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SUPPLEMENTARY METHODS
Data collection and preparation
We collected publically available protein-protein binding affinity information (KD) from PDBbind (v.2018) (Liu, et al., 2017) and SabDab (Mar/2019) (Dunbar, et al., 2014) databases and corresponding experimentally solved structures from the Protein Data Bank. Among 5,594 protein-protein complexes, 472 antibody-antigen structures including 375 Fab, 82 Nanobody and 12 scFv were identified using Chothia annotation (Dunbar and Deane, 2016) and collected as a training set (Supplementary Fig. S4). Prior to feature generation PDB structures were processed, HETATM molecules and alternative conformations and occupancies removed. Incomplete residues and missing atoms were repaired using the RepairPDB module of the FoldX (Schymkowitz, et al., 2005). Interface residues were identified based on a 5 angstrom cutoff distance and were further sorted into antibody-antibody (AbAb), antigen-antigen (AgAg) or antibody-antigen (AbAg).

To assess the performance of the machine learning models in predicting antibody-antigen binding affinity when small perturbations are introduced in the structures as a blind test, the 3D structures and the binding affinity changes (∆∆G) of 689 single-point and 301 multiple-point mutations were collected from mCSM-AB2 and mmCSM-AB data sets. As described in the earlier study (Myung, et al., 2020), the binding affinity and experimentally determined structures of single-point mutations were collected from AB-BIND, SKEMPI2.0 and PROXiMATE. Out of 905 mutations, we removed 216 redundant structures and kept 689 mutations as a single-point mutation blind test set. For the multiple-point mutation blind test set (Myung, et al., 2020), we prepared 301 data points by combining 242 multiple-point mutations collected from AB-BIND, SKEMPI2.0 and PROXiMATE and 59 multiple mutants from Barlow et al. All structures in the mutant datasets were non-redundant at a sequence-level (Supplementary Table S3).

We also assessed the ability of CSM-AB of identifying near-native structures, working as a docking scoring function. For this purpose, blind test sets were compiled. We collected docked poses of Ab-ag complexes from Dockground (Kundrotas, et al., 2018) unbound docking decoy set 2 and ZDOCK benchmark v4 (Hwang, et al., 2010). While Dockground provides one near-native model and 99 false-positive docked poses for each protein-protein complex, we re-evaluated the 100 poses of 28 Ab-ag complexes on their bound structures using DockQ score (Basu and Wallner, 2016). We removed 13 complexes that had no structures available with better or equal to Acceptable DockQ-CAPRI quality. 

For the ZDOCK benchmark v4, we