# Phylotranscriptomic patterns of network stochasticity and pathway dynamics during embryogenesis

Kuei-Yueh Ko, Cho-Yi Chen, Hsueh-Fen Juan and Hsuan-Cheng Huang

Contains 6 supplementary tables and 8 supplementary figures and figure legends.

| Table S1. Developmenta | time points of A. | thaliana transcriptome data |
|------------------------|-------------------|-----------------------------|
|------------------------|-------------------|-----------------------------|

| Developmental Period | Stage |
|----------------------|-------|
| Zygote               | Early |
| Quadrant             | Early |
| Globular             | Early |
| Heart                | Early |
| Torpedo              | Mid   |
| Bent                 | Late  |
| Mature               | Late  |

| GEO Accession | Title                                    | Developmental<br>Period | Stage |
|---------------|------------------------------------------|-------------------------|-------|
| GSM1526879    | Mycelium biological sample 1             | mycelium                | Early |
| GSM1526880    | Mycelium biological sample 2             | mycelium                | Early |
| GSM1526881    | Fruiting initials biological sample 1    | initials                | Early |
| GSM1526882    | Fruiting initials biological sample 2    | initials                | Early |
| GSM1526883    | Stage 2 primordium biological sample 1   | primordium              | Early |
| GSM1526884    | Stage 2 primordium biological sample 2   | primordium              | Early |
| GSM1526885    | Young fruiting body biological sample 1  | young fruiting body     | Mid   |
| GSM1526886    | Young fruiting body biological sample 2  | young fruiting body     | Mid   |
| GSM1526887    | Mature fruiting body biological sample 1 | mature fruiting body    | Late  |
| GSM1526888    | Mature fruiting body biological sample 2 | mature fruiting body    | Late  |

## Table S2. Developmental time points of *C. cinerea* transcriptome data

| Title     | Developmental Period | Stage |
|-----------|----------------------|-------|
| EE_50.0   | Embryo 0 hr          | Early |
| EE_50.30  | Embryo 0.5 hr        | Early |
| EE_50.60  | Embryo 1 hr          | Early |
| EE_50.90  | Embryo 1.5 hr        | Early |
| EE_50.120 | Embryo 2 hr          | Early |
| EE_50.150 | Embryo 2.5 hr        | Early |
| EE_50.180 | Embryo 3 hr          | Early |
| EE_50.210 | Embryo 3.5 hr        | Early |
| EE_50.240 | Embryo 4 hr          | Early |
| EE_50.300 | Embryo 5 hr          | Early |
| EE_50.330 | Embryo 5.5 hr        | Early |
| EE_50.360 | Embryo 6 hr          | Mid   |
| EE_50.390 | Embryo 6.5 hr        | Mid   |
| EE_50.420 | Embryo 7 hr          | Mid   |
| EE_50.450 | Embryo 7.5 hr        | Mid   |
| EE_50.480 | Embryo 8 hr          | Late  |
| EE_50.510 | Embryo 8.5 hr        | Late  |
| EE_50.540 | Embryo 9 hr          | Late  |
| EE_50.570 | Embryo 9.5 hr        | Late  |
| EE_50.600 | Embryo 10 hr         | Late  |
| EE_50.630 | Embryo 10.5 hr       | Late  |
| EE_50.660 | Embryo 11 hr         | Late  |
| EE_50.690 | Embryo 11.5 hr       | Late  |
| EE_50.720 | Embryo 12 hr         | Late  |
| L1        | L1                   | Late  |
| LIN35     | L1                   | Late  |
| L2        | L2                   | Late  |
| L3        | L3                   | Late  |
| L4        | L4                   | Late  |
| L4MALE    | L4                   | Late  |
| YA        | Adult                | Late  |
| AdultSPE9 | Adult                | Late  |

