preciseTAD: A transfer learning framework for 3D domain
boundary prediction at base-level resolution
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Figure S1. Resolution-specific data construction and feature engineering for random forest
modeling. (A) The linear genome was binned into non-overlapping resolution-specific intervals using
shifted binning (see Methods). The response vector Y was defined as 1/0 if a genomic bin overlapped/did
not overlap with a TAD (or loop) boundary. (B) Four types of associations between bins (blue dashed lines)
and genomic annotations (green shapes) were considered to build the predictor space, including Average
Peak Signal (Signal), Overlap Counts (OC), Overlap Percent (OP), and logs distance (Distance).
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Figure S2. The log; transformation of genomic distances normalizes their distributions. Dis-
tances are measured as the number of bases from the center of a genomic bin to the nearest genomic
annotation center. Density curves of distances before (red) and after (blue) performing a log, transformation
across 5 kb, 10 kb, 25 kb, 50 kb, and 100 kb data resolutions for both the (A) GM12878 and (B) K562 cell
lines. Each density curve represents an individual genomic annotation (77 total).



1. Consider an optimized RF model (M) built on the set of autosomal chromosomes {k|i ¢ k} binned at

some resolution r

2. for each chr ¢ do

else

end

end

end
17. Repeat steps 7-14 on A, with optimal {t, e}

3. Construct the base-level resolution predictor space A, , where n is the length of chr ¢ and p is the

number of predictors
4. Assign threshold {t|0 < ¢ < 1} and {ele > 0}
5.if |t| > 1 or |e] > 1 then
6. for each combination (1) of t and ¢ do

7. Evaluate M on A,,5, to get the probability of each genomic coordinate as being a domain
boundary 7,

8. Subset {m,|m, > t;}

9. Construct the pairwise distance matrix D between genomic coordinates where 7, > t;
10. Apply DBSCAN on D with MinPts = 3 and eps = ¢

11. for each cluster k identified by DBSCAN do

12. Assign wy, as the number of coordinates that span each cluster of bases in k (PTBR)

13. Perform PAM on the sub-distance matrix Dy, to extract the cluster medoid b, (PTBP)

14. for each predictor p do
15. Calculate the normalized enrichment (NE) over all predictors

1 1
NE = ) [Ef_l {522_1%“

where e, = I{rs € (by — f,br + f)} is the number of elemental regions r of predictor
p that overlap with each flanked boundary

16. Determine where N E converges as optimal {t, ¢} combination

end

end

18. Perform steps 7-14 on A,,,,;, such that t =ty and eps = ¢

Algorithm 1: Psuedocode for preciseT’AD implementation.

Figure S3. Pseudocode of the preciseTAD algorithm.
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Figure S4. Maximizing Normalized Enrichment levels suggest t=1.0 and ¢=10000 as the most
optimal parameters for biologically relevant preciseTA D-predicted boundaries. Linecharts
illustrating the normalized enrichment (NE, see Methods) among resolution-flanked precise TA D-predicted
boundaries for different combinations of thresholds (¢) and epsilon-neighborhood parameter values (e).
Error bars indicate 1 standard deviation from the mean.
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Figure S5. A machine learning framework for optimizing domain boundary region prediction
models. Step 1 combines the response vector (Yy) from shifted binning and a feature engineering
procedure to form the data matrix Ay (1) for chromosomes {1,2,...,i—1,i+41,...,22}. Step 2 reserves the
predictor-response matrix for the holdout chromosome i as the test data using Grubert-defined boundaries
as Yiest- OStep 3 applies a resampling technique to the training data to address the class imbalance.
Step 4 trains the random forest model and performs 3-fold cross-validation to tune the mtry parameter.
Finally, step 5 validates the model on the separate test data composed of the binned data from the holdout
chromosome i and evaluates the model performance using balanced accuracy (BA, see Methods).
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Figure S6. Comparing enrichment levels between TAD /chromatin loop calling tools. Signal
profile plots comparing the binding strength of top TFBS around Arrowhead (blue), Peakachu (red),
SpectralTAD (green) called boundaries vs. experimental Grubert chromatin loop boundaries (purple) in (A)
GM12878 and (C) K562 cell lines. Panels (B) and (D) show signal comparison for preciseTAD-predicted
boundaries using Arrowhead and Peakachu data vs. Lollipop-predicted boundaries, for GM12878 and K652
cell lines, respectively.
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Figure S7. Determining optimal data level characteristics for building TAD boundary region
prediction models on K562. (A) Averaged balanced accuracies are compared across resolution, within
each predictor-type: overlap count (OC), overlap percent (OP), average Signal and Distance and across
resampling techniques: no resampling (None; red), random over-sampling (ROS; green), random under-
sampling (RUS; blue), and synthetic minority over-sampling (SMOTE; purple) when using Arrowhead

Averaged balanced accuracies are compared for Peakachu-trained

models built on (B) GM12878 and (C) K562 within each predictor-type: OC, OP, Signal and Distance,
and across resampling technique: no resampling (None; red), random over-sampling (ROS; green), random
under-sampling (RUS; blue), and synthetic minority over-sampling (SMOTE; purple). Error bars indicate
1 standard deviation from the mean performance across each holdout chromosome used for testing.
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Figure S8. SMC3, RAD21, CTCF, and ZNF143 transcription factors accurately predict TAD
and loop boundaries in K562. (A) Barplots comparing performances of TAD (Arrowhead) and loop
(Peakachu) boundary prediction models using histone modifications (HM), chromatin states (BroadHMM),
transcription factor binding sites (TFBS), in addition to a model containing all three classes (ALL). (B)
Recursive feature elimination (RFE) analysis used to select the optimal number of predictors. Error bars
represent 1 standard deviation from the mean cross-validated accuracy across each holdout chromosome.
(C) Clustered heatmap of the predictive importance for the union of the top 8 most predictive chromosome-
specific TFBSs. The columns represent the holdout chromosome excluded from the training data. Rows are
sorted in decreasing order according to the columnwise average importance. (D) Violin plots illustrating the
logs genomic distance distribution from original Arrowhead/Peakachu boundaries vs. precise TA D-predicted
boundaries to the nearest CTCF sites. The p-values are from the Wilcoxon Rank Sum test.
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Figure S9. preciseTAD boundaries are spatially closer to known molecular drivers of 3D chro-
matin. Violin plots illustrating the logs genomic distance distribution from original Arrowhead/Peakachu

