Compositional Mediation Model for Binary Outcomes: Application to Microbiome Samples

Supplementary Materials

By Michael B. Sohn, Jiarui Lu, and Hongzhe Li

A Estimation of Composition Parameters

To estimate the parameters in Model (1), we propose the following objective function, which minimizes the composition norm of the difference between observed and estimated compositions,

$$\hat{\boldsymbol{a}} = \underset{\boldsymbol{a}, \boldsymbol{h}_{r}, \boldsymbol{m}_{0} \in \mathbb{S}^{k-1}}{\operatorname{argmin}} \sum_{i=1}^{n} \left\| M_{i} \ominus (\boldsymbol{m}_{0} \oplus \boldsymbol{a}^{T_{i}} \oplus \boldsymbol{h}_{1}^{X_{i1}} \oplus \cdots \oplus \boldsymbol{h}_{q}^{X_{iq}}) \right\|^{2}$$

$$= \underset{\boldsymbol{a}, \boldsymbol{h}_{r}, \boldsymbol{m}_{0} \in \mathbb{S}^{k-1}}{\operatorname{argmin}} \sum_{i=1}^{n} \sum_{j=1}^{k-1} \left\{ (k-1) \left[\log \left(\frac{M_{ij} m_{0k} a_{k}^{T_{i}} \prod_{r=1}^{q} h_{rk}^{X_{ir}}}{M_{ik} m_{0j} a_{j}^{T_{i}} \prod_{r=1}^{q} h_{rj}^{X_{ir}}} \right) \right]^{2}$$

$$- \log \left(\frac{M_{ij} m_{0k} a_{k}^{T_{i}} \prod_{r=1}^{q} h_{rk}^{X_{ir}}}{M_{ik} m_{0j} a_{j}^{T_{i}} \prod_{r=1}^{q} h_{rk}^{X_{ir}}} \right) \sum_{\ell \neq j}^{k-1} \log \left(\frac{M_{i\ell} m_{0k} a_{k}^{T_{i}} \prod_{r=1}^{q} h_{rk}^{X_{ir}}}{M_{ik} m_{0\ell} a_{\ell}^{T_{i}} \prod_{r=1}^{q} h_{r\ell}^{X_{ir}}} \right) \right\}.$$
(S1)

The objective function (S1) is convex in terms of $\operatorname{alt}(\boldsymbol{a})_j$, $\operatorname{alt}(\boldsymbol{m}_0)_j$, and $\operatorname{alt}(\boldsymbol{h}_r)_j$ for $j=1,\ldots,k-1$; $r=1,\ldots,q$. Thus, the optimal solution can be obtained by solving the following system of linear equations with constraints $\boldsymbol{m}_0,\boldsymbol{a},\boldsymbol{h}_r\in\mathbb{S}^{k-1}$:

$$\begin{bmatrix} D(1) & D(T) & D(X_1) & \cdots & D(X_q) \\ D(T) & D(T^2) & D(TX_1) & \cdots & D(TX_q) \\ D(X_1) & D(TX_1) & D(X_1^2) & \cdots & D(X_1X_q) \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ D(X_q) & D(TX_q) & D(X_1X_q) & \cdots & D(X_q) \end{bmatrix} \begin{bmatrix} \operatorname{alt}(\boldsymbol{m}_0) \\ \operatorname{alt}(\boldsymbol{a}) \\ \operatorname{alt}(\boldsymbol{h}_1) \\ \vdots \\ \operatorname{alt}(\boldsymbol{h}_q) \end{bmatrix} = \begin{bmatrix} \boldsymbol{\zeta}_0 \\ \boldsymbol{\zeta}_1 \\ \boldsymbol{\xi}_1 \\ \vdots \\ \boldsymbol{\xi}_q \end{bmatrix},$$

where $\zeta_{0j} = k \sum_{i=1}^{n} \log M_{ij} - \sum_{\ell=1}^{k} \sum_{i=1}^{n} \log M_{i\ell}$, $\zeta_{1j} = k \sum_{i=1}^{n} T_i \log M_{ij} - \sum_{\ell=1}^{k} \sum_{i=1}^{n} T_i \log M_{i\ell}$, $\xi_{rj} = k \sum_{i=1}^{n} X_{ir} \log M_{ij} - \sum_{\ell=1}^{k} \sum_{i=1}^{n} X_{ir} \log M_{i\ell}$, and for any ν , $D(\nu)$ is defined as

$$D(\nu) = \begin{bmatrix} (k-1)\sum_{i=1}^{n} \nu_i & -\sum_{i=1}^{n} \nu_i & \dots & -\sum_{i=1}^{n} \nu_i \\ -\sum_{i=1}^{n} \nu_i & (k-1)\sum_{i=1}^{n} \nu_i & \dots & -\sum_{i=1}^{n} \nu_i \\ \vdots & \vdots & \ddots & \vdots \\ -\sum_{i=1}^{n} \nu_i & -\sum_{i=1}^{n} \nu_i & \dots & (k-1)\sum_{i=1}^{n} \nu_i \end{bmatrix}.$$

B Estimation of Regression Parameters

Let $\eta_i = 2y_i - 1$, $\boldsymbol{z}_i = (1, t_i, \log(\boldsymbol{m}_i)^\top, \boldsymbol{x}_i^\top)^\top$, $\boldsymbol{\beta} = (c_0, c, \boldsymbol{b}^\top, \boldsymbol{g}^\top)^\top$, and $q(\eta_i \boldsymbol{z}_i^\top \boldsymbol{\beta}) = -\log \Phi(\eta_i \boldsymbol{z}_i^\top \boldsymbol{\beta})$. Then, an L_1 -penalized log-likelihood function for Model (2) is given by

$$\widehat{\boldsymbol{\beta}} = \underset{\boldsymbol{\beta}}{\operatorname{argmin}} \left\{ \frac{1}{n} \sum_{i=1}^{n} q(\eta_i \boldsymbol{z}_i^{\top} \boldsymbol{\beta}) \right\}, \text{ subject to } \|\boldsymbol{\beta}\|_1 \le t \text{ and } \boldsymbol{1}_k^{\top} \boldsymbol{b} = 0,$$
 (S2)

where $t \geq 0$ is some constant. By the Taylor expansion, we have

$$q(\eta_i \boldsymbol{z}_i^{\top} \boldsymbol{\beta}) = q(\eta_i \boldsymbol{z}_i^{\top} \boldsymbol{\beta}_0) + (\boldsymbol{\beta} - \boldsymbol{\beta}_0)^{\top} G(\eta_i \boldsymbol{z}_i^{\top} \boldsymbol{\beta}_0) + \frac{1}{2} (\boldsymbol{\beta} - \boldsymbol{\beta}_0)^{\top} H(\eta_i \boldsymbol{z}_i^{\top} \boldsymbol{\beta}^*) (\boldsymbol{\beta} - \boldsymbol{\beta}_0)$$
$$= \frac{1}{2} \left\{ \boldsymbol{\beta}^{\top} H(\eta_i \boldsymbol{z}_i^{\top} \boldsymbol{\beta}^*) \boldsymbol{\beta} + 2 \left[G(\eta_i \boldsymbol{z}_i^{\top} \boldsymbol{\beta}_0) - H(\eta_i \boldsymbol{z}_i^{\top} \boldsymbol{\beta}^*) \boldsymbol{\beta}_0 \right]^{\top} \boldsymbol{\beta} + C \right\},$$

