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Consider N distinct observations of the same process y. For every individual n, n = 1, 2, . . . , N , we observe
the evolution of u species through v reactions. Every reaction Rnk, k = 1, 2, . . . , v, is endowed with a
rate constant θnk, so that reactions corresponding to individual n are described by the rate vector θn =
(θn1, θn2, . . . , θnk, . . . , θnv). For a reaction Rnk with delayed completion, we associate the delay parameters
∆nk = (∆nk1,∆nk2, . . . ,∆nklk). The set of all delay parameters for an individual n is written as ∆n = {∆nk}.
We denote by θ the collection {θn} of all rate constants, and by ∆ the collection {∆n} of parameters
that define all delay measures. For every individual observation, yn, we denote its subset of discrete-time
observations as yd,n = (yn (0) , yn (1) , . . . , yn (T − 1) , yn (T )).

Individual-level parameters θnk and ∆nkl follow underlying distributions which are themselves charac-
terized by hyperparameters, ωθk and ω∆kl

, respectively. As we specified gamma priors for each θnk, the
corresponding hyperparameter set for reaction k is given by ωθk = {aθk , bθk}. We denote the collection
{ωθk} and {ω∆kl

} of rate and delay hyperparameters respectively as ωθ and ω∆.
The MCMC algorithm to produce samples from the approximate posterior distribution obtained using

the hierarchical model given by Eq. (6) can thus be described by the following steps.

1. For each n = 1, 2, . . . , N , k = 1, 2, . . . , v, and i = 0, 1, . . . , T − 1, initialize the number of reactions rnki.
Initialize the parameters θ and ∆, and hyperparameters ωθ and ω∆.

2. For each n,

(a) Sample, in order, θnk, k = 1, 2, . . . , v, given all rate hyperparameters ωθ, other rate constants
θnm, m 6= k, delay parameters ∆n, and reaction numbers. If yn(t) and θnk are separable in
hk (yn (t) , θnk), then sample θnk from the conjugate gamma distribution. Otherwise, use the
Metropolis-Hastings algorithm.

(b) Sample, in order, ∆nkl, k = 1, 2, . . . , v and l = 1, 2, . . . , lk, given all delay hyperparameters ω∆,
other delay constants ∆nk′l′ , (k′, l′) 6= (k, l), rate parameters θn, and reaction numbers, using the
Metropolis-Hastings algorithm.

(c) Update rnki for k = 1, 2, ...v and i = 0, 1, ..., T − 1, given θn, ∆n, and the observed trajectory yn
using the simplified block-updating method.

3. For every reaction k,

(a) Sample aθk , given the rate constants {θnk}n from the entire population and the other rate hyper-
parameter bθk .

(b) Sample bθk , given the rate constants {θnk}n from the entire population and other rate hyperpa-
rameter aθk .

(c) Sample, in order, ω∆kls
, l = 1, 2, . . . , lk, s = 1, 2, . . . , |ω∆kl

| given the delay parameters {∆nkl}n
from the entire population and other delay hyperparameters ω∆kls′ , s

′ 6= s.

4. Repeat steps 2-3 until convergence.
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Depending on the choice of hyperpriors, step 3 of this algorithm is either carried out by sampling from
conjugate conditional distributions or using the Metropolis-Hastings algorithm. We provide below all likeli-
hoods and resulting posterior distributions given specific hyperprior distributions and delay measures for a
stochastic birth-death process with birth delays, dealt with in this work.

Description of Bayesian inference of hierarchical model for a stochastic birth-
death process with distributed birth delays

For the birth-death process, each individual n has birth (k = 1) parameter An and death (k = 2) parameter

Bn, so that θ = {An, Bn}Nn=1. We assumed that the completion of a birth reaction is delayed by a time τn
following a gamma distribution Γ(αn, βn), so that ∆ = {αn, βn}Nn=1. Since we only consider delays in the
birth reaction, henceforth we write ηn for the delay distribution ηn,1 = Γ(τn;αn, βn), and we write τn for
τn,1. With mass-action kinetics, the reaction hazards are given by

h1(yn(t), An) = An,

h2(yn(t), Bn) = Bnyn(t).

In our setup where only discrete-time observations are available, only the birth reaction is delayed so
that the corresponding average completion propensity for a birth reaction on the interval (i, i+ 1] is

f̂1(i,yd,n, An,∆n) = An

∫ i+1

i

∫ t

0

dη(s)dt = An

∫ i+1

i

γ
(
αn, βnt̂

)
Γ (αn)

dt̂, (S1)

where ∆n = {αn, βn} and γ
(
αn, βnt̂

)
is the lower Gamma incomplete function [Abramowitz and Stegun,

1965]. On the other hand, the death reaction propensity is given by

f̂2(i,yd,n, Bn) =
h2(yn(i), Bn) + h2(yn(i+ 1), Bn)

2
=
Bn (yn(i+ 1) + yn(i))

2
, (S2)

which is the average of the delay-free death reaction hazard between the times i and i+ 1.
We use the approximate propensities Eq. (S1) and (S2) to define the total likelihood which accounts for

N individual trajectories, yd = {yd,n}n, given by

L̂ (yd |θ ,∆) =

N∏
n=1

L̂ (yd,n |θn ,∆n), (S3)

where

L̂ (yd,n |θn ,∆n) =

T−1∏
i=0

f̂1(i,yd,n, An,∆n)
rn1i

rn1i!
exp

(
−f̂1 (i,yd,n, An,∆n)

)
×
T−1∏
i=0

f̂2(i,yd,n, Bn)
rn2i

rn2i!
exp

(
−f̂2 (i,yd,n, Bn)

)
and rnki, for k = 1, 2, is the number of reactions which completed in the time interval (i, i+ 1].

