
i
i

“3D_WaveUNet_Bio_supplementary” — 2021/10/26 — 15:01 — page 1 — #1 i
i

i
i

i
i

1

Supplementary for “Neuron Segmentation using 3D Wavelet Integrated Encoder-Decoder Network”

S.1 3D wavelet filters
Generally, the 3D wavelet filters are tensor products of the two filters of
1D wavelet, fl, fh, i.e.,

fc0c1c2 = fc0 ⊗ fc1 ⊗ fc2 , c0, c1, c2 ∈ {l, h}, (S.1)

where ⊗ represents the tensor product. Take Haar wavelet for example,
the low-pass and high-pass filters of 1D Haar wavelet are

fH
l =

1
√
2
(1, 1)T , fH

h =
1
√
2
(1,−1)T . (S.2)

Then, via Eq. (S.1), we get the filters of the corresponding 3D Haar wavelet:
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We here introduce the commonly used orthogonal Daubechies wavelets
and biorthogonal Cohen wavelets. Their corresponding 3D wavelet filters
are designed according to Eq. (S.1).

Orthogonal wavelets Daubechies wavelet is orthogonal, a set of
orthogonal basis for L2(x) could be derived from its scaling and wavelet
functions. Daubechies wavelet has an approximation order parameter p,
and the length of its filter is 2p. Table S.1 shows the low-pass filter
fl = {f

(l)
k } of the wavelets with order p, 1 ≤ p ≤ 6, while the high-pass

filter fh = {f (h)k } can be deduced from

f
(h)
k = (−1)kf (l)N−k, (S.11)

whereN is an odd number. Daubechies(1) is Haar wavelet.
Biorthogonal wavelets Cohen wavelets are symmetric biorthogonal

wavelets, and each of them is associated with scaling function φ, wavelet
function ψ, and their dual functions φ̃, ψ̃. Correspondingly, it has four
filters fl, fh, f̃l, and f̃h. While a signal is decomposed using filters fl and
fh with DWT, it can be reconstructed using the dual filters f̃l and f̃h with
IDWT. Cohen wavelet is with two order parameters p and p̃. Table S.2

Table S.3. Deep network configurations.

data size
channel number

3D U-Netsa 3D WaveUNetsb
encoder decoder

32× 128× 128 1, 4 4, 4 DS-x WADS-y
16× 64× 64 4, 8 8, 4 DS-x WADS-y
8× 32× 32 8, 16 16, 8 DS-x WADS-y
4× 16× 16 16, 32 32, 16 DS-x WADS-y
4× 16× 16 32, 32 bottom block

a The three 3D U-Nets are named as 3D U-Net(x), x ∈ {PU, PDc, ScIn}.
b The four 3D WaveUNets designed in this paper are named as 3D WaveUNet(y), y ∈
{DDc, DIn, DI, DIDn}.

shows the low-pass filters with orders 2 ≤ p = p̃ ≤ 5. Their high-pass
filters can be deduced from

f
(h)
k = (−1)k f̃ (l)N−k, (S.12)

f̃
(h)
k = (−1)kf (l)N−k, (S.13)

whereN is an odd number. Cohen(1, 1) is Haar wavelet.
Wavelet theory is valid for finite or infinite filters, but the infinite case

is rarely covered in practical interest.

S.2 The naive down-sampling and up-sampling
In Eqs. (1) and (3), 3D DWT and IDWT are implemented using 3D
naive down-sampling and up-sampling. For a tensor X = {Xi,j,k} ∈
Rd×m×n,

(↓ 2)X = {((↓ 2)X)i,j,k} ∈ Rb
d
2
c×bm

2
c×bn

2
c, (S.14)

and
((↓ 2)X)i,j,k = X2i,2j,2k. (S.15)

For a 3D tensor X = {Xi,j,k} ∈ Rd×m×n,

(↑ 2)X = {((↑ 2)X)i,j,k} ∈ R2d×2m×2n, (S.16)

and

((↑ 2)X)i,j,k =

{
X i

2
, j
2
, k
2

if i
2
, j
2
, k
2
∈ Z,

0 else.
(S.17)

S.3 The configuration for 3D WaveUNet
In Sec. 2.2, using the seven dual structures, we design seven 3D encoder-
decoder networks for neuron segmentation. While the first three networks
are variants of 3D U-Net, the last four are 3D WaveUNets designed
in this paper. Each of them contains four nested dual structures with
one bottom block containing two convolutions. Table S.3 illustrates their
configurations. In Table S.3, the first column shows the input size. Every
number in the table corresponds to a convolutional layer with batch
normalization (BN) and ReLU. While the number in column “encoder” is
the number of input channels of the convolution, the number in column
“decoder” is that of output channels. At the end of networks, a convolution
with kernel size of 1× 1 converts the output of decoder into the predicted
segmentation result.
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Table S.1. Low-pass filters of the Daubechies wavelets. The high-pass filters of Daubechies wavelets could be deduced from the low-pass filters via Eq. (S.11).
Daubechies wavelets are orthogonal.

p 1 2 3 4 5 6

f
(l)
k

1 1 +
√
3 0.332670552950 0.230377813309 0.160102397974 0.111540743350

1 3 +
√
3 0.806891509311 0.714846570553 0.603829269797 0.494623890398

3−
√
3 0.459877502118 0.630880767930 0.724308528438 0.751133908021

1−
√
3 −0.135011020010 −0.027983769417 0.138428145901 0.315250351709

−0.085441273882 −0.187034811719 −0.242294887066 −0.226264693965
0.035226291886 0.030841381836 −0.032244869585 −0.129766867567

0.032883011667 0.077571493840 0.097501605587

−0.010597401785 −0.006241490213 0.027522865530

−0.012580751999 −0.031582039317
0.003335725285 0.000553842201

0.004777257511

−0.001077301085
factor 1/

√
2 1/(4

√
2) 1 1 1 1

Table S.2. Low-pass filters of the Cohen wavelets. The high-pass filters of Cohen wavelets could be deduced via Eqs. (S.12)-(S.13). The filters and dual filters of
biorthogonal Cohen wavelets are applied to decompose and reconstruct image, respectively.