where $G(\eta_i \boldsymbol{z}_i^{\top} \boldsymbol{\beta}_0) = \nabla_{\beta} q(\eta_i \boldsymbol{z}_i^{\top} \boldsymbol{\beta}_0)$, $H(\eta_i \boldsymbol{z}_i^{\top} \boldsymbol{\beta}^*) = \nabla_{\beta}^2 q(\eta_i \boldsymbol{z}_i^{\top} \boldsymbol{\beta}^*)$, $\boldsymbol{\beta}^*$ a vector that lies between $\boldsymbol{\beta}_0$ and $\boldsymbol{\beta}$, and C is a constant with respect to $\boldsymbol{\beta}$. Since $\sum_{i=1}^n H(\eta_i \boldsymbol{z}_i^{\top} \boldsymbol{\beta}^*) \succeq 0$, finding a solution minimizing $\sum_{i=1}^n q(\eta_i \boldsymbol{z}_i^{\top} \boldsymbol{\beta})$ is equivalent to finding a solution of $\nabla_{\beta} q(\eta_i \boldsymbol{z}_i^{\top} \boldsymbol{\beta}) = 0$, that is,

$$\widehat{\boldsymbol{\beta}} = \operatorname*{argmin}_{\boldsymbol{\beta}} \left\{ \frac{1}{n} \sum_{i=1}^{n} q(\eta_{i} \boldsymbol{z}_{i}^{\top} \boldsymbol{\beta}) \right\} \quad \Leftrightarrow \quad \widehat{\boldsymbol{\beta}} = \boldsymbol{\beta}_{0} - \left(\sum_{i=1}^{n} H(\eta_{i} \boldsymbol{z}_{i}^{\top} \boldsymbol{\beta}^{*}) \right)^{-} \left(\sum_{i=1}^{n} G(\eta_{i} \boldsymbol{z}_{i}^{\top} \boldsymbol{\beta}_{0}) \right),$$

where A^- is the Moore-Penrose inverse of a matrix A. Note that $\nabla_{\beta}q(\eta_i \boldsymbol{z}_i^{\top}\boldsymbol{\beta}) = -\xi_i(\eta_i \boldsymbol{z}_i^{\top}\boldsymbol{\beta})\boldsymbol{z}_i$, where $\xi_i(\eta_i \boldsymbol{z}_i^{\top}\boldsymbol{\beta}) = \eta_i\phi(\eta_i \boldsymbol{z}_i^{\top}\boldsymbol{\beta})/\Phi(\eta_i \boldsymbol{z}_i^{\top}\boldsymbol{\beta})$ and $\nabla_{\beta}^2q(\eta_i \boldsymbol{z}_i^{\top}\boldsymbol{\beta}) = \xi_i(\eta_i \boldsymbol{z}_i^{\top}\boldsymbol{\beta})[\boldsymbol{z}_i^{\top}\boldsymbol{\beta} + \xi_i(\eta_i \boldsymbol{z}_i^{\top}\boldsymbol{\beta})]\boldsymbol{z}_i\boldsymbol{z}_i^{\top}$. Substituting these terms, we have

$$\widehat{\boldsymbol{\beta}} = \boldsymbol{\beta}_0 + (Z^{\top} \Xi Z)^{-} Z^{\top} \boldsymbol{\xi} (\boldsymbol{\beta}_0) = (Z^{\top} \Xi Z)^{-} Z^{\top} \Xi \boldsymbol{u},$$

where Ξ is an $n \times n$ diagonal matrix with the i^{th} diagonal term $\Xi_{ii} = \xi_i(\eta_i \mathbf{z}_i^{\top} \boldsymbol{\beta}^*)[\mathbf{z}_i^{\top} \boldsymbol{\beta}^* + \xi_i(\eta_i \mathbf{z}_i^{\top} \boldsymbol{\beta}^*)],$ $\boldsymbol{\xi}(\boldsymbol{\beta}_0) = (\xi_1(\eta_1 \mathbf{z}_1^{\top} \boldsymbol{\beta}_0), \dots, \xi_1(\eta_n \mathbf{z}_n^{\top} \boldsymbol{\beta}_0))^{\top}$, and $\boldsymbol{u} = Z\boldsymbol{\beta}_0 + \Xi^{-}\boldsymbol{\xi}(\boldsymbol{\beta}_0)$. This is, given $\boldsymbol{\beta}^*$ and $\boldsymbol{\beta}_0$, the solution of a weighted least squares problem with a weight matrix Ξ , a dependent variable \boldsymbol{u} , and independent variables Z, that is,

$$\widehat{\boldsymbol{\beta}} = \underset{\boldsymbol{\beta}}{\operatorname{argmin}} \|\Xi^{1/2} (\boldsymbol{u} - Z\boldsymbol{\beta})\|_{2}^{2}$$

Therefore, optimization problem (S2) can be expressed as

$$\widehat{\boldsymbol{\beta}} = \underset{\boldsymbol{\beta}}{\operatorname{argmin}} \left\{ \frac{1}{2n} \| \Xi^{1/2} (\boldsymbol{u} - \widetilde{Z} \boldsymbol{\beta}) \|_{2}^{2} + \lambda \| \boldsymbol{\beta} \|_{1} \right\}, \text{ s.t. } \boldsymbol{\iota}^{\top} \boldsymbol{\beta} = 0,$$
 (S3)

where $\widetilde{Z} = Z(\mathcal{I}_p - \iota \iota^\top/k)$ and $\iota^\top = (0, 0, 1, \dots, 1, 0, \dots, 0)$. Note that $Z\beta = \widetilde{Z}\beta$ because $\iota^\top\beta = 0$. The objective function in this alternative optimization problem, particularly Ξ and u, depend on unknown quantities, β^* and β_0 . Therefore, we propose a method that combines iteratively reweighted least squares and coordinate descent method of multipliers (IRLS-CDMM). To derive an algorithm for this constrained optimization problem, we first form the augmented Lagrangian,

$$L_{\mu}(\boldsymbol{\beta}, \varsigma) = \frac{1}{2n} \|\Xi^{1/2}(\boldsymbol{u} - \widetilde{\boldsymbol{Z}}\boldsymbol{\beta})\|_{2}^{2} + \lambda \|\boldsymbol{\beta}\|_{1} + \varsigma \boldsymbol{\iota}^{\top} \boldsymbol{\beta} + \frac{\mu}{2} (\boldsymbol{\iota}^{\top} \boldsymbol{\beta})^{2},$$

where ς is the Lagrange multiplier and $\mu > 0$ is a penalty parameter. Defining a scaled Lagrange multiplier $\alpha = \varsigma/\mu$, we obtain the solution of optimization problem (S3) given Ξ and \boldsymbol{u} by iterating

$$\boldsymbol{\beta}^{(\ell+1)} \leftarrow \underset{\boldsymbol{\beta}}{\operatorname{argmin}} \left\{ \frac{1}{2n} \| \Xi^{1/2} (\boldsymbol{u} - \widetilde{Z}\boldsymbol{\beta}) \|_{2}^{2} + \lambda \| \boldsymbol{\beta} \|_{1} + \frac{\mu}{2} (\boldsymbol{\iota}^{\top} \boldsymbol{\beta} + \alpha^{(\ell)})^{2} \right\}; \tag{S4}$$

$$\alpha^{(\ell+1)} \leftarrow \alpha^{(\ell)} + \boldsymbol{\iota}^{\top} \boldsymbol{\beta}^{(\ell+1)}. \tag{S5}$$

Since the L_1 terms are now separable, optimization problem (S4), can be solved by the coordinate decent method,

$$\beta_{j}^{(\ell+1)} \leftarrow \frac{1}{\widetilde{w}_{j}} S_{\lambda} \left\{ \frac{1}{n} \widetilde{\boldsymbol{z}}_{j}^{\top} \Xi^{(\ell)} \left(\boldsymbol{u}^{(\ell)} - \sum_{i \neq j} \beta_{i}^{(\ell+1)} \widetilde{\boldsymbol{z}}_{i} \right) - \mu \left(\sum_{i \neq j} \beta_{i}^{(\ell+1)} \frac{\iota_{i} \iota_{j}}{k} + \alpha^{(\ell)} \frac{\iota_{j}}{\sqrt{k}} \right) \right\}, \quad (S6)$$

where $\widetilde{\boldsymbol{z}}_k$ is the k^{th} column vector of \widetilde{Z} , $\widetilde{\boldsymbol{w}}_j = \|\widetilde{\boldsymbol{z}}_j\|_2^2/n + \mu/k$, and $S_{\lambda}(t) = \operatorname{sgn}(t)(|t| - \lambda)_+$. We repeat Iterations (S4)-(S5) with the updated $\Xi^{(\ell)}$ and $\boldsymbol{u}^{(\ell)}$, as in Algorithm 1.