Following the generative model shown in Fig. 2b, we specify gamma priors Γ(An|aA, bA), Γ(Bn|aB , bB),
Γ(αn|aα, bα), and Γ(βn|aβ , bβ) for n = 1, ..., N . For the reaction rate hyperparameters, we specified the

improper joint hyperpriors π(aA, bA) ∝ 1

bA
and π(aB , bB) ∝ 1

bB
. Denote the arbitrary hyperpriors π(aα, bα)

and π(aβ , bβ) of α and β respectively. We denote the collection, {aA, aB , bA, bB}, of reaction rate hyper-
parameters as ωθ, and the collection of delay hyperparameters, {aα, aβ , bα, bβ}, as ω∆. Accounting for Eq.
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(S1), (S2), and (S3), the joint posterior distribution over the parameters and hyperparameters is given by

π (θ,∆, ωθ, ω∆ |yd ) ∝ π (aA, bA)π (aB , bB)π (aα, bα)π (aβ , bβ) L̂ (yd |θ,∆ )

×
N∏
n=1

π (An |aA , bA)π (Bn |aB , bB)π (αn |aα , bα)π (βn |aβ , bβ)

=
1

bA

1

bB
π (aα, bα)π (aβ , bβ)

×
N∏
n=1

T−1∏
i=0

(
An
∫ i+1

i

γ(αn,βn t̂)
Γ(αn) dt̂

)rn1i

rn1i!
exp

(
−An

∫ i+1

i

γ
(
αn, βnt̂

)
Γ (αn)

dt̂

)

×
N∏
n=1

T−1∏
i=0

[(1/2)Bn (yn (i+ 1) + yn (i))]
rn2i

rn2i!
exp (−(1/2)Bn (yn (i+ 1) + yn (i)))

×
N∏
n=1

bA
aA

Γ (aA)
An

aA−1 exp (−bAAn)
bB

aB

Γ (aB)
Bn

aB−1 exp (−bBBn)

×
N∏
n=1

bα
aα

Γ (aα)
αn

aα−1 exp (−bααn)
bβ
aβ

Γ (aβ)
βn

aβ−1 exp (−bββn).

(S4)

Without specifying hyperpriors for the delay parameters ∆, using Eq. (S4), we can derive the conditional
posterior of An and Bn, which belong to the Gamma family:

An |y, aA, bA,∆n ∼ Γ

T−1∑
i=0

rn1i + aA,

T−1∑
i=0

i+1∫
i

γ
(
αn, βnt̂

)
Γ (αn)

dt̂+ bA

 ,

Bn|y, aB , bB ∼ Γ

(
T−1∑
i=0

rn2i + aB ,

T−1∑
i=0

yn(i+ 1) + yn(i)

2
+ bB

)
.

(S5)

The delay parameters αn and βn do not have standard distributions as conditional posteriors which are
proportional to

αn |yd,n, An, βn ∝
T−1∏
i=0

 i+1∫
i

γ
(
αn, βnt̂

)
Γ (αn)

dt̂

rn1i

exp

−An T−1∑
i=0

i+1∫
i

γ
(
αn, βnt̂

)
Γ (αn)

dt̂

αn
aα−1 exp (−αnbα) ,

βn |yd,n, An, αn ∝
T−1∏
i=0

 i+1∫
i

γ
(
αn, βnt̂

)
Γ (αn)

dt̂

rn1i

exp

−An T−1∑
i=0

i+1∫
i

γ
(
αn, βnt̂

)
Γ (αn)

dt̂

βn
aβ−1 exp (−βnbβ) .

(S6)

The shape parameters of the hyperpriors for the reaction rate constants A and B do not have conditional
posteriors which are known distributions but are proportional to:

π (aA |A, bA ) ∝
bNaAA

Γ(aA)
N

N∏
n=1

AaA−1
n ,

π (aB |B, bB ) ∝
bNaBB

Γ(aB)
N

N∏
n=1

BaB−1
n ,

(S7)
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while the rate parameters of the hyperpriors for A and B belong to the gamma family:

bA |A, aA ∼ Γ

(
NaA,

N∑
n=1

An

)
,

bB |B, aB ∼ Γ

(
NaB ,

N∑
n=1

Bn

)
.

(S8)

The choice of hyperpriors for the delay hyperparameters dictates what the conditional posterior distribu-
tions of aα, aβ , bα, and bβ will be. We present derivations using three different choices of delay hyperprior
distributions. We first show the cases of the non-informative rational hyperprior and maximal data infor-
mation prior (MDIP), and afterwards the informative folded normal distribution.

A typical non-informative joint hyperprior is the rational prior, which for the pair (a, b) takes the form

π(a, b) =
1

b
. Setting such hyperpriors for the hyperparameters corresponding to both α and β yields conjugate

conditional posteriors for bα and bβ that belong to the Gamma family. This choice of hyperprior, however,
is not conjugate for both aα and aβ . The conditional posteriors for the hyperparameters are given by

π (aα |α, bα ) ∝ bNaαα

Γ(aα)
N

N∏
n=1

αaα−1
n ,

π (aβ |β, bβ ) ∝
b
Naβ
β

Γ(aβ)
N

N∏
n=1

β
aβ−1
n ,

bα |α, aα ∼ Γ

(
Naα,

N∑
n=1

αn

)
,

bβ |β, aβ ∼ Γ

(
Naβ ,

N∑
n=1

βn

)
.

