), we have

{’@2 _ LLT/k)‘ >w /(logp)/n} < 2p—u)20min/(2462/{4Cn1ax)+2. (814)

Define v' = [v )", @ZZlT/n\oo. Then,

1< A~ N
oxE-% zf‘ =y - 2 @ZZT‘ <J|B - 8.
|o( ) o n;[( u—Zu) ll]OO—UHﬂ Bl
Thus, by Theorem S1, we have

P{lo - )|, = w/logp)/n} < P{v/|IB - Bll: > w\/(ogp)/n}
< op!—(w60)/[2(v's(2+1)K)?], (S15)

With Bounds (S14)-(S15), we have

P{|0Z —(Z, —uT /)| _ > w/logp)/n} < 2p +2p7%.
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Proof. Asymptotic properties of debiased estimators. Since ¢ 3 = LTB = 0, we have
~ ~ lanrn o o~
Bu—-B=B-B+_0Z'Z(@-2p)

1~ e n o~ ~
= E@ZTEG +(0X ~1,)(B - B)

- %éZTée +BS (T, — T /KB - D).

Thus, \/ﬁ@db - B) =R+ A, where R = ©ZTEe/\/n and A = /n[OF — (Z, — " /B)(B — B).
Since E(e|=,u) = 0, we have E(R|Z,=Z,u) = 0 and
1Al < vAlOE = (Z, — w" /)| )18 - 8],
= Vn|(Z, —u" /)OS = (T, —u" /W) 18- 8],
<Vn{|0% — (Z, —w' /k)| _ + w108 — (T, — w" /K))/K| _}I|IB - B,
< 2vn|0E — (T, — u" /K)| _||B - 8]|,-
Therefore, by Lemma S1 and Theorem S1, we have

2ww(2T + 1)slogp
bov/n

(N ) <B(IB- Bl > s\2+1/7)/60)

-I-P(‘@fl —(Z, - 1,1JT/1€)|0O >w (logp)/n)

"

< 2p7 g 2pTe f2pTer.

E Details of the Sensitivity Analysis

Because of the linear constraint, 1Zb = 0, we can write Model (2), excluding the covariates X, for
notation simplicity, as

Y, = I{CO +cT; + (b,,)ikalt(Mi) + Us; > 0}
=1{co +cT; + (b,) L (alt(mg) + alt(a)T; + alt(Uy;)) + Us; > 0}
= 1{cy+ " T; + Ug; > 0},

where (b,)_r = ((b1)p,-- -, (bk_l)p)T, ¢y = co+ (bp)jkalt(mo), ¢t =c+ (bp)jkalt(a), and Uj; =
(bp)Ikalt(Uli) + Us;. Thus, a probit regression model for the total effect of T on Y can be expressed
as

Y; = 1{éo + ¢T; + Up; > 0},
where é = ¢§/U(p,b,, %), ¢ = c¢*/V(p,b,,%), and Uy; = Ug;/¥(p,b,, %), where U(p,b,,X) =
[(B,) L, 2(by) i + 2p (b)) " diag(2)/2 + 1] /2 For a given j, we have

Cov [Uni, alt(U1);] = ((b,) 1, Z; + pE11%) /¥ (p, by, D), (S16)

where 3, is the j column of ¥ and %j; is the variance of alt(Uy;);. Because of the constraint on
Uop; and Uy, i.e., they follow the standard gaussian distribution, we can estimate Cov [Uy;, alt(U ;)]
with an estimated b_j under the assumption of p = 0. That is, we have k — 1 unknown parameters
(by)—r and k — 1 equations for a given value of p.
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