Algorithm 1 IRLS-CDMM

```
1: Initialize \beta^{(0)}, \alpha^{(0)}, \Xi^{(0)}, and u^{(0)}
 2: repeat
           for j = 1 to p do
3:
                 Update \beta_i^{(\ell+1)} using (S6)
 4:
                 Update \alpha^{(\ell+1)} using (S5)
 5:
 6:
           Find \boldsymbol{\beta}^{*(\ell+1)} by a line search that maximizes \sum_{i=1}^{n} \log \Phi(\eta_i \boldsymbol{z}_i^{\top} \boldsymbol{\beta})
 7:
           Update \Xi^{(\ell+1)} and \boldsymbol{u}^{(\ell+1)}
 8:
           \ell \leftarrow \ell + 1
 9:
10: until convergence
```

C De-biasing Procedure

Let $\widehat{\Sigma} = \widetilde{Z}^{\top} \widehat{\Xi} \widetilde{Z}/n$, where $\widehat{\Xi}$ is an estimate of Ξ obtained from Algorithm 1, $e_j \in \mathbb{R}^p$ be the vector with one at the j^{th} position and zero everywhere else, and γ be some constant. The matrix $\widetilde{\Theta}$ in Equation (6) can be obtained from Algorithm 2. To describe the logic behind Algorithm 2, define

Algorithm 2 Constructing a de-biased estimator

```
1: for j = 1 to p do

2: \widehat{\boldsymbol{\theta}}_{j} \leftarrow \min_{\boldsymbol{\theta}} \boldsymbol{\theta}^{\top} \widehat{\boldsymbol{\Sigma}} \boldsymbol{\theta} subject to \|\widehat{\boldsymbol{\Sigma}} \boldsymbol{\theta} - (\mathcal{I}_{p} - \boldsymbol{\iota} \boldsymbol{\iota}^{\top}/k) \boldsymbol{e}_{j}\|_{\infty} \leq \gamma

3: end for

4: \widehat{\boldsymbol{\Theta}} \leftarrow (\widehat{\boldsymbol{\theta}}_{i}, \dots, \widehat{\boldsymbol{\theta}}_{p})^{\top}; \quad \widetilde{\boldsymbol{\Theta}} \leftarrow (\mathcal{I}_{p} - \boldsymbol{\iota} \boldsymbol{\iota}^{\top}/k) \widehat{\boldsymbol{\Theta}}

5: \widehat{\boldsymbol{\beta}}_{db} \leftarrow \widehat{\boldsymbol{\beta}} + \frac{1}{n} \widetilde{\boldsymbol{\Theta}} \widetilde{\boldsymbol{Z}}^{\top} \widehat{\boldsymbol{\Xi}} (\widehat{\boldsymbol{u}} - \widetilde{\boldsymbol{Z}} \widehat{\boldsymbol{\beta}})
```

 $\Sigma = \widetilde{Z}^{\top} \Xi \widetilde{Z}/n$ and suppose that $V \Lambda V^{\top}$ is the eigenvalue decomposition of Σ . Since $(V, \iota/\sqrt{k})$ is full rank and orthonormal, Σ can be expressed as

$$\Sigma = \begin{pmatrix} V, \iota / \sqrt{k} \end{pmatrix} \begin{pmatrix} \Lambda & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} V, \iota / \sqrt{k} \end{pmatrix}^{\top},$$

where $\Lambda = \operatorname{diag}(\lambda_1, \dots, \lambda_{p-1})$. Defining

$$\Theta = \begin{pmatrix} V, \boldsymbol{\iota}/\sqrt{k} \end{pmatrix} \begin{pmatrix} & \Lambda^{-1} & 0 \\ & 0 & 0 \end{pmatrix} \begin{pmatrix} V, \boldsymbol{\iota}/\sqrt{k} \end{pmatrix}^\top,$$

we have $\Sigma\Theta = \mathcal{I}_p - \iota \iota^\top / k$, i.e., Θ is the inverse of Σ in the perpendicular space of ι .

D Identification and Asymptotic Properties

D.1 Notations

For an $n \times m$ matrix A, $||A||_p$ is the ℓ_p operator norm defined as

$$||A||_p = \sup_{\|\boldsymbol{x}\|_p = 1} ||A\boldsymbol{x}||_p,$$

where $\|x\|_p$ is the standard ℓ_p -norm of a vector x, and $|A|_p$ is the element-wise ℓ_p norm defined as

$$|A|_p = \left(\sum_{i,j} |A_{ij}|_p\right)^{1/p}.$$

In particular,

$$||A||_{\infty} = \max_{1 \le i \le n} \sum_{i=1}^{m} |A_{ij}|; \qquad |A|_{\infty} = \max_{i,j} |A_{ij}|.$$

We denote by $\theta_{s_1,s_2}(A)$ the restricted orthogonal constant of s_1 and s_2 , defined as

$$\theta_{s_1,s_2}(A) = \sup \frac{|\mathbf{r}_1^\top A^\top A \mathbf{r}_2|}{\|\mathbf{r}_1\|_2 \|\mathbf{r}_2\|_2},$$

where \mathbf{r}_1 is a s_1 -sparse vector, \mathbf{r}_2 is a s_2 -sparse vector, and \mathbf{r}_1 and \mathbf{r}_2 have non-overlapping support. The upper and lower restricted isometry property constants of order l are denoted by $\varrho_l^+(A)$ and $\varrho_l^-(A)$, respectively, and defined as

$$\varrho_l^+(A) = \sup \frac{\|Ar\|_2^2}{\|r\|_2^2}$$

and

$$\varrho_l^+(A) = \inf \frac{\|Ar\|_2^2}{\|r\|_2^2},$$

where $r \in \mathbb{R}^m$ is an l-sparse vector. For a random variable X, $||X||_{\psi_1}$ is the sub-exponential norm defined as

$$||X||_{\psi_1} = \sup_{q \ge 1} q^{-1} (\mathbb{E}|X|^q)^{1/q},$$

and $||X||_{\psi_2}$ is the sub-Gaussian norm defined as

$$||X||_{\psi_2} = \sup_{q \ge 1} q^{-1/2} (\mathbb{E}|X|^q)^{1/q}.$$

For a random vector $X \in \mathbb{R}^n$, the sub-exponential norm is defined as

$$\|\boldsymbol{X}\|_{\psi_2} = \sup \{\|\boldsymbol{X}^{\top}\boldsymbol{\alpha}\|_{\psi_2} : \boldsymbol{\alpha} \in \mathbb{R}^n, \|\boldsymbol{\alpha}\|_2 = 1\}.$$

D.2 Regularity Conditions

Necessary regularity conditions for asymptotic properties of the de-biased estimator include:

- C1. There exist uniform constants, C_{\min} and C_{\max} , such that $0 < C_{\min} \le \sigma_{\min}(\Sigma) \le \sigma_{\max}(\Sigma) \le C_{\max} < \infty$, where $\sigma_{\max}(A)(\sigma_{\min}(A))$ is the largest (smallest) non-zero eigenvalue of matrix A.
- C2. $\Xi(\beta)$ is Lipschitz continuous with a Lipschitz constant v.
- C3. $\left|\sum_{l=1}^{n} \Theta \widetilde{Z}_{l} \widetilde{Z}_{l}^{\top} / n\right|_{\infty} < \infty$, where \widetilde{Z}_{l} is a column vector of the l^{th} row of \widetilde{Z}_{l} .
- C4. There exists a uniform constant $\kappa \in (0, \infty)$ such that $\|\Xi_{ll}^{1/2}\Theta^{1/2}\widetilde{Z}_l\|_{\psi_2} \leq \kappa$ for all $l = 1, \ldots, n$.