(S9)

The maximal data information prior (MDIP) [Pradhan et al., 2011; Zellner, 1991] is derived by maximizing
the Kullback-Leibler divergence between the data density and the prior distribution. In our generative
model, each of the parameters of an individual delay distribution is sampled from a gamma distribution
Γ(x; a, b) thereby serving as prior distribution in the hierarchical inference. In this case the MDIP for the
hyperparameters (a, b) becomes

π (a, b) =
b

Γ (a)
exp

{
(a− 1)

ψ (a)

Γ(a)
− a
}
, (S10)

where ψ(a) =
Γ′(a)

Γ(a)
is the digamma function [Moala et al., 2013].

The resulting conditional posterior for aα and aβ do not follow known distributions, however the MDIP
is a conjugate prior for both bα and bβ whose conditional posteriors belong to the gamma family. The
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conditional posteriors for the hyperparameters are given by

π (aα |α, bα ) ∝ bNaαα

Γ(aα)
N+1

N∏
n=1

αaα−1
n exp

{
(aα − 1)

ψ (aα)

Γ(aα)
− aα

}
,

π (aβ |β, bβ ) ∝
b
Naβ
β

Γ(aβ)
N+1

N∏
n=1

β
aβ−1
n exp

{
(aβ − 1)

ψ (aβ)

Γ(aβ)
− aβ

}
,

bα |α, aα ∼ Γ

(
Naα + 2,

N∑
n=1

αn

)
,

bβ |β, aβ ∼ Γ

(
Naβ + 2,

N∑
n=1

βn

)
.

(S11)

Since the delay hyperparameters are positive, being parameters of a Gamma distribution, the joint folded
normal distribution [Leone et al., 1961; Psarakis et al., 2001] is a candidate hyperprior distribution that can
effectively define an arbitrarily strong joint hyperprior for these hyperparameters. The bivariate version
follows naturally from the bivariate Gaussian distribution which describes two non-negative real-valued
random variables X and Y with probability density function given by

f (x, y) =
1

2πσ1σ2

√
1− ρ2

×

{
exp

(
− 1

2 (1− ρ2)

(
(x− µ1)

2

σ1
2

− 2ρ
(y − µ1) (x− µ2)

σ1σ2
+

(y − µ2)
2

σ2
2

))

+ exp

(
− 1

2 (1− ρ2)

(
(x+ µ1)

2

σ1
2

− 2ρ
(x+ µ1) (x+ µ2)

σ1σ2
+

(y + µ2)
2

σ2
2

))

+ exp

(
− 1

2 (1− ρ2)

(
(x+ µ1)

2

σ1
2

+ 2ρ
(x+ µ1) (y − µ2)

σ1σ2
+

(y − µ2)
2

σ2
2

))

+ exp

(
− 1

2 (1− ρ2)

(
(x− µ1)

2

σ1
2

+ 2ρ
(x− µ1) (y + µ2)

σ1σ2
+

(y + µ2)
2

σ2
2

))}
,

where x > 0, y > 0, σi > 0, µi ∈ R, i = 1, 2, and |ρ| ≤ 1.

This distribution is not conjugate for any of the delay hyperparameters and the conditional posterior
distributions resulting from this choice are given by

π (aα |{αn}n, bα ) ∝ bNaαα

Γ(aα)
N

N∏
n=1

αaα−1
n f(aα, bα;µaα , σaα , µbα , σbα , ρα),

π (aβ |{βn}n, bβ ) ∝
b
Naβ
β

Γ(aβ)
N

N∏
n=1

β
aβ−1
n f(aβ , bβ ;µaβ , σaβ , µbβ , σbβ , ρβ),

π (bα |{αn}n, aα ) ∝ bNaαα exp

(
−bα

N∑
n=1

αn

)
f(aα, bα;µaα , σaα , µbα , σbα , ρα),

π (bβ |{βn}n, aβ ) ∝ bNaββ exp

(
−bβ

N∑
n=1

βn

)
f(aβ , bβ ;µaβ , σaβ , µbβ , σbβ , ρβ),

(S12)

where the corresponding folded normal hyperprior f(aZ , bZ) is parametrized by µaZ , σaZ , µbZ , σbZ , ρZ for
Z ∈ {α, β}. The amount of information about a delay parameter Z is controlled by how close µaZ and µbZ
are to the true values, and how small σaZ and σbZ are.

The MCMC algorithm for the stochastic birth-death process with distributed birth delays proceeds as
follows.
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1. For each n and i, for n = 1, 2, . . . , N and i = 0, 1, . . . , T − 1, initialize the number of reactions by
setting rn1i = yn(i + 1) − y(i) and rn2i = 0 if yn(i + 1) ≥ yn(i), otherwise rn2i = yn(i) − yn(i + 1)
and rn1i = 0. Initialize aA, aB , bA, bB using appropriate values. Initialize An and Bn by sampling from
their conjugate gamma posterior distributions (Eq. (S5)), and set an appropriate values for αn and
βn.

2. For each n,

(a) Sample An and Bn from their conditional conjugate posterior distribution given by Eq. (S5).