## Table S3. Developmental time points of *C. elegans* transcriptome data

| Title        | Developmental Period | Stage |
|--------------|----------------------|-------|
| Embryo0.2h   | Embryo 0-2h          | Early |
| Embryo2.4h   | Embryo 2-4h          | Early |
| Embryo4.6h   | Embryo 4-6h          | Early |
| Embryo6.8h   | Embryo 6-8h          | Mid   |
| Embryo8.10h  | Embryo 8-10h         | Mid   |
| Embryo10.12h | Embryo 10-12h        | Mid   |
| Embryo12.14h | Embryo 12-14h        | Late  |
| Embryo14.16h | Embryo 14-16h        | Late  |
| Embryo16.18h | Embryo 16-18h        | Late  |
| Embryo18.20h | Embryo 18-20h        | Late  |
| Embryo20.22h | Embryo 20-22h        | Late  |
| Embryo22.24h | Embryo 22-24h        | Late  |
| L1           | L1                   | Late  |
| L2           | L2                   | Late  |
| L3.12h       | L3                   | Late  |
| L3PS1.2      | L4                   | Late  |
| L3PS3.6      | L5                   | Late  |
| L3PS7.9      | L6                   | Late  |
| Prepupae     | Prepupae 0h          | Late  |
| Prepupae.12h | Prepupae 12h         | Late  |
| Prepupae.24h | Prepupae 24h         | Late  |
| Prepupae.2d  | Prepupae 2d          | Late  |
| Prepupae.3d  | Prepupae 3d          | Late  |
| Prepupae.4d  | Prepupae 4d          | Late  |
| Male.1d      | Adult 1d             | Late  |
| Male.5d      | Adult 5d             | Late  |
| Male.30d     | Adult 30d            | Late  |
| Female.1d    | Adult 1d             | Late  |
| Female.5d    | Adult 5d             | Late  |
| Female.30d   | Adult 30d            | Late  |

Table S4. Developmental time points of *D. melanogaster* transcriptome data

| <b>GEO Accession</b> | Title                            | Developmental Period  | Stage |
|----------------------|----------------------------------|-----------------------|-------|
| GSM606866            | egg_0min_mixed_rep1              | egg_0min              | Early |
| GSM606867            | egg_0min_mixed_rep2              | egg_0min              | Early |
| GSM606868            | zygote_15min_mixed_rep1          | zygote_15min          | Early |
| GSM606869            | zygote_15min_mixed_rep2          | zygote_15min          | Early |
| GSM606870            | cleavage_45min_mixed_rep1        | cleavage_45min        | Early |
| GSM606871            | cleavage_45min_mixed_rep2        | cleavage_45min        | Early |
| GSM606872            | cleavage_1h15min_mixed_rep1      | cleavage_1h15min      | Early |
| GSM606873            | cleavage_1h15min_mixed_rep2      | cleavage_1h15min      | Early |
| GSM606874            | cleavage_1h45min_mixed_rep1      | cleavage_1h45min      | Early |
| GSM606875            | cleavage_1h45min_mixed_rep2      | cleavage_1h45min      | Early |
| GSM606876            | cleavage_1h45min_mixed_rep3      | cleavage_1h45min      | Early |
| GSM606877            | blastula_2h15min_mixed_rep1      | blastula_2h15min      | Early |
| GSM606878            | blastula_2h15min_mixed_rep2      | blastula_2h15min      | Early |
| GSM606879            | blastula_2h45min_mixed_rep1      | blastula_2h45min      | Early |
| GSM606880            | blastula_2h45min_mixed_rep2      | blastula_2h45min      | Early |
| GSM606881            | blastula_3h20min_mixed_rep1      | blastula_3h20min      | Early |
| GSM606882            | blastula_3h20min_mixed_rep2      | blastula_3h20min      | Early |
| GSM606883            | blastula_4h_mixed_rep1           | blastula_4h           | Early |
| GSM606884            | blastula_4h_mixed_rep2           | blastula_4h           | Early |
| GSM606885            | blastula_4h40min_mixed_rep1      | blastula_4h40min      | Early |
| GSM606886            | blastula_4h40min_mixed_rep2      | blastula_4h40min      | Early |
| GSM606887            | gastrula_5h20min_mixed_rep1      | gastrula_5h20min      | Early |
| GSM606888            | gastrula_5h20min_mixed_rep2      | gastrula_5h20min      | Early |
| GSM606889            | gastrula_6h_mixed_rep1           | gastrula_6h           | Early |
| GSM606890            | gastrula_6h_mixed_rep2           | gastrula_6h           | Early |
| GSM606891            | gastrula_7h_mixed_rep1           | gastrula_7h           | Early |
| GSM606892            | gastrula_7h_mixed_rep2           | gastrula_7h           | Early |
| GSM606893            | gastrula_8h_mixed_rep1           | gastrula_8h           | Early |
| GSM606894            | gastrula_8h_mixed_rep2           | gastrula_8h           | Early |
| GSM606895            | gastrula_8h_mixed_rep3           | gastrula_8h           | Early |
| GSM606896            | gastrula_9h_mixed_rep1           | gastrula_9h           | Early |
| GSM606897            | gastrula_9h_mixed_rep2           | gastrula_9h           | Early |
| GSM606898            | gastrula_10h_mixed_rep1          | gastrula_10h          | Early |
| GSM606899            | gastrula_10h_mixed_rep2          | gastrula_10h          | Early |
| GSM606900            | segmentation_10h20min_mixed_rep1 | segmentation_10h20min | Early |
| GSM606901            | segmentation_10h20min_mixed_rep2 | segmentation_10h20min | Early |
| GSM606902            | segmentation_11h_mixed_rep1      | segmentation_11h      | Early |
| GSM606903            | segmentation_11h_mixed_rep2      | segmentation_11h      | Early |
| GSM606904            | segmentation_11h40min_mixed_rep1 | segmentation_11h40min | Mid   |
| GSM606905            | segmentation_11h40min_mixed_rep2 | segmentation_11h40min | Mid   |
| GSM606906            | segmentation_12h_mixed_rep1      | segmentation_12h      | Mid   |