D.3 Model Assumptions

Combined with the stable unit treatment value assumption (SUTVA) (Imbens and Rubin, 2015) and the positivity assumption (i.e., $0 < P(T_i = t | \mathbf{X}_i = \mathbf{x})$ and $0 < P(\log \mathbf{M}_i(t) = \log \mathbf{m} | T_i = t, \mathbf{X}_i = \mathbf{x})$), the CMM requires the following assumptions:

$$\{Y_i(t', \log(\boldsymbol{m})), \log \boldsymbol{M}_i(t)\} \perp T_i | \boldsymbol{X}_i = \boldsymbol{x}$$
(S7)

$$Y_i(t', \log(\boldsymbol{m})) \perp \log \boldsymbol{M}_i(t) | T_i = t, \boldsymbol{X}_i = \boldsymbol{x}$$
 (S8)

for $t, t' \in \mathcal{T}$, $m \in \mathcal{M}$, and $x \in \mathcal{X}$. Assumptions (S7)-(S8) basically state no unmeasured confounding effects after adjusting for X.

D.4 Identification of Direct and Indirect Effects

Proof. With the causal assumptions in Section D.3, we have

$$\delta(\tau) = \mathbb{E}\left[Y_{i}(\tau, \log \boldsymbol{M}_{i}(t)) - Y_{i}(\tau, \log \boldsymbol{M}_{i}(t')) | \boldsymbol{X}_{i} = \boldsymbol{x}\right]$$

$$= \int \cdots \int \mathbb{E}(Y_{i}|\operatorname{alt}(\boldsymbol{M}_{i}) = \operatorname{alt}(\boldsymbol{m}), T_{i} = \tau, \boldsymbol{X}_{i} = \boldsymbol{x})$$

$$\left[dF_{\operatorname{alt}(\boldsymbol{M}_{i})|T_{i}=t, \boldsymbol{X}_{i}=\boldsymbol{x}}(\operatorname{alt}(\boldsymbol{m})) - dF_{\operatorname{alt}(\boldsymbol{M}_{i})|T_{i}=t', \boldsymbol{X}_{i}=\boldsymbol{x}}(\operatorname{alt}(\boldsymbol{m}))\right] dF_{\boldsymbol{X}_{i}}(\boldsymbol{x})$$

$$= \int \cdots \int \operatorname{Pr}\{c_{0} + c\tau + \boldsymbol{b}_{-k}^{\top} \operatorname{alt}(\boldsymbol{M}_{i}) + \boldsymbol{g}^{\top} \boldsymbol{x} + U_{2i} > 0\}$$

$$\left[dF_{\operatorname{alt}(\boldsymbol{M}_{i})|T_{i}=t, \boldsymbol{X}_{i}=\boldsymbol{x}}(\operatorname{alt}(\boldsymbol{m})) - dF_{\operatorname{alt}(\boldsymbol{M}_{i})|T_{i}=t', \boldsymbol{X}_{i}=\boldsymbol{x}}(\operatorname{alt}(\boldsymbol{m}))\right] dF_{\boldsymbol{X}_{i}}(\boldsymbol{x})$$

$$= \int \cdots \int \operatorname{Pr}\{f_{\delta}(\tau, \boldsymbol{x}) + \boldsymbol{b}_{-k}^{\top} \operatorname{alt}(\boldsymbol{a}) t + \boldsymbol{b}_{-k}^{\top} \operatorname{alt}(\boldsymbol{U}_{1i}) + U_{2i} > 0\} dF(\operatorname{alt}(\boldsymbol{U}_{1i}))$$

$$- \int \cdots \int \operatorname{Pr}\{f_{\delta}(\tau, \boldsymbol{x}) + \boldsymbol{b}_{-k}^{\top} \operatorname{alt}(\boldsymbol{a}) t' + \boldsymbol{b}_{-k}^{\top} \operatorname{alt}(\boldsymbol{U}_{1i}) + U_{2i} > 0\} dF(\operatorname{alt}(\boldsymbol{U}_{1i}))$$

$$= \int \cdots \int 1\{\boldsymbol{b}_{-k}^{\top} \operatorname{alt}(\boldsymbol{U}_{1i}) + U_{2i} > -\boldsymbol{b}_{-k}^{\top} \operatorname{alt}(\boldsymbol{a}) t - f_{\delta}(\tau, \boldsymbol{x})\} dF(\boldsymbol{U}_{2i}) dF(\operatorname{alt}(\boldsymbol{U}_{1i}))$$

$$- \int \cdots \int 1\{\boldsymbol{b}_{-k}^{\top} \operatorname{alt}(\boldsymbol{U}_{1i}) + U_{2i} > -\boldsymbol{b}_{-k}^{\top} \operatorname{alt}(\boldsymbol{a}) t' - f_{\delta}(\tau, \boldsymbol{x})\} dF(\boldsymbol{U}_{2i}) dF(\operatorname{alt}(\boldsymbol{U}_{1i}))$$

$$= \operatorname{Pr}\{\boldsymbol{\varepsilon}_{i} \leq -\boldsymbol{b}_{-k}^{\top} \operatorname{alt}(\boldsymbol{a}) t' - f_{\delta}(\tau, \boldsymbol{x})\} - \operatorname{Pr}\{\boldsymbol{\varepsilon}_{i} \leq -\boldsymbol{b}_{-k}^{\top} \operatorname{alt}(\boldsymbol{a}) t - f_{\delta}(\tau, \boldsymbol{x})\}$$

where $f_{\delta}(\tau, \boldsymbol{x}) = c_0 + c\tau + \boldsymbol{b}_{-k}^{\top}(\operatorname{alt}(\boldsymbol{m}_0) + \sum_{r=1}^{n_x} x_r \operatorname{alt}(\boldsymbol{h}_r)) + \boldsymbol{g}^{\top} \boldsymbol{x}$ and $\boldsymbol{\varepsilon}_i = \boldsymbol{b}_{-k}^{\top} \operatorname{alt}(\boldsymbol{U}_{1i}) + U_{2i}$ The second equality is given in Sohn and Li (2019). The fourth equality follows from changing of variables and the independence between T_i and $\operatorname{alt}(\boldsymbol{U}_{1i})$. The fifth equality is due to the independence between $\operatorname{alt}(\boldsymbol{U}_{1i})$ and U_{2i} . Since we assume $U_{2i} \sim N(0,1)$ and $\boldsymbol{U}_{1i} \sim LN(\boldsymbol{0},\Sigma)$, we have $\boldsymbol{\varepsilon}_i \sim N(\boldsymbol{0},\boldsymbol{b}_{-k}^{\top}\boldsymbol{\Sigma}\boldsymbol{b}_{-k}+1)$. Note that $\operatorname{alt}(\boldsymbol{U}_{1i}) \sim N(\boldsymbol{0},\Sigma)$ if and only if $\boldsymbol{U}_{1i} \sim LN(\boldsymbol{0},\Sigma)$ (Aitchison, 1986). Thus, we have

$$\delta(\tau) = \mathbb{E}\left\{\Phi\left(\frac{(\log \boldsymbol{a})^{\top}\boldsymbol{b}\,t + f_{\delta}(\tau, \boldsymbol{X}_{i})}{\sqrt{\boldsymbol{b}_{-k}^{\top}\Sigma\boldsymbol{b}_{-k} + 1}}\right) - \Phi\left(\frac{(\log \boldsymbol{a})^{\top}\boldsymbol{b}\,t' + f_{\delta}(\tau, \boldsymbol{X}_{i})}{\sqrt{\boldsymbol{b}_{-k}^{\top}\Sigma\boldsymbol{b}_{-k} + 1}}\right)\right\}. \tag{S9}$$

Similarly, we have

$$\zeta(\tau) = \mathbb{E}\left\{\Phi\left(\frac{ct + f_{\zeta}(\tau, \boldsymbol{X}_{i})}{\sqrt{\boldsymbol{b}_{-k}^{\top}\Sigma\boldsymbol{b}_{-k} + 1}}\right) - \Phi\left(\frac{ct' + f_{\zeta}(\tau, \boldsymbol{X}_{i})}{\sqrt{\boldsymbol{b}_{-k}^{\top}\Sigma\boldsymbol{b}_{-k} + 1}}\right)\right\}.$$
 (S10)

D.5 Asymptotic Properties of Debiased Estimators

To show asymptotic behaviors of debiased estimators, we will use the following Theorem S1 and Lemma S1.