(b) Since the conditional posterior for αn and βn do not follow a known distributions (Eq. (S6)),
use the Metropolis-Hastings algorithm to draw samples, in order, from the conditional posterior
αn |yd,n, An, βn and βn |yd,n, An, αn . We used the truncated Gaussian distribution with positive
support as proposal distribution for αn and a gamma proposal for βn [Choi et al., 2020].

(c) Conditioned on An, Bn, αn, and βn, for each time index i, update rn1i and rn2i. As the number
of reactions are not observed directly, we will sample over them by following a block-updating
method [Boys et al., 2008] which uses a random walk proposal on the number of birth reactions.
We use the Metropolis-Hastings algorithm with a random walk chain to sample the number of
completions of each type of reaction in a time interval (i, i+1], i = 0, 1, ...T−1, given the observed
system states yn(i) and yn(i+ 1). For the ith interval, the joint conditional posterior of rn1i and
rn2i is given by

π (rn1i, rn2i |yd,n, An, Bn,∆n ) ∝

(
An

∫ i+1

i

γ
(
an, βnt̂

)
Γ (αn)

dt̂

)rn1i

rn1i!

[Bn (yn (i) + yn (i+ 1)) /2]
rn2i

rn2i!
,

which is proportional to the product of the density functions of Poisson random variables.

Denote by r
(j−1)
n1i the value of rn1i from the (j − 1)th iteration. The proposal distribution can be

chosen to be a discrete random walk in which the current value is augmented by u, that is the
difference of two Poisson random variables whose means are both equal to some λ which is usually

a function of r
(j−1)
n1i . This value u is then used to define the proposed value r∗n1i = r

(j−1)
n1i + u.

In particular, the distribution of the update value u is a Skellam distribution [Boys et al., 2008;
Johnson et al., 1969] given by

p
(
u
∣∣∣rn1i

(j−1)
)

= exp
(
−2rn1i

(j−1)
)
Iu

(
2rn1i

(j−1)
)
,

where Iu is a regular modified Bessel function of order u. Once r∗n1i is chosen, then r∗n2i can be
uniquely determined using yn(i+ 1)− yn(i) = r∗n1i − r∗n2i.

3. Sample the hyperparameters which describe the distribution of An, Bn, αn, and βn across the popu-
lation.

(a) As the conditional posteriors (Eq. (S7)) of aA and aB are not known distributions, we draw sam-
ples using the Metropolis-Hastings algorithm. We specified as proposal distribution the truncated
Gaussian distribution with positive support.

(b) Sample bA and bB from their conditional conjugate posterior distributions given by Eq. (S8).

(c) For rational priors, use Eq. (S9) to implement the Metropolis-Hasting algorithm with a positively-
supported Gaussian proposal distribution to sample aα and aβ from their conditional posterior.
Sample bα and bβ from their conjugate gamma conditional posteriors.
In the case of the MDIP, use Eq. (S11) to implement the Metropolis-Hasting algorithm with a
positively-supported Gaussian proposal distribution to sample aα and aβ from their conditional
posterior. Sample bα and bβ from their conjugate gamma conditional posterior.
If folded normal distributions are used as hyperprior for αn and βn, we use Eq. (S12), to implement
the Metropolis-Hasting algorithm with a positively-supported Gaussian proposal distribution to
sample aα, aβ , bα, and bβ from their conditional posteriors.

4. Repeat steps 1-3 until convergence.
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Description of Bayesian inference of a hierarchical model for a stochastic birth-
death process with fixed birth delays

Similar to the stochastic birth-death process with distributed delays, here each individual n has birth (k = 1)

parameter An and death (k = 2) parameter Bn, so that θ = {An, Bn}Nn=1. Since we are fixing the delays in
each experiment, the delay measure ηn,k is the Dirac point mass measure centered at the fixed delay τn,k.
Since we only consider delays in the birth reaction, henceforth we write ηn for ηn,1 and we write τn for τn,1.
With mass-action kinetics, the reaction hazards are given by

h1(yn(t), An) = An,

h2(yn(t), Bn) = Bnyn(t).

With only the discrete-time observations, the average completion propensity for a birth reaction on the
interval (i, i+ 1] is

f̂1(i,yd,n, An,∆n) = An

∫ i+1

i

∫ t

0

dηn(s)dt = An · pn,i, (S13)

where ∆n = {τn} and pn,i =

{
0 if i+ 1 6 τn

min (1, i+ 1− τn) otherwise
. On the other hand, the average comple-

tion propensity for the death reaction is the same as Eq. (S2):

f̂2(i,yd,n, Bn) =
h2(yn(i), Bn) + h2(yn(i+ 1), Bn)

2
=
Bn (yn(i+ 1) + yn(i))

2
.

Using Eq. (S13) and (S2), we obtain the total likelihood for yd = {yd,n}n,

L̂ (yd |θ ,∆) =

N∏
n=1

L̂ (yd,n |θn ,∆n), (S14)

where

L̂ (yd,n |θn ,∆n) =

T−1∏
i=0

f̂1(i,yd,n, An,∆n)
rn1i

rn1i!
exp

(
−f̂1 (i,yd,n, An,∆n)

)
×
T−1∏
i=0

f̂2(i,yd,n, Bn)
rn2i

rn2i!
exp

(
−f̂2 (i,yd,n, Bn)

)
and rnki, for k = 1, 2, is the number of reactions which completed in the time interval (i, i+ 1].