(p, p̃) (2, 2) (3, 3) (4, 4) (5, 5)

filter fl f̃l fl f̃l fl f̃l fl f̃l

f
(l)
k

0 0 0 0.06629126 0 0 0.01345671 0

0.35355339 −0.17677670 0 −0.19887378 −0.06453888 0.03782846 −0.00269497 0

0.70710678 0.35355339 0.17677670 −0.15467961 −0.04068942 −0.02384947 −0.13670658 0.03968709

0.35355339 1.06066017 0.53033009 0.99436891 0.41809227 −0.11062440 −0.09350470 0.00794811

0 0.35355339 0.53033009 0.99436891 0.78848562 0.37740286 0.47680327 −0.05446379
0 −0.17677670 0.17677670 −0.15467961 0.41809227 0.85269868 0.89950611 0.34560528

0 −0.19887378 −0.04068942 0.37740286 0.47680327 0.73666018

0 0.06629126 −0.06453888 −0.11062440 −0.09350470 0.34560528

0 −0.02384947 −0.13670658 −0.05446379
0 0.03782846 −0.00269497 0.00794811

0.01345671 0.03968709

0 0

S.3.1 The denoising block used in 3D WaveUNet(DIDn)

The denoising block, used in 3D WaveUNet(DIDn), is implemented by
hard shrinkage with threshold λ = 0.25:

HardShrink(x) =


x, if x > λ,

x, if x < −λ,
0, otherwise.

(S.18)

In the denoising block, we filter every coefficient x in the seven high-
frequency components

Xc, c ∈ {llh, lhl, lhh, hll, hlh, hhl, hhh},

according to Eq. (S.18).

S.4 3D neuron reconstruction using various
tracing algorithms

To better illustrate the effectiveness of 3D wavelet integrated deep
networks on 3D neuron reconstruction, we apply various automatic tracing
approaches to reconstruct the test images segmented by the different
3D deep networks integrated with or without 3D wavelets. Table S.4
shows the reconstruction performances of five reconstruction approaches,

including APP2 (Xiao and Peng, 2013), Mean-shift Spanning Tree (MST)
tracer (Peng et al., 2010), NeuroGPS (Quan et al., 2016), Snake tracer
(Narayanaswamy et al., 2011), and TReMAP (Zhou et al., 2016), on
the 28 test neuronal images segmented by various 3D deep networks.
From Table S.4, one can find that, although these automatic tracing
approaches perform diversely on the segmented neuronal images, 3D
wavelet could consistently improve the reconstruction performance of
these tracing approaches.

S.5 Comparison of neuronal image and natural
image

Different from the common objects in natural images, the nerve fibers
in neuronal cubes are line-shaped, with zigzag edges. Fig. S.1 shows an
example neural cube from NeuCuDa and an example image from Pascal
VOC (Everingham et al., 2015). During the annotation of nerve fiber in the
cube, some label noises are introduced into the label matrix, because of
the zigzag fiber edges. The label noises occupy a significant proportion in
the voxels labeled as “nerve fiber”; in the natural images, although some
label noises also appear near the object edges, they only occupy a small
proportion. Therefore, the experiences sourced from natural image might
not apply to the neuronal images, due to the gap between two domains.
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Table S.4. Reconstruction results of various automatic tracing approaches on neuronal images segmented by 3D deep networks integrated with or without 3D
wavelets.

3D Network Reconstruction

Architecture
Dual APP2 MST NeuroGPSTree Snake tracer TReMap

Structure ESA DSA PDS ESA DSA PDS ESA DSA PDS ESA DSA PDS ESA DSA PDS

3D U-Net
DS-PU 2.5444 7.3450 0.2200 5.2071 13.6657 0.2840 3.3983 7.4945 0.3475 5.4563 13.5233 0.2703 4.9636 13.5156 0.2909
DS-PDc 2.4046 7.1799 0.1950 4.9122 13.8708 0.2674 3.3042 7.5735 0.3300 5.3888 13.6766 0.2644 4.6019 13.5037 0.2627
DS-ScIn 2.3614 6.9439 0.1968 4.8481 13.5585 0.2650 3.3046 7.7271 0.3328 6.4323 14.8387 0.2620 4.7483 13.5524 0.2688

3D WaveUNet

WADS-DDc 2.2495 6.5712 0.1956 4.5830 12.9024 0.2578 3.1746 7.3695 0.3287 5.3404 13.5490 0.2645 4.3416 12.7909 0.2650
WADS-DIn 2.0288 6.2569 0.1922 4.8316 13.3179 0.2668 3.2134 7.4323 0.3350 5.2720 13.3878 0.2644 4.2825 12.4185 0.2658
WADS-DI 2.0676 6.2566 0.1857 4.8255 13.6180 0.2612 3.1214 7.3349 0.3358 5.3402 13.5475 0.2605 4.0762 12.1576 0.2599

WADS-DIDn 1.9973 6.0173 0.1897 4.8720 13.5247 0.2675 3.2096 7.4646 0.3384 5.4028 13.5505 0.2638 4.2252 12.5162 0.2624

(a) neuronal cube. (b) natural image.

Fig. S.1. Comparison of neuronal image and natural image. (a) A neuronal cube (top) with
its label matrix (bottom). (b) An example image (top) with its manual segmentation result
(bottom).
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