## Table S5. Developmental time points of *D. rerio* transcriptome data

| GEO Accession | Title                       | <b>Developmental Period</b> | Stage |
|---------------|-----------------------------|-----------------------------|-------|
| GSM606907     | segmentation_12h_mixed_rep2 | segmentation_12h            | Mid   |
| GSM606908     | segmentation_13h_mixed_rep1 | segmentation_13h            | Mid   |
| GSM606909     | segmentation_13h_mixed_rep2 | segmentation_13h            | Mid   |
| GSM606910     | segmentation_14h_mixed_rep1 | segmentation_14h            | Mid   |
| GSM606911     | segmentation_14h_mixed_rep2 | segmentation_14h            | Mid   |
| GSM606912     | segmentation_15h_mixed_rep1 | segmentation_15h            | Mid   |
| GSM606913     | segmentation_15h_mixed_rep2 | segmentation_15h            | Mid   |
| GSM606914     | segmentation_16h_mixed_rep1 | segmentation_16h            | Mid   |
| GSM606915     | segmentation_16h_mixed_rep2 | segmentation_16h            | Mid   |
| GSM606916     | segmentation_17h_mixed_rep1 | segmentation_17h            | Mid   |
| GSM606917     | segmentation_17h_mixed_rep2 | segmentation_17h            | Mid   |
| GSM606918     | segmentation_18h_mixed_rep1 | segmentation_18h            | Mid   |
| GSM606919     | segmentation_18h_mixed_rep2 | segmentation_18h            | Mid   |
| GSM606920     | segmentation_18h_mixed_rep3 | segmentation_18h            | Mid   |
| GSM606921     | segmentation_19h_mixed_rep1 | segmentation_19h            | Mid   |
| GSM606922     | segmentation_19h_mixed_rep2 | segmentation_19h            | Mid   |
| GSM606923     | segmentation_20h_mixed_rep1 | segmentation_20h            | Mid   |
| GSM606924     | segmentation_20h_mixed_rep2 | segmentation_20h            | Mid   |
| GSM606925     | segmentation_21h_mixed_rep1 | segmentation_21h            | Mid   |
| GSM606926     | segmentation_21h_mixed_rep2 | segmentation_21h            | Mid   |
| GSM606927     | segmentation_22h_mixed_rep1 | segmentation_22h            | Mid   |
| GSM606928     | segmentation_22h_mixed_rep2 | segmentation_22h            | Mid   |
| GSM606929     | segmentation_23h_mixed_rep1 | segmentation_23h            | Mid   |
| GSM606930     | segmentation_23h_mixed_rep2 | segmentation_23h            | Mid   |
| GSM606931     | pharyngula_1d1h_mixed_rep1  | pharyngula_1d1h             | Mid   |
| GSM606932     | pharyngula_1d1h_mixed_rep2  | pharyngula_1d1h             | Mid   |
| GSM606933     | pharyngula_1d3h_mixed_rep1  | pharyngula_1d3h             | Mid   |
| GSM606934     | pharyngula_1d3h_mixed_rep2  | pharyngula_1d3h             | Mid   |
| GSM606935     | pharyngula_1d6h_mixed_rep1  | pharyngula_1d6h             | Mid   |
| GSM606936     | pharyngula_1d6h_mixed_rep2  | pharyngula_1d6h             | Mid   |
| GSM606937     | pharyngula_1d10h_mixed_rep1 | pharyngula_1d10h            | Mid   |
| GSM606938     | pharyngula_1d10h_mixed_rep2 | pharyngula_1d10h            | Mid   |
| GSM606939     | pharyngula_1d14h_mixed_rep1 | pharyngula_1d14h            | Mid   |
| GSM606940     | pharyngula_1d14h_mixed_rep2 | pharyngula_1d14h            | Mid   |
| GSM606941     | pharyngula_1d18h_mixed_rep1 | pharyngula_1d18h            | Mid   |
| GSM606942     | pharyngula_1d18h_mixed_rep2 | pharyngula_1d18h            | Mid   |
| GSM606943     | hatching_2d_mixed_rep1      | hatching_2d                 | Late  |
| GSM606944     | hatching_2d_mixed_rep2      | hatching_2d                 | Late  |
| GSM606945     | hatching_2d12h_mixed_rep1   | hatching_2d12h              | Late  |
| GSM606946     | hatching_2d12h_mixed_rep2   | hatching_2d12h              | Late  |
| GSM606947     | hatching_3d_mixed_rep1      | hatching_3d                 | Late  |
| GSM606948     | hatching_3d_mixed_rep2      | hatching_3d                 | Late  |
| GSM606949     | larva_4d_mixed_rep1         | larva_4d                    | Late  |