Following the generative model (See Fig. 1a in main text), we use Gamma priors Γ(A|aA, bA), Γ(B|aB , bB),
and Γ(τ |aτ , bτ ) for An, Bn, and τn respectively for n = 1, ..., N . We also specified the improper joint hy-

perpriors π(aA, bA) ∝ 1

bA
, π(aB , bB) ∝ 1

bB
, and π(aτ , bτ ) ∝ 1

bτ
. We denote the collection, {aA, aB , bA, bB},

of reaction rate hyperparameters as ωθ, and the collection of delay hyperparameters, {aτ , bτ}, as ω∆. In-
tegrating all details from Eq. (S13), (S2), and (S14) we arrive at the total posterior distribution over the
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parameters and hyperparameters

π (θ,∆, ωθ, ω∆ |yd ) ∝ π (aA, bA)π (aB , bB)π (aτ , bτ ) L̂ (yd |θ,∆ )

×
N∏
n=1

π (An |aA , bA)π (Bn |aB , bB)π (τn |aτ , bτ )

=
1

bA

1

bB

1

bτ

N∏
n=1

T−1∏
i=0

(Anpn,i)
rn1i

rn1i!
exp (−Anpn,i)

×
N∏
n=1

T−1∏
i=0

[(1/2)Bn (yn (i+ 1) + yn (i))]
rn2i

rn2i!
exp (−(1/2)Bn (yn (i+ 1) + yn (i)))

×
N∏
n=1

bA
aA

Γ (aA)
An

aA−1 exp (−bAAn)
bB

aB

Γ (aB)
Bn

aB−1 exp (−bBBn)
bτ
aτ

Γ (aτ )
τn
aτ−1 exp (−bττn) .

(S15)

Using Eq. (S15), we derive the conditional posterior distributions of the parameters and hyperparameters.
For each An and Bn, we obtain the conditional posteriors which belong to the gamma family:

An |yd,n , aA, bA, τn ∼ Γ

(
T−1∑
i=0

rn1i + aA, T − τn + bA

)
,

Bn|yd,n, aB , bB ∼ Γ

(
T−1∑
i=0

r2ni + aB ,

T−1∑
i=0

yn(i+ 1) + yn(i)

2
+ bB

)
.

(S16)

The conditional posterior for a delay parameter, on the other hand, does not follow a known distribution
and is proportional to:

π (τn |yd,n , aτ , bτ , An) ∝

(
T−1∏
i=0

pn,i
rn1i

)
exp (−An (T − τn)) τn

aτ−1 exp (−bττn) . (S17)

The shape parameters of hyperprior for the reaction constants A and B do not have known distribution as
conditional posteriors and are proportional to:

π(aA|bA, A) ∝
bNaAA

Γ(aA)

N∏
n=1

An
aA−1,

π(aB |bB , B) ∝
bNaBB

Γ(aB)

N∏
n=1

Bn
aB−1.

(S18)

The rate parameters of hyperprior for the reaction constant A and B belong to the gamma family:

bA|aA, A ∼ Γ(NaA ,

N∑
n=1

An),

bB |aB , B ∼ Γ(NaB ,

N∑
n=1

Bn).

(S19)

The conditional posterior for hyper parameters of delay follow the same form as the ones for the reaction
rate constants.

π(aτ |bτ , τ) ∝ bNaττ

Γ(aτ )

N∏
n=1

τn
aτ−1,

bτ |aτ , τ ∼ Γ(Naτ ,

N∑
n=1

τn).

(S20)
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The MCMC algorithm for the hierarchical model of the stochastic birth-death process with constant birth
delays proceeds as follows.

1. For each n and i, for n = 1, 2, . . . , N and i = 0, 1, . . . , T−1, initialize the number of reactions by setting
rn1i = yn(i+ 1)−yn(i) and rn2i = 0 if yn(i+ 1) ≥ yn(i), otherwise rn2i = yn(i+ 1)−y(i) and rn1i = 0.
Initialize the hyperparameters aA, aB , aτ , bA, bB , bτ using appropriate values, and initialize An and Bn
by sampling from their conjugate gamma posterior distributions (Eq. (S16)). Set an appropriate value
for τn.

2. For each n,

(a) Sample An and Bn from their conditional conjugate posterior distribution given by Eq. (S16).

(b) Since the conditional posterior for τn does not follow a known distribution (Eq. (S17)), we used
the Metropolis-Hastings algorithm to iteratively draw samples from the conditional posterior
τn |yd,n, aτ , bτ , An . We used the truncated Gaussian distribution with positive support as proposal
distribution.

(c) The update process for the number of completed reactions rnki is similar to the case of distributed
birth delays, only that we will change the mean of the Poisson likelihood for the birth reaction to

f̂1(i,yd,n, An,∆n) = An · pn,i where ∆n = {τn} and pn,i =

{
0 if i+ 1 6 τn

min (1, i+ 1− τn) otherwise
.

Hence for the interval (i, i+ 1] interval, the joint conditional posterior of rn1i and rn2i is given by

π (rn1i, rn2i |yd,n, An, Bn,∆n ) ∝ (An · pn,i)rn1i

rn1i!

[Bn (yn (i) + yn (i+ 1)) /2]
rn2i

rn2i!
.

3. We now sample the hyperparameters which describe the distribution of An, Bn, and τn across the
population.

(a) As the conditional posteriors (Eq. (S18)) of aA and aB are not known distributions, we draw sam-
ples using the Metropolis-Hastings algorithm. We specified as proposal distribution the truncated
Gaussian distribution with positive support.