Theorem S1. Let β be s-sparse, $\widehat{\boldsymbol{\beta}}$ be the estimator for Objective function (5) given \boldsymbol{u} and Ξ , and $\boldsymbol{\epsilon} = \boldsymbol{u} - \widetilde{Z}\boldsymbol{\beta}$ be sub-Gaussian. If $(3\tau - 1)\varrho_{2s}^-(\Xi^{1/2}\widetilde{Z}/\sqrt{n}) - (\tau + 1)\varrho_{2s}^+(\Xi^{1/2}\widetilde{Z}/\sqrt{n}) \ge 4\tau\phi_0$ for some constant $\phi_0 > 0$ and $\|\widetilde{Z}^\top \Xi \boldsymbol{\epsilon}\|_{\infty} \le n\lambda/\tau$, then, with $\lambda = \tau \widetilde{\omega} \sqrt{(\log p)/n}$ for some constant $\widetilde{\omega} > 0$, the following holds true:

$$\mathbb{P}\Big(\|\widehat{\boldsymbol{\beta}} - \boldsymbol{\beta}\|_1 \ge s\lambda(2 + 1/\tau)/\phi_0\Big) \le 2p^{-\omega'},$$

where $\omega' = \tilde{\omega}^2/(2K^2) - 1$ and $K^2 = \max_{1 \le j \le p} \hat{\Sigma}_{jj}$.

Proof. Theorem S1. Let $\mathbf{h} = \widehat{\boldsymbol{\beta}} - \boldsymbol{\beta}$, and S_h be the set of indices of the s largest absolute values of \mathbf{h} . Then, given Ξ and \mathbf{u} , we have the following inequality

$$\frac{1}{2n} \|\Xi^{1/2}(\boldsymbol{u} - \widetilde{Z}\widehat{\boldsymbol{\beta}})\|_{2}^{2} + \lambda \|\widehat{\boldsymbol{\beta}}\|_{1} \leq \frac{1}{2n} \|\Xi^{1/2}(\boldsymbol{u} - \widetilde{Z}\boldsymbol{\beta})\|_{2}^{2} + \lambda \|\boldsymbol{\beta}\|_{1}$$

Thus, we have

$$\frac{1}{2n}(\|\Xi^{1/2}(\boldsymbol{\epsilon} - \widetilde{Z}\boldsymbol{h})\|_{2}^{2} - \|\Xi^{1/2}\boldsymbol{\epsilon}\|_{2}^{2}) \leq \lambda(\|\boldsymbol{\beta}\|_{1} - \|\widehat{\boldsymbol{\beta}}\|_{1})$$

$$\Rightarrow -\frac{1}{2n}(\widetilde{Z}\boldsymbol{h})^{\top}\Xi(2\boldsymbol{\epsilon} - \widetilde{Z}\boldsymbol{h}) \leq \lambda(\|\boldsymbol{\beta}_{supp(\beta)}\|_{1} - \|\widehat{\boldsymbol{\beta}}_{supp(\beta)}\|_{1} - \|\widehat{\boldsymbol{\beta}}_{supp(\beta)^{c}}\|_{1})$$

$$\Rightarrow -\frac{1}{n}\boldsymbol{h}^{\top}\widetilde{Z}^{\top}\Xi\boldsymbol{\epsilon} \leq \lambda(\|\boldsymbol{\beta}_{supp(\beta)} - \widehat{\boldsymbol{\beta}}_{supp(\beta)}\|_{1} - \|\boldsymbol{h}_{supp(\beta)^{c}}\|_{1})$$

$$\Rightarrow -\frac{1}{n}\|\widetilde{Z}^{\top}\Xi\boldsymbol{\epsilon}\|_{\infty}\|\boldsymbol{h}\|_{1} \leq \lambda(\|\boldsymbol{h}_{supp(\beta)}\|_{1} - \|\boldsymbol{h}_{supp(\beta)^{c}}\|_{1})$$

$$\Rightarrow -\frac{1}{n}\|\widetilde{Z}^{\top}\Xi\boldsymbol{\epsilon}\|_{\infty}(\|\boldsymbol{h}_{S_{h}}\|_{1} + \|\boldsymbol{h}_{S_{h}^{c}}\|_{1}) \leq \lambda(\|\boldsymbol{h}_{S_{h}}\|_{1} - \|\boldsymbol{h}_{S_{h}^{c}}\|_{1})$$

$$\Rightarrow -(\|\boldsymbol{h}_{S_{h}}\|_{1} + \|\boldsymbol{h}_{S_{h}^{c}}\|_{1}) \leq \tau(\|\boldsymbol{h}_{S_{h}}\|_{1} - \|\boldsymbol{h}_{S_{h}^{c}}\|_{1}) \text{ since } \|\widetilde{Z}^{\top}\Xi\boldsymbol{\epsilon}\|_{\infty} \leq n\lambda/\tau$$

$$\Rightarrow \|\boldsymbol{h}_{S_{h}^{c}}\|_{1} \leq \frac{\tau + 1}{\tau - 1}\|\boldsymbol{h}_{S_{h}}\|_{1}$$
(S11)

From the KKT condition of Objective function (5), we have $\|\widetilde{Z}^{\top}\Xi(\boldsymbol{u}-\widetilde{Z}\widehat{\boldsymbol{\beta}})-\eta\boldsymbol{\iota}\|_{\infty}\leq n\lambda$ for some $\eta\in\mathbb{R}$, which provides the following inequalities:

$$\|\widetilde{Z}^{\top}\Xi(\boldsymbol{u}-\widetilde{Z}\widehat{\boldsymbol{\beta}})\|_{\infty} = \|(\mathcal{I}_{p}-\iota\boldsymbol{\iota}^{\top}/k)(\widetilde{Z}^{\top}\Xi(\boldsymbol{u}-\widetilde{Z}\widehat{\boldsymbol{\beta}})-\eta\boldsymbol{\iota})\|_{\infty}$$

$$= \|(\widetilde{Z}^{\top}\Xi(\boldsymbol{u}-\widetilde{Z}\widehat{\boldsymbol{\beta}})-\eta\boldsymbol{\iota})-\iota\boldsymbol{\iota}^{\top}(\widetilde{Z}^{\top}\Xi(\boldsymbol{u}-\widetilde{Z}\widehat{\boldsymbol{\beta}})-\eta\boldsymbol{\iota})/k\|_{\infty}$$

$$\leq \|\widetilde{Z}^{\top}\Xi(\boldsymbol{u}-\widetilde{Z}\widehat{\boldsymbol{\beta}})-\eta\boldsymbol{\iota}\|_{\infty} + \|\iota\boldsymbol{\iota}^{\top}(\widetilde{Z}^{\top}\Xi(\boldsymbol{u}-\widetilde{Z}\widehat{\boldsymbol{\beta}})-\eta\boldsymbol{\iota})/k\|_{\infty}$$