| GEO Accession | Title                    | Developmental Period | Stage |
|---------------|--------------------------|----------------------|-------|
| GSM606950     | larva_4d_mixed_rep2      | larva_4d             | Late  |
| GSM606951     | larva_6d_mixed_rep1      | larva_6d             | Late  |
| GSM606952     | larva_6d_mixed_rep2      | larva_6d             | Late  |
| GSM606953     | larva_8d_mixed_rep1      | larva_8d             | Late  |
| GSM606954     | larva_8d_mixed_rep2      | larva_8d             | Late  |
| GSM606955     | larva_10d_mixed_rep1     | larva_10d            | Late  |
| GSM606956     | larva_10d_mixed_rep2     | larva_10d            | Late  |
| GSM606957     | larva_14d_mixed_rep1     | larva_14d            | Late  |
| GSM606958     | larva_14d_mixed_rep2     | larva_14d            | Late  |
| GSM606959     | larva_18d_mixed_rep1     | larva_18d            | Late  |
| GSM606960     | larva_18d_mixed_rep2     | larva_18d            | Late  |
| GSM606961     | larva_24d_mixed_rep1     | larva_24d            | Late  |
| GSM606962     | larva_24d_mixed_rep2     | larva_24d            | Late  |
| GSM606963     | larva_30d_mixed_rep1     | larva_30d            | Late  |
| GSM606964     | larva_30d_mixed_rep2     | larva_30d            | Late  |
| GSM606965     | larva_40d_mixed_rep1     | larva_40d            | Late  |
| GSM606966     | larva_40d_mixed_rep2     | larva_40d            | Late  |
| GSM606967     | juvenile_45d_mixed_rep1  | juvenile_45d         | Late  |
| GSM606968     | juvenile_45d_mixed_rep2  | juvenile_45d         | Late  |
| GSM606969     | juvenile_55d_female_rep1 | adult_55d            | Late  |
| GSM606970     | juvenile_55d_female_rep2 | adult_55d            | Late  |
| GSM606971     | juvenile_65d_female_rep1 | juvenile_65d         | Late  |
| GSM606972     | juvenile_65d_female_rep2 | juvenile_65d         | Late  |
| GSM606973     | juvenile_80d_female_rep1 | juvenile_80d         | Late  |
| GSM606974     | juvenile_80d_female_rep2 | juvenile_80d         | Late  |
| GSM606975     | adult_90d_female_rep1    | adult_90d            | Late  |
| GSM606976     | adult_90d_female_rep2    | adult_90d            | Late  |
| GSM606977     | adult_3m15d_female_rep1  | adult_3m15d          | Late  |
| GSM606978     | adult_3m15d_female_rep2  | adult_3m15d          | Late  |
| GSM606979     | adult_4m_female_rep1     | adult_4m             | Late  |
| GSM606980     | adult_4m_female_rep2     | adult_4m             | Late  |
| GSM606981     | adult_7m_female_rep1     | adult_7m             | Late  |
| GSM606982     | adult_7m_female_rep2     | adult_7m             | Late  |
| GSM606983     | adult_9m_female_rep1     | adult_9m             | Late  |
| GSM606984     | adult_9m_female_rep2     | adult_9m             | Late  |
| GSM606985     | adult_1y2m_female_rep1   | adult_1y2m           | Late  |
| GSM606986     | adult_1y2m_female_rep2   | adult_1y2m           | Late  |
| GSM606987     | adult_1y6m_female_rep1   | adult_1y6m           | Late  |
| GSM606988     | adult_1y6m_female_rep2   | adult_1y6m           | Late  |
| GSM606989     | adult_1y9m_mixed_rep1    | adult_1y9m           | Late  |
| GSM606990     | adult_1y9m_mixed_rep2    | adult_1y9m           | Late  |
| GSM606991     | adult_55d_male_rep1      | adult_55d            | Late  |
| GSM606992     | adult_55d_male_rep2      | adult_55d            | Late  |