(b) Sample bA and bB from their conditional conjugate posterior distributions given by Eq. (S19).

(c) With Eq. (S20), use the Metropolis-Hasting algorithm with a positively-supported Gaussian pro-
posal to sample aτ from its conditional posterior. Sample bτ from its conjugate gamma conditional
posterior.

4. Repeat steps 1-3 until convergence.

Sampling from population distributions and individual delay distributions

Here we present the algorithm for generating the posterior population distributions and the individual delay
distributions found throughout the main text. Population distributions are not directly sampled in the
algorithm, and we instead sample from the posterior distribution of the hyperparameters. Here, we present
the algorithm we used to sample from the population marginal posteriors of the parameters A, α, β, and
the delay time τ . We also apply the same strategy to sample values from the individual delay distributions.

Through the MCMC algorthm we obtain the hyperparameter posterior distributions π(aZ) and π(bZ),
for Z ∈ {A,B, τ} in the fixed delay, and Z ∈ {A,B, α, β} in the distributed delay case. We employed the
algorithm below to sample from the respective population distributions.

1. Take m samples asZ from π(aZ).

2. Take m samples bsZ from π(bZ).

3. For each pair (asZ , b
s
Z), take p samples from Γ(asZ , b

s
Z).

4. Combine all the mp samples taken from step 3. This pooled samples are realizations of the population
distribution of the reaction rate or delay parameter Z.
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In the distributed delay case, a similar algorithm was also applied to sample from the individual delay
posterior distributions. For an individual n, the algorithm infers the posteriors π(αn) and π(βn). We sample
from π(τn) as follows.

1. Take m samples αsn from π(αn).

2. Take m samples βsn from π(βn).

3. For each pair (αsn, β
s
n), take p samples from Γ(αsn, β

s
n).

4. Combine all the mp samples taken from step 3. The pooled samples are realizations of the marginal
posterior of the individual delay τn.

We typically used m = 1, 000, 000 and p = 1 to generate the figures in the main text and this supple-
mentary material.

Non-informative hyperpriors for the hierarchical distributed delay model and
non-informative priors for its non-hierarchical counterpart

The hierarchical model requires the specification of hyperpriors for all the hyperparameters that describe
population variation. In the generative model for the distributed delay case (See Fig. 2b in the main text),
we have four pairs of hyperparameters (a, b), one for each of A, B, α, and β. As information about these
hyperparameters may be scarce, especially in real biological systems, specifying non-informative hyperpriors
will sometimes be appropriate.

In model implementation, we assumed that the death rates Bn are known and so no longer inferred their

population distributions. For the rate parameter, An, we specified a rational prior with form π(aA, bA) =
1

bA
.

For the delay parameters α and β, we first considered rational priors of the form π(aα, bα) =
1

bα
and

π(aβ , bβ) =
1

bβ
, and afterwards tested changes in estimate accuracy when these are replaced by the MDIP

(Eq. S10).
In the comparison done between the hierarchical and non-hierarchical models (See Fig. 3 in main text),

we implemented both cases all with non-informative hyperpriors and priors, respectively. For the hierarchical
model, we specified a rational joint hyperprior for the pair (aA, bA), and MDIP for both the pairs (aα, bα)
and (aβ , bβ). Similar to Choi et al. [2020], we specified non-informative gamma priors, Γ(0.001, 0.001), for
all parameters An, αn, and βn, in the implementation of the non-hierarchical model.
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Supplementary tables and figures

σ2
n (aα, bα) (aβ , bβ)

3.5 (84, 6) (10, 5)
7 (63, 9) (10, 10)
14 (35, 10) (10, 20)

Table S1: Hyperparameter values used to generate individual the delay parameters (αn, βn) that were used
to simulate trajectories which served as data for Fig. 2c. In all three cases, the same set of reaction rates
An and Bn were used, with An ∼ Γ(8, 0.23) and Bn ∼ Γ(9, 625). In all cases, the mean delay, µτn , follows a

beta prime distribution, β′
(
aα, aβ , 1,

bβ
bα

)
, with mean 7.78 min.

Hyperparameter σ2
n ≈ 3.5 σ2

n ≈ 7 σ2
n ≈ 14

ω (µω, σω) True value (µω, σω) True value (µω, σω) True value
aα (81, 3) 84 (60, 3) 63 (32, 3) 35
bα (6, 3) 6 (6, 3) 9 (7, 3) 10
aβ (7, 3) 10 (7, 3) 10 (7, 3) 10
bβ (2, 3) 5 (7, 3) 10 (17, 3) 20

Table S2: Parameters of the folded normal distribution which served as informative hyperprior for the
implementation seen in Fig. S2. In all cases, we used ρ = 0.