$$= 2\|\widetilde{Z}^{\top}\Xi(\boldsymbol{u}-\widetilde{Z}\widehat{\boldsymbol{\beta}})-\eta\boldsymbol{\iota}\|_{\infty}$$

$$\leq 2n\lambda,$$

and

$$\|\widetilde{Z}^{\top}\Xi\widetilde{Z}\boldsymbol{h}\|_{\infty} \leq \|\widetilde{Z}^{\top}\Xi(\boldsymbol{u} - \widetilde{Z}\widehat{\boldsymbol{\beta}})\|_{\infty} + \|\widetilde{Z}^{\top}\Xi(\boldsymbol{u} - \widetilde{Z}\boldsymbol{\beta})\|_{\infty} \leq 2n\lambda + \|\widetilde{Z}^{\top}\Xi\boldsymbol{\epsilon}\|_{\infty}$$

$$\leq n\lambda(2 + 1/\tau). \tag{S12}$$

Thus, we have

$$\begin{split} n\lambda(2+1/\tau)\|\boldsymbol{h}_{S_h}\|_1 &\geq \|\widetilde{Z}^{\top}\Xi\widetilde{Z}\boldsymbol{h}\|_{\infty}\|\boldsymbol{h}_{S_h}\|_1 \geq \langle\widetilde{Z}^{\top}\Xi\widetilde{Z}\boldsymbol{h},\boldsymbol{h}_{S_h}\rangle \\ &= \langle\Xi^{1/2}\widetilde{Z}\boldsymbol{h}_{S_h},\Xi^{1/2}\widetilde{Z}\boldsymbol{h}_{S_h}\rangle + \langle\Xi^{1/2}\widetilde{Z}\boldsymbol{h}_{S_h},\Xi^{1/2}\widetilde{Z}\boldsymbol{h}_{S_h^c}\rangle. \end{split}$$

By Lemma 5.1 in Cai and Zhang (2013), we have

$$\begin{split} |\langle \Xi^{1/2} \widetilde{Z} \boldsymbol{h}_{S_h}, \Xi^{1/2} \widetilde{Z} \boldsymbol{h}_{S_h^c} \rangle| &\leq \sqrt{s} \theta_{s,s} (\Xi^{1/2} \widetilde{Z}) \|\boldsymbol{h}_{S_h}\|_2 \cdot \max(\|\boldsymbol{h}_{S_h^c}\|_{\infty}, \|\boldsymbol{h}_{S_h^c}\|_1/s) \\ &\leq \sqrt{s} \theta_{s,s} (\Xi^{1/2} \widetilde{Z}) \|\boldsymbol{h}_{S_h}\|_2 \cdot \frac{\tau+1}{\tau-1} \|\boldsymbol{h}_{S_h}\|_1/s \\ &\leq \frac{\tau+1}{\tau-1} \theta_{s,s} (\Xi^{1/2} \widetilde{Z}) \|\boldsymbol{h}_{S_h}\|_2^2. \end{split}$$

Thus,

$$n\lambda(2+1/\tau)\|\boldsymbol{h}_{S_{h}}\|_{1} \geq \|\Xi^{1/2}\widetilde{Z}\boldsymbol{h}_{S_{h}}\|_{2}^{2} - \frac{\tau+1}{\tau-1}\theta_{s,s}(\Xi^{1/2}\widetilde{Z})\|\boldsymbol{h}_{S_{h}}\|_{2}^{2}$$

$$\geq \left[\varrho_{2s}^{-}(\Xi^{1/2}\widetilde{Z}) - \frac{\tau+1}{\tau-1}\theta_{s,s}(\Xi^{1/2}\widetilde{Z})\right]\|\boldsymbol{h}_{S_{h}}\|_{2}^{2}$$

$$\geq \left[\frac{3\tau-1}{2\tau-2}\varrho_{2s}^{-}(\Xi^{1/2}\widetilde{Z}) - \frac{\tau+1}{2\tau-2}\varrho_{2s}^{+}(\Xi^{1/2}\widetilde{Z})\right]\|\boldsymbol{h}_{S_{h}}\|_{1}^{2}/s \tag{S13}$$

The last inequality comes from Lemma 1 of Kang *et al.* (2016) that shows a relationship between $\theta_{s,s}$ and ϱ_{2s}^{\pm} , i.e., $\theta_{k_1.k_2}(A) \leq [\varrho_{k_1+k_2}^+(A) - \varrho_{k_1+k_2}^-(A)]/2$ for any matrix A. By rearranging Inequality (S13), we have

$$\| \boldsymbol{h}_{S_h} \|_1 \leq \frac{sn\lambda(2+1/\tau)}{n[(3\tau-1)\varrho_{2s}^-(\Xi^{1/2}\widetilde{Z}/\sqrt{n}) - (\tau+1)\varrho_{2s}^+(\Xi^{1/2}\widetilde{Z}/\sqrt{n})]/(2\tau-2)} \leq \frac{s\lambda(2+1/\tau)}{2\tau\phi_0/(\tau-1)}.$$

Therefore,

$$\|\widehat{\boldsymbol{\beta}} - \boldsymbol{\beta}\|_1 = \|\boldsymbol{h}_{S_h}\|_1 + \|\boldsymbol{h}_{S_h^c}\|_1 \le \frac{2\tau}{\tau - 1} \|\boldsymbol{h}_{S_h}\|_1 \le s\lambda(2 + 1/\tau)/\phi_0,$$

so

$$\mathbb{P}(\|\widehat{\boldsymbol{\beta}} - \boldsymbol{\beta}\|_{1} \ge s\lambda(2 + 1/\tau)/\phi_{0}) \le \mathbb{P}(\|\widetilde{Z}^{\top}\Xi\boldsymbol{\epsilon}\|_{\infty} > n\lambda/\tau) \le \sum_{j=1}^{p} \mathbb{P}(|(\widetilde{Z}^{\top}\Xi\boldsymbol{\epsilon})_{j}| > n\lambda/\tau)
\le 2p \exp\left(-\frac{n\lambda^{2}}{2\tau^{2}K^{2}}\right) = 2p^{1-\tilde{\omega}^{2}/(2K^{2})}.$$

Lemma S1. Suppose the regularity conditions hold, then for any constant $\omega > 0$, the following inequality holds:

$$\mathbb{P}\left\{ \left| \Theta \widehat{\Sigma} - (\mathcal{I}_p - \boldsymbol{\iota} \boldsymbol{\iota}^\top / k) \right|_{\infty} \ge \omega \sqrt{(\log p) / n} \right\} \le 2p^{-(\omega_1'' + \omega_2'')},$$

where $\omega_1'' = \omega^2 C_{\min} / (24e^2 \kappa^4 C_{\max}) - 2$ and $\omega_2'' = (\omega \phi_0)^2 / [2(v's(2\tau + 1)K)^2] - 1$.