| <b>GEO Accession</b> | Title                 | Developmental Period | Stage |
|----------------------|-----------------------|----------------------|-------|
| GSM606993            | adult_65d_male_rep1   | adult_65d            | Late  |
| GSM606994            | adult_65d_male_rep2   | adult_65d            | Late  |
| GSM606995            | adult_80d_male_rep1   | adult_80d            | Late  |
| GSM606996            | adult_80d_male_rep2   | adult_80d            | Late  |
| GSM606997            | adult_90d_male_rep1   | adult_90d            | Late  |
| GSM606998            | adult_90d_male_rep2   | adult_90d            | Late  |
| GSM606999            | adult_3m15d_male_rep1 | adult_3m15d          | Late  |
| GSM607000            | adult_3m15d_male_rep2 | adult_3m15d          | Late  |
| GSM607001            | adult_4m_male_rep1    | adult_4m             | Late  |
| GSM607002            | adult_4m_male_rep2    | adult_4m             | Late  |
| GSM607003            | adult_7m_male_rep1    | adult_7m             | Late  |
| GSM607004            | adult_7m_male_rep2    | adult_7m             | Late  |
| GSM607005            | adult_9m_male_rep1    | adult_9m             | Late  |
| GSM607006            | adult_9m_male_rep2    | adult_9m             | Late  |
| GSM607007            | adult_1y2m_male_rep1  | adult_1y2m           | Late  |
| GSM607008            | adult_1y2m_male_rep2  | adult_1y2m           | Late  |
| GSM607009            | adult_1y6m_male_rep1  | adult_1y6m           | Late  |
| GSM607010            | adult_1y6m_male_rep2  | adult_1y6m           | Late  |
| GSM607011            | adult_1y9m_mixed_rep3 | adult_1y9m           | Late  |
| GSM607012            | adult_1y9m_mixed_rep4 | adult_1y9m           | Late  |