Fig. S1: Increasing the number of cells used in hierarchical inference with fixed delays improved
hyperparameter estimates. We used the hierarchical fixed delay model to infer hyperparameters from
simulated trajectories of birth-death processes with fixed birth delays (See 40-minute trajectories in Fig. 1b
in main text). Box plots corresponding to hyperparameter posterior distributions obtained using data from
an increasing number of cells (from 20 to 160) show the convergence of posteriors to the true hyperparameter
values. Estimated values were normalized by dividing with the true hyperparameter values.
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Fig. S2: Informative folded normal delay hyperpriors yielded better estimates of delay param-
eters which consequently led to better estimates of individual delay variances. We considered
three data sets with different levels of individual delay variability (See Fig. 2 of main text.). We divided the
estimates by their true parameter values to facilitate a comparison between different model versions. (a-c)
While individual mean delay time estimates, µ̂τn , are similar in both the folded normal and MDIP hyperprior
cases, the non-informative MDIP resulted to more accurate production rate, An, estimates, which may be
due to the fact that the strong folded normal hyperpriors were parametrized with values which are smaller
when compared to the true generative values (See Table S2.). (d-f) Individual delay variances, however,
were significantly better estimated when folded normal delay hyperpriors were specified. (g-l) Population
posteriors obtained in both cases closely resemble the true population densities for both the production rate,
A (g-i), and delay time, τ (j-l), across the three data sets considered. The mean of the posteriors (triangular
markers) are close to true population means.
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Fig. S3: A distributed delay model with non-informative delay hyperpriors slightly overesti-
mates both the production rate and mean delay times when fit to data with fixed birth delays.
(a) Even with a misspecified generative model, the distributed delay model is able to accurately infer indi-
vidual parameters of a process with fixed birth delays with a slight overestimation of both the production
rates, An, and mean delay times, µτn . (b) Since the delay hyperpriors are wide and uninformative, delay
variances are largely overestimated with average variance of approximately 6.9 throughout the population,
as compared to the true variance 0. (c-d) The slight overestimation of An and µτn extends to the population
distribution whose means (triangular markers) are a bit larger than the true values.

Fig. S4: The hierarchical model consistently outperforms its non-hierarchical counterpart on
different parameter and hyperparameter sets. (a and f) We generated two additional sets of 40
trajectories, each with 40 minutes of observation that is subsampled every minute. The following population
distributions were used to generate individual data: An ∼ Γ(6, 0.25), Bn ∼ Γ(9, 625), αn ∼ Γ(84, 6), and
βn ∼ Γ(10, 5) for data 1; and An ∼ Γ(6, 0.2), Bn ∼ Γ(9, 300), αn ∼ Γ(35, 10), and βn ∼ Γ(10, 20) for data
2. Data 1 has a smaller production rate population mean and narrower individual delay distributions as
compared to the data set used in the main text (See Fig. 2c, trajectories with σ2

τn ≈ 7). Data 2, on the
other hand, has a larger production rate population mean and wider individual delay distributions. (b and
g) While individual production rate estimates, Ân, are similar in both models, the mean delay times are
better estimated with a hierarchical model. (c and h) The same advantage of the hierarchical approach
also applies to the estimates of delay variances. (d and i) Although population mean of production rate
(triangular markers), A, is captured in both approaches, the posterior from the hierarchical model better
represent the true density. (e and j) The non-hierarchical model overestimates the population mean of delay
times (triangular markers) while the hierarchical model gives a more accurate estimate.
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Fig. S5: Variance of individual delay distributions are better captured using rational delay
hyperpriors but this advantage disappears as true delay distributions become wider. In the
distributed delay model, we used two different non-informative delay hyperparameter distributions in three
different implementations: rational priors and the MDIP. (a-c) Estimates of individual delay parameters
(αn, βn) are similar in both choices of non-informative priors. (d-f) Samples of individual estimates of
the delay parameters α and β, for cell 7. The posterior distribution over the parameter shows a strong
correlation between the two. Similar correlations are observed for all cells, both when using the hierarchical,
and non-hierarchical model. (g-i) Errors in the estimates of (αn, βn) lead to the overestimation of delay
variances in model implementations using the rational and MDIP delay hyperpriors. While the errors in
the estimates remained small in the case of the rational hyperpriors in all three data sets considered, the
estimates improved for the MDIP case, as true individual delay variances become larger.
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Fig. S6: While pooling of data is good for estimating mean parameter values for data with little
variation across the population, errors may increase as cells become more different. Twenty
trajectories accounting for 20-minute observations of a delayed stochastic birth-death process served a data
in this comparison. In order of increasing variability, both in terms of mean delays and production rates,
across the population, data 1 (a) has the least variability, next is data 2 (b), while data 3 (c) has the
largest. The following population distributions were used to generate individual data: An ∼ Γ(8, 0.23),
Bn ∼ Γ(9, 625), αn ∼ Γ(63, 9), and βn ∼ Γ(10, 10) for data 1; An ∼ Γ(8, 0.16), Bn ∼ Γ(9, 625), αn ∼ Γ(7, 1),
and βn ∼ Γ(5, 5) for data 2; and An ∼ Γ(8, 0.16), Bn ∼ Γ(9, 625), αn ∼ Γ(3.3, 0.6), and βn ∼ Γ(2, 2.5) for
data 3. As the variability increases, the estimates from model with data pooling migrate farther away from
the true population means (vertical and horizontal lines in each plot), while the means of the hierarchical
model estimates remain accurate.
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Fig. S7: A non-hierarchical model is more sensitive to changes in sampling frequency than a
hierarchical model. We implemented the hierarchical model and its non-hierarchical counterpart using 20
minutes of subsampled data (see σ2

n ≈ 7 trajectories in Fig. 2c in the main text) with decreasing sampling
frequency (from 4 per min, i.e. 0.25-min subsampled, to 1/3 per min, i.e. 3-min subsampled). Although
population means of the production rate, A, are very similar in both models across all subsampling schemes
(triangular markers in a-e 1st column), the accuracy of the estimate of the delay distribution mean from the
non-hierarchical model (grey) decreased with sampling frequency while those from the hierarchical model
(orange) exhibited a similar level of accuracy (triangular markers in a-e 2nd column). Across all data
subsets we considered, the hierarchical model individual parameter estimates for An, µτn (a-e 3rd column),
and σ2