Proof. Lemma S1.

$$\left|\Theta\widehat{\Sigma} - (\mathcal{I}_p - \iota \iota^\top / k)\right|_{\infty} \le \left|\Theta\Sigma - (\mathcal{I}_p - \iota \iota^\top / k)\right|_{\infty} + \left|\Theta(\Sigma - \widehat{\Sigma})\right|_{\infty}$$

Since $\Sigma^{1/2}\Theta^{1/2}\widetilde{Z}_l = (\mathcal{I}_p - \boldsymbol{u}^\top/k)\widetilde{Z}_l = \widetilde{Z}_l$ for $l = 1, \dots, n$, we have

$$\begin{split} \Theta\Sigma - (\mathcal{I}_p - \boldsymbol{\iota} \boldsymbol{\iota}^\top/k) &= \frac{1}{n} \sum_{l=1}^n \left\{ \Xi_{ll} \Theta \widetilde{Z}_l \widetilde{Z}_l^\top - (\mathcal{I}_p - \boldsymbol{\iota} \boldsymbol{\iota}^\top/k) \right\} \\ &= \frac{1}{n} \sum_{l=1}^n \left\{ \Xi_{ll} \Theta^{1/2} \Theta^{1/2} \widetilde{Z}_l \widetilde{Z}_l^\top \Theta^{1/2} \Sigma^{1/2} - (\mathcal{I}_p - \boldsymbol{\iota} \boldsymbol{\iota}^\top/k) \right\} \end{split}$$

For $i, j = 1, \ldots, p$, define $v_l^{(ij)} = \Xi_{ll}\Theta_i^{1/2}\Theta^{1/2}\widetilde{Z}_l\widetilde{Z}_l^{\top}\Theta^{1/2}\Sigma_{\cdot j}^{1/2} - (\mathcal{I}_p - \boldsymbol{\iota}\boldsymbol{\iota}^{\top}/k)_{ij}$, where A_k is the k^{th} row vector of matrix A and $A_{\cdot k}$ is the k^{th} column vector of matrix A. Notice that $\mathbb{E}v_l^{(ij)} = 0$ since $\mathbb{E}(\Xi_{ll}\Theta\widetilde{Z}_l\widetilde{Z}_l^{\top}) = \Theta\Sigma = \mathcal{I}_p - \boldsymbol{\iota}\boldsymbol{\iota}^{\top}/k$. Following the proof of Lemma 23 in Javanmard and Montanari (2014), we have

$$\begin{split} \|v_l^{(ij)}\|_{\psi_1} &\leq 2\|\Xi_{ll}\Theta_{i\cdot}^{1/2}\Theta^{1/2}\widetilde{Z}_l\widetilde{Z}_l^\top\Theta^{1/2}\Sigma_{\cdot j}^{1/2}\|_{\psi_1} \\ &\leq 2\|\Xi_{ll}^{1/2}\Theta_{i\cdot}^{1/2}\Theta^{1/2}\widetilde{Z}_l\|_{\psi_2}\|\Xi_{ll}^{1/2}\Sigma_{j\cdot}^{1/2}\Theta^{1/2}\widetilde{Z}_l\|_{\psi_2} \\ &\leq 2\|\Theta_{i\cdot}^{1/2}\|_2\|\Sigma_{j\cdot}^{1/2}\|_2\|\Xi_{ll}^{1/2}\Theta^{1/2}\widetilde{Z}_l\|_{\psi_2}\|\Xi_{ll}^{1/2}\Theta^{1/2}\widetilde{Z}_l\|_{\psi_2} \\ &\leq 2\kappa^2\sqrt{C_{\max}/C_{\min}}. \end{split}$$

Let $\kappa' = 2\sqrt{C_{\text{max}}/C_{\text{min}}}\kappa^2$. Then, by the Bernstein-type inequality for centered sub-exponential random variable (Bühlmann and van de Geer, 2011), we have

$$\mathbb{P}\Big\{\frac{1}{n}\Big|\sum_{l=1}^n v_l^{(ij)}\Big| \geq \gamma\Big\} \leq 2\exp\Big\{-\frac{n}{6}\min\Big[\Big(\frac{\gamma}{e\kappa'}\Big)^2,\frac{\gamma}{e\kappa'}\Big]\Big\}.$$

Choosing $\gamma = \omega \sqrt{(\log p)/n}$ with $\omega \le e\kappa' \sqrt{n/\log p}$, we have

$$\mathbb{P}\Big\{\frac{1}{n}\Big|\sum_{l=1}^n v_l^{(ij)}\Big| \geq \omega \sqrt{(\log p)/n}\Big\} \leq 2p^{-\omega^2/(6e^2\kappa'^2)} = 2p^{-\omega^2 C_{\min}/(24e^2\kappa^4 C_{\max})}.$$

By union bounding over all pairs of (i, j), we have

$$\mathbb{P}\left\{\left|\Theta\Sigma - (\mathcal{I}_p - \iota \iota^\top / k)\right|_{\infty} \ge \omega \sqrt{(\log p)/n}\right\} \le 2p^{-\omega^2 C_{\min}/(24e^2\kappa^4 C_{\max}) + 2}. \tag{S14}$$

Define $v' = |v \sum_{l=1}^{n} \Theta \widetilde{Z}_{l} \widetilde{Z}_{l}^{\top} / n|_{\infty}$. Then

$$\left|\Theta(\Sigma - \widehat{\Sigma})\right|_{\infty} = \frac{1}{n} \left| \sum_{l=1}^{n} [(\Xi_{ll} - \widehat{\Xi}_{ll}) \Theta \widetilde{Z}_{l} \widetilde{Z}_{l}^{\top}] \right|_{\infty} \leq v' \|\widehat{\boldsymbol{\beta}} - \boldsymbol{\beta}\|_{1}.$$

Thus, by Theorem S1, we have

$$\mathbb{P}\left\{\left|\Theta(\Sigma-\widehat{\Sigma})\right|_{\infty} \ge \omega\sqrt{(\log p)/n}\right\} \le \mathbb{P}\left\{\upsilon'\|\widehat{\boldsymbol{\beta}}-\boldsymbol{\beta}\|_{1} \ge \omega\sqrt{(\log p)/n}\right\}
\le 2p^{1-(\omega\phi_{0})^{2}/[2(\upsilon's(2\tau+1)K)^{2}]}.$$
(S15)

With Bounds (S14)-(S15), we have

$$\mathbb{P}\left\{ \left| \Theta \widehat{\Sigma} - (\mathcal{I}_p - \iota \iota^\top / k) \right|_{\infty} \ge \omega \sqrt{(\log p) / n} \right\} \le 2p^{-\omega_1''} + 2p^{-\omega_2''}.$$

Proof. Asymptotic properties of debiased estimators. Since $\iota^{\top}\beta = \iota^{\top}\widehat{\beta} = 0$, we have

$$\begin{split} \widehat{\boldsymbol{\beta}}_{db} - \boldsymbol{\beta} &= \widehat{\boldsymbol{\beta}} - \boldsymbol{\beta} + \frac{1}{n} \widetilde{\boldsymbol{\Theta}} \widetilde{\boldsymbol{Z}}^{\top} \widehat{\boldsymbol{\Xi}} \left(\widehat{\boldsymbol{u}} - \widetilde{\boldsymbol{Z}} \widehat{\boldsymbol{\beta}} \right) \\ &= \frac{1}{n} \widetilde{\boldsymbol{\Theta}} \widetilde{\boldsymbol{Z}}^{\top} \widehat{\boldsymbol{\Xi}} \boldsymbol{\epsilon} + (\widetilde{\boldsymbol{\Theta}} \widehat{\boldsymbol{\Sigma}} - \mathcal{I}_p) (\boldsymbol{\beta} - \widehat{\boldsymbol{\beta}}) \\ &= \frac{1}{n} \widetilde{\boldsymbol{\Theta}} \widetilde{\boldsymbol{Z}}^{\top} \widehat{\boldsymbol{\Xi}} \boldsymbol{\epsilon} + [\widetilde{\boldsymbol{\Theta}} \widehat{\boldsymbol{\Sigma}} - (\mathcal{I}_p - \boldsymbol{u}^{\top}/k)] (\boldsymbol{\beta} - \widehat{\boldsymbol{\beta}}). \end{split}$$