boundaries vs. preciseTAD-predicted boundaries to the nearest RAD21/SMC3/ZNF143 sites. Data for (A)
GM12878 and (B) K562 cell lines are shown.
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Figure S10. preciseTAD PTBRs show high overlap and agreement with experimental loop
boundaries. Venn diagrams of boundary overlap between (A) original Arrowhead-Peakachu boundaries
and Arrowhead-Peakachu PTBRs, and (B) overlaps with Grubert data. Boundaries were flanked by 5 kb.
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Figure S11. preciseTAD boundaries are more enriched for known molecular drivers of 3D
chromatin. Signal enrichment strength of CTCF, RAD21, SMC3, and ZNF143 sites around midpoints
of preciseTAD-predicted boundaries (green) compared to midpoints of (A) Arrowhead-called boundaries
(blue), (B) Peakachu loop boundaries (red). Data for midpoints of Grubert cohesin loop boundaries is
shown as a proxy for experimental “ground truth” (purple). Panel inserts show signal enrichment around
preciseTAD boundary points vs. Grubert ground truth. (C) Domain size distribution, and (D) CTCF
orientation analysis. Data for K562 cell line is shown.
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Figure S12. preciseTAD models trained in one cell line can accurately predict boundaries in
another cell line. Receiver operating characteristic (ROC) curves and the corresponding average area
under the curves (AUCs) when training and testing on K562 data (blue, Arrowhead ground truth; red,
Peakachu ground truth) versus training on GM12878 and testing on K562 data (black, dashed). The curves
represent the average sensitivities and specificities across each holdout chromosome. The shaded areas
around each curve represent 1 standard deviation from the average.
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Figure S13. preciseTAD trained on Arrowhead accurately predicts boundaries on cell lines
using annotation data only. Venn diagrams and signal profile plots comparing flanked predicted
boundaries using Arrowhead trained models. (A) Models trained on GM12878 and predicted on GM12878
(red, GM on GM) vs. models trained on K562 and predicted on GM12878 (blue, K on GM). (B) Models
trained on K562 and predicted on K562 (red, K on K) vs. models trained on GM12878 and predicted on
K562 (blue, GM on K). Boundaries were flanked by 5 kb.
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Figure S14. preciseTAD trained on Peakachu accurately predicts boundaries on cell lines
using annotation data only. Venn diagrams and signal profile plots comparing flanked predicted
boundaries using Peakachu trained models. (A) Models trained on GM12878 and predicted on GM12878
(red, GM on GM) vs. models trained on K562 and predicted on GM12878 (blue, K on GM). (B) Models
trained on K562 and predicted on K562 (red, K on K) vs. models trained on GM12878 and predicted on
K562 (blue, GM on K). Boundaries were flanked by 10 kb.
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Figure S15. (A) Scarcity of cell lines with CTCF/RAD21/SMC3/ZNF143 genomic annotations. (B)
Comparable performance of precise TAD models trained on three vs. four genomic annotations. The p-values
are from the Wilcoxon Rank Sum test.
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Table S1 . Data sources for Hi-C matrices used to call topologically associating domains with Arrowhead,
as well as chromatin loop boundaries obtained by Peakachu and Grubert.

Publisher Tool Library Cell.line Source

Rao et al Arrowhead | HIC001-HIC018 | GM12878 | https://www.ncbi.nlm.nih.gov/geo/download /?acc=GSE63525& format=file&file=GSE63525%5F GM12878%5F insitu%5Fprimary%2Ehic
Rao et al Arrowhead | HIC069-HIC074 | K562 https://www.ncbinlm.nih.gov/geo/download/?acc=GSE63525& format=file&file=GSE63525%5F K562 %5Fcombined %2Ehic

Salameh et al | Peakachu GM12878 | http://promoter.bx.psu.edu/hi-c/publications.html

Salameh et al | Peakachu K562 http://promoter.bx.psu.edu/hi-c/publications.html

Grubert et al | ChIA-PET GM12878 | https://www.ncbi.nlm.nih.gov/pme/articles/PMC7410831/bin/41586 20202151 MOESM5 ESM.xlsx

Grubert et al | ChIA-PET K562 https://www.ncbi.nlm.nih.gov/pme/articles/PMC7410831/bin/41586_ 2020 2151 MOESM5 ESM.xlsx

Table S3. Domain boundary data and class imbalance summaries across resolutions for Arrowhead,
Peakachu, and Grubert data in K562 cell line.

Tool Resolution.Bin.size | Total.number.of.called. TADs.chromatin.loops | Total.number.of.unique. TAD.chromatin.loop.boundaries | Total.number.of.genomic.bins | Class.Imbalance
Arrowhead | 5 kb 4751 9316 535363 0.02
Arrowhead | 10 kb 5828 10945 267682 0.04
Arrowhead | 25 kb 3935 7015 107073 0.07
Arrowhead | 50 kb 2115 3808 53537 0.07
Arrowhead | 100 kb 945 1759 26768 0.07
Peakachu 10 kb 15651 22073 267682 0.14
Grubert 5 kb 12266 14325 535363 0.05
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