τn (a-e 4th column) exhibited small deviations. Estimates from the non-hierarchical model, on the
other hand, reduced in accuracy especially in terms of σ2

τn (a-e 4th column) when we decreased the sampling
frequency, with extreme outlying estimates produced at low sampling frequencies (a-e 4th column inset). (f)
A comparison of population delay distributions showed that the hierarchical model produced a mean delay
estimate (left - orange bars ) that is consistently accurate, together with a population posterior with low
KL-divergence from the posterior to the true density (left - green bars) that barely changed between the data
subsets we considered. Decrease in sampling frequency resulted in reduced accuracy of the population mean
delay estimate from the non-hierarchical model (right - grey bars). The non-hierarchical delay posterior also
exhibited KL-divergence that increased with the subsampling interval (right - green bars).
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Fig. S8: The hierarchical model provides accurate estimates even when the delay distribution
is mismatched. We fit the hierarchical model with gamma distributed individual cell birth delays to data
generated using beta (a-d) and inverse-gamma (e-h) distributions for the same. The gamma distribution
specified in our model has infinite support and decays exponentially, while beta distribution has compact
support and the inverse-gamma distribution is heavy-tailed. Even when the delay distributions in the model
and data are not matched, population posteriors obtained in both cases closely resemble the true population
densities for both the production rate, A (a and e), and delay time τ (b and f). The mean of the posteriors
(triangular markers) are close to true population means. Individual estimates of the mean delay, µτn (c and
g), are accurate, while delay variances, σ2

τn (d and h), are slightly overestimated, as in when the distributions
in the model and data are matched (see Fig. 3b in main text).
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Fig. S9: Simulated realizations with estimated parameters fit individual YFP trajectories. We
simulated 100 trajectories for each cell by sampling the parameters from the 95% high density interval (HDI)
of the posterior distributions, using the delayed Gillespie algorithm [Barrio et al., 2006]. The mean of the
realizations (solid lines), per cell, fit the experimental data very well.
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Fig. S10: Simulated realizations with estimated parameters from the hierarchical distributed
delay model fit individual YFP trajectories even when some data points were withheld during
inference. Setting the death rates, Bn, to their true values during inference, we fit the model to subsets
of the experimental data: full 20 min (red background), 20 min with data subsampled at 2-min intervals
(green background), and the first 15 min (yellow background) data. Simulated trajectories for experiments
1 (a) and 2 (b) using the inferred parameters across in all settings we considered fit data well. (c) Inference
results of five randomly selected cells are shown. Individual estimates of production rates, An, and mean
delay time, µτn , showed small deviations with changes in the data set indicating that inference is robust.
See Fig. S13 for the analysis of the inference using all cells.
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Fig. S11: Simulated realizations with estimated parameters from the hierarchical fixed delay
model do not exhibit the sigmoidal trajectories that characterize the YFP data. Setting the death
rates, Bn, to their true values during inference, we fit the fixed delay model to subsets of the experimental
data: full 20 min (red background), 20 min with data subsampled at 2-min intervals (green background),
and the first 15 min (yellow background) data. In both experiments 1 (a) and 2 (b), simulated trajectories
closely matched the initial and final data points but deviated from the data in the middle of the trajectory.
(c) Inference results of five randomly selected cells are shown. Individual estimates of production rates, An,
and mean delay time, µτn , showed small deviations with the change in data set. See Fig. S13 for the analysis
of the inference using all cells.
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Fig. S12: Full parameter set estimation using the hierarchical distributed delay model resulted
in unrealistically large estimates that produced simulated realizations which fit individual YFP
trajectories well. We fit the model to subsets of the experimental data: full 20 min (red background), 20
min with data subsampled at 2-min intervals (green background), and the first 15 min (yellow background)
data. Simulated trajectories for experiments 1 (a) and 2 (b) using the inferred parameters across all settings
we considered fit data well. (c) Inference results of five randomly selected cells are shown. Individual
estimates of production rates, An, mean delay time, µτn , and death rate, Bn, all are unrealistically large.
See Fig. S13 for the analysis of the inference using all cells.
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Fig. S13: Fixed delay and unspecified death rate lead to underfitting and overfitting respec-
tively. (a) We computed the root mean square error (RMSE) of the mean simulated trajectories (see Fig.
S9) from the experimental data per individual cell, and averaged over all cells. In both experiments 1 (left)
and 2 (right), the RMSE remained low with small changes in the case of the distributed delay model where
Bn was specified. In the case of the fixed delay model the error unexpectedly increased with the amount of
data used to infer the parameters and hyperparameters, indicating a larger bias. Inference of the full param-
eter set (including Bn) using the distributed delay hierarchical model resulted in larger RMSEs compared to
when Bn was specified. (b) We computed the coefficient of variation (CV) of the parameter estimates (see
Fig S10c, S11c, S12c ) across the different data subsets per individual, then averaged over all individuals.
The fixed delay model showed the least variation among the models then followed by the distributed model
with Bn specified. The distributed model where all parameters were inferred exhibited the largest variation
in all parameters.
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