Thus, $\sqrt{n}(\widehat{\boldsymbol{\beta}}_{db} - \boldsymbol{\beta}) = R + \Delta$, where $R = \widetilde{\Theta}\widetilde{Z}^{\top}\widehat{\Xi}\boldsymbol{\epsilon}/\sqrt{n}$ and $\Delta = \sqrt{n}[\widetilde{\Theta}\widehat{\Sigma} - (\mathcal{I}_p - \boldsymbol{\iota}\boldsymbol{\iota}^{\top}/k)](\boldsymbol{\beta} - \widehat{\boldsymbol{\beta}})$. Since $\mathbb{E}(\boldsymbol{\epsilon}|\widehat{\Xi},\widehat{\boldsymbol{u}}) = \mathbf{0}$, we have $\mathbb{E}(R|\widetilde{Z},\widehat{\Xi},\widehat{\boldsymbol{u}}) = \mathbf{0}$ and

$$\begin{split} \left\|\Delta\right\|_{\infty} &\leq \sqrt{n} \left|\widetilde{\Theta}\widehat{\Sigma} - (\mathcal{I}_{p} - \boldsymbol{\iota}\boldsymbol{\iota}^{\top}/k)\right|_{\infty} \left\|\widehat{\boldsymbol{\beta}} - \boldsymbol{\beta}\right\|_{1} \\ &= \sqrt{n} \left| (\mathcal{I}_{p} - \boldsymbol{\iota}\boldsymbol{\iota}^{\top}/k)[\Theta\widehat{\Sigma} - (\mathcal{I}_{p} - \boldsymbol{\iota}\boldsymbol{\iota}^{\top}/k)]\right|_{\infty} \left\|\widehat{\boldsymbol{\beta}} - \boldsymbol{\beta}\right\|_{1} \\ &\leq \sqrt{n} \left\{ \left|\Theta\widehat{\Sigma} - (\mathcal{I}_{p} - \boldsymbol{\iota}\boldsymbol{\iota}^{\top}/k)\right|_{\infty} + \left|\boldsymbol{\iota}\boldsymbol{\iota}^{\top}[\Theta\widehat{\Sigma} - (\mathcal{I}_{p} - \boldsymbol{\iota}\boldsymbol{\iota}^{\top}/k)]/k\right|_{\infty} \right\} \left\|\widehat{\boldsymbol{\beta}} - \boldsymbol{\beta}\right\|_{1} \\ &\leq 2\sqrt{n} \left|\Theta\widehat{\Sigma} - (\mathcal{I}_{p} - \boldsymbol{\iota}\boldsymbol{\iota}^{\top}/k)\right|_{\infty} \left\|\widehat{\boldsymbol{\beta}} - \boldsymbol{\beta}\right\|_{1}. \end{split}$$

Therefore, by Lemma S1 and Theorem S1, we have

$$\mathbb{P}\Big(\|\Delta\|_{\infty} \ge \frac{2\omega\tilde{\omega}(2\tau+1)s\log p}{\phi_0\sqrt{n}}\Big) \le \mathbb{P}\Big(\|\widehat{\boldsymbol{\beta}} - \boldsymbol{\beta}\|_1 \ge s\lambda(2+1/\tau)/\phi_0\Big) \\
+ \mathbb{P}\Big(\Big|\Theta\widehat{\Sigma} - (\mathcal{I}_p - \boldsymbol{\iota}\boldsymbol{\iota}^\top/k)\Big|_{\infty} \ge \omega\sqrt{(\log p)/n}\Big) \\
\le 2p^{-\omega'} + 2p^{-\omega''_1} + 2p^{-\omega''_2}.$$

E Details of the Sensitivity Analysis

Because of the linear constraint, $\mathbf{1}_k^{\top} \boldsymbol{b} = 0$, we can write Model (2), excluding the covariates \boldsymbol{X}_i for notation simplicity, as

$$Y_{i} = 1\{c_{0} + cT_{i} + (\boldsymbol{b}_{\rho})_{-k}^{\top} \operatorname{alt}(\boldsymbol{M}_{i}) + U_{2i} > 0\}$$

$$= 1\{c_{0} + cT_{i} + (\boldsymbol{b}_{\rho})_{-k}^{\top} (\operatorname{alt}(\boldsymbol{m}_{0}) + \operatorname{alt}(\boldsymbol{a})T_{i} + \operatorname{alt}(\boldsymbol{U}_{1i})) + U_{2i} > 0\}$$

$$= 1\{c_{0}^{*} + c^{*}T_{i} + U_{0i}^{*} > 0\},$$

where $(\boldsymbol{b}_{\rho})_{-k} = ((b_1)_{\rho}, \dots, (b_{k-1})_{\rho})^{\top}$, $c_0^* = c_0 + (\boldsymbol{b}_{\rho})_{-k}^{\top} \operatorname{alt}(\boldsymbol{m}_0)$, $c^* = c + (\boldsymbol{b}_{\rho})_{-k}^{\top} \operatorname{alt}(\boldsymbol{a})$, and $U_{0i}^* = (\boldsymbol{b}_{\rho})_{-k}^{\top} \operatorname{alt}(\boldsymbol{U}_{1i}) + U_{2i}$. Thus, a probit regression model for the total effect of T on Y can be expressed as

$$Y_i = 1\{\tilde{c}_0 + \tilde{c} T_i + U_{0i} > 0\},\$$

where $\tilde{c}_0 = c_0^*/\Psi(\boldsymbol{\rho}, \boldsymbol{b}_{\rho}, \Sigma)$, $\tilde{c} = c^*/\Psi(\boldsymbol{\rho}, \boldsymbol{b}_{\rho}, \Sigma)$, and $U_{0i} = U_{0i}^*/\Psi(\boldsymbol{\rho}, \boldsymbol{b}_{\rho}, \Sigma)$, where $\Psi(\boldsymbol{\rho}, \boldsymbol{b}_{\rho}, \Sigma) = \left[(\boldsymbol{b}_{\rho})_{-k}^{\top} \Sigma (\boldsymbol{b}_{\rho})_{-k} + 2\rho (\boldsymbol{b}_{\rho})_{-k}^{\top} \operatorname{diag}(\Sigma)^{1/2} + 1 \right]^{1/2}$. For a given j, we have

$$Cov\left[U_{0i}, alt(\boldsymbol{U}_{1i})_{j}\right] = \left((\boldsymbol{b}_{\rho})_{-k}^{\top} \Sigma_{j} + \rho \Sigma_{jj}^{1/2}\right) / \Psi(\boldsymbol{\rho}, \boldsymbol{b}_{\rho}, \Sigma), \tag{S16}$$

where Σ_j is the j^{th} column of Σ and Σ_{jj} is the variance of $\operatorname{alt}(\boldsymbol{U}_{1i})_j$. Because of the constraint on U_{0i} and U_{2i} , i.e., they follow the standard gaussian distribution, we can estimate $\operatorname{Cov}\left[U_{0i},\operatorname{alt}(\boldsymbol{U}_{1i})_j\right]$ with an estimated \boldsymbol{b}_{-k} under the assumption of $\rho=0$. That is, we have k-1 unknown parameters $(\boldsymbol{b}_{\rho})_{-k}$ and k-1 equations for a given value of ρ .

References

- Aitchison, J. (1986). The Statistical Analysis of Compositional Data. New York: Chapman & Hall.
- Bühlmann, P. and van de Geer, S. (2011). Statistics for High-Dimensional Data: Method, Theory and Applications. Berlin: Springer.
- Cai, T. T. and Zhang, A. (2013). Compressed sensing and affine rank minimization under restricted isometry. Signal Processing, IEEE Transactions. 61, 3279-3290.
- Imbens, G. and Rubin, D. (2015). Causal Inference for Statistics, Social, and Biomedical Sciences: An Introduction. Cambridge: Cambridge University Press.
- Javanmard, A. and Montanari, A. (2014). Confidence intervals and hypothesis testing for high-dimensional regression. J. Mach. Learn. Res., 15(1), 2869-2909.
- Kang, H., Zhang, A., Cai, T. T., and Small, D. S. (2016). Instrumental variables estimation with some invalid instruments and its application to mendelian randomization. *Journal of the American Statistical Association*. **111**(513),132-144.
- Sohn, M. B. and Li, H. (2019). Compositional mediation analysis for microbiome studies. *Annals of Applied Statistics*, **13**(1), 661-681.