| <b>GEO Accession</b> | Title                           | <b>Developmental Period</b> | Stage |
|----------------------|---------------------------------|-----------------------------|-------|
| GSM980891            | embryo at Egg, biological rep1  | unfertilized eggs           | Early |
| GSM980892            | embryo at Egg, biological rep2  | unfertilized eggs           | Early |
| GSM980893            | embryo at Egg, biological rep3  | unfertilized eggs           | Early |
| GSM980894            | embryo at TS01, biological rep1 | fertilized eggs             | Early |
| GSM980895            | embryo at TS01, biological rep2 | fertilized eggs             | Early |
| GSM980896            | embryo at TS01, biological rep3 | fertilized eggs             | Early |
| GSM980897            | embryo at TS09, biological rep1 | E6.5 embryos                | Early |
| GSM980898            | embryo at TS09, biological rep2 | E6.5 embryos                | Early |
| GSM980899            | embryo at TS09, biological rep3 | E6.5 embryos                | Early |
| GSM980900            | embryo at TS11, biological rep1 | E7.5 embryos                | Early |
| GSM980901            | embryo at TS11, biological rep2 | E7.5 embryos                | Early |
| GSM980902            | embryo at TS11, biological rep3 | E7.5 embryos                | Early |
| GSM980903            | embryo at TS13, biological rep1 | E8.5 embryos                | Mid   |
| GSM980904            | embryo at TS13, biological rep2 | E8.5 embryos                | Mid   |
| GSM980905            | embryo at TS13, biological rep3 | E8.5 embryos                | Mid   |
| GSM980906            | embryo at TS16, biological rep1 | E10 embryos                 | Mid   |
| GSM980907            | embryo at TS16, biological rep2 | E10 embryos                 | Mid   |
| GSM980908            | embryo at TS16, biological rep3 | E10 embryos                 | Mid   |
| GSM980909            | embryo at TS19, biological rep1 | E11.5 embryos               | Late  |
| GSM980910            | embryo at TS19, biological rep2 | E11.5 embryos               | Late  |
| GSM980911            | embryo at TS19, biological rep3 | E11.5 embryos               | Late  |
| GSM980912            | embryo at TS21, biological rep1 | E12.5 embryos               | Late  |
| GSM980913            | embryo at TS21, biological rep2 | E12.5 embryos               | Late  |
| GSM980914            | embryo at TS21, biological rep3 | E12.5 embryos               | Late  |
| GSM980915            | embryo at TS22, biological rep1 | E14 embryos                 | Late  |
| GSM980916            | embryo at TS22, biological rep2 | E14 embryos                 | Late  |
| GSM980917            | embryo at TS22, biological rep3 | E14 embryos                 | Late  |
| GSM980918            | embryo at TS23, biological rep1 | E15 embryos                 | Late  |
| GSM980919            | embryo at TS23, biological rep2 | E15 embryos                 | Late  |
| GSM980920            | embryo at TS23, biological rep3 | E15 embryos                 | Late  |
| GSM980921            | embryo at TS25, biological rep1 | E17 embryos                 | Late  |
| GSM980922            | embryo at TS25, biological rep2 | E17 embryos                 | Late  |
| GSM980923            | embryo at TS25, biological rep3 | E17 embryos                 | Late  |
| GSM980924            | embryo at TS27, biological rep1 | Newborn mouse               | Late  |
| GSM980925            | embryo at TS27, biological rep2 | Newborn mouse               | Late  |
| GSM980926            | embryo at TS27, biological rep3 | Newborn mouse               | Late  |

## Table S6. Developmental time points of *M. musculus* transcriptome data



#### Figure S1. Illustration of six species analyzed in this study.

This is an evolutionary tree of species discussed in this study, including three kingdoms: Plantae (*A. thaliana*), Fungi (*C. Cinerea*) and Animals (*C. elegans, D. Melanogaster, D. rerio, M. musculus*), and six phyla/divisions: Tracheophyta (*A. thaliana*), Basidiomycota (*C. cinerea*), Nematoda (*C. elegans*), Arthropoda (*D. melanogaster*) and Vertebrate (*D. rerio, M. musculus*).



#### Figure S2. Evolutionary age of genes in different species.

The phylostrata of each species are acquired from previous studies or constructed from the NCBI database. The distributions of phylostrata are very similar except for *C. elegans*. In the phylostrata we collected, most of the genes belong to family- or species-specific genes (the last two strata). The phylostratigraphy of nematode were constructed using information from NCBI HomoloGene or Protein Historian (see Method).



Figure S3. Transcriptional Age Index (TAI) profiles for the development of different species.

Transcriptomic age index (TAI) was calculated for each developmental stage in each species. The analyses were replicated from the studies in *A. thaliana*, *C. cinerea*, *D. melanogaster* and *D. rerio*. We further traced

the changes of TAI along the developmental process of nematode and mouse. For each species except fungi, we have also acquired phylostrata using information of NCBI HomoloGene (see Method) and calculated TAI for each specie using this phylostrata. Our TAI results show that the patterns of TAI are similar using the phylostrata acquired from previous studies and the phylostrata we calculated. The patterns for TAI were further compared using different transformations of gene expression values including square root transformation and log1p transformation (raw = non-transformation). For TAI in *A. thaliana, C. cinerea*, and *M. musculus*, the patterns of TAI are similar using different transformation methods. On the other hand, from the results of *C. elegans, D. melanogaster* and *D. rerio*, we observed that the pattern of TAI changes due to different choice of the transformation method, which is consistent with previous studies (Liu and Robinson-Rechavi, 2018).



## Figure S4. Global network entropy profiles and transcriptional age index profiles of genes in network entropy analysis.

The network entropy of each developmental stage was calculated and the trajectories of network entropy were compared (A-G). Similar to the calculation of TAI, the network entropies were calculated using gene expression values after different transformation, including square root and log1p transformation. For species such as *A. thaliana*, *C. cinerea*, *D. rerio*, and *M. musculus*, the dynamic changes of network entropy are negative correlated to the changes of TAI. The pattern of network entropy along the *M. musculus* development was analyzed and confirmed using another dataset (G), which started from the mid-developmental stages. Our results show that the pattern of network entropy is more robust than TAI under different transformation methods applied to gene expression values.





#### Figure S5. Pathway GSVA score profiles of different species.

In many previous studies, the comparisons of developmental pathways were based on the temporal association of orthologs mapped across different species. When the evolutionary distances of species increased, the number of mapped orthologs drops (Heger and Ponting, 2007); this may hence result in less confidence of cross-species comparisons. Here we proposed another approach to comparison, which first converted data points from gene expression into the pathway activities via GSVA. The developmental processes were then compared using the common pathways after the conversion.



(B)



Figure S6. Correlation of pathway GSVA score profiles between species in different developmental stages.

By performing GSVA analysis, the developmental stages across different phyla can be compared with each other using the common set of biological pathways. For each pairwise comparison, higher correlations are often observed at the mid- and late- developmental stages of the compared species.



Figure S7. Dimensional reduction plot of pathway activities in the developmental processes of different species.

The PCA decomposition was performed on the pathway activity profiles within different species. The pattern of the developmental processes can then be visualized in a lower-dimensional space. The projection of stages forms a circular pattern along the developmental process in species except for nematode (*C. elegans*) and fruit fly (*D. melanogaster*).





Pathways related to genetic information processing activate during the early and middle stages while metabolic pathways for nutrition utilization dominate the activity profile during the late stages. The time peak index, originally published to indicate the gene signal activation, was used to identify the peak activities of all pathways in each species. Those pathways were then ranked by their time peak index. The rank values were compared among the species. Based on the rank, pathways with lower ranks activated earlier in a developmental process, while pathways with higher ranks activated later.

#### References

- Dunn, C.W. *et al.* (2018) Pairwise comparisons across species are problematic when analyzing functional genomic data. *Proc. Natl. Acad. Sci. U. S. A.*, **115**, E409–E417.
- Heger, A. and Ponting, C.P. (2007) Evolutionary rate analyses of orthologs and paralogs from 12 Drosophila genomes. *Genome Res.*, **17**, 1837–1849.
- Liu, J. and Robinson-Rechavi, M. (2018) Developmental constraints on genome evolution in four bilaterian model species. *Genome Biol. Evol.*, **10**, 2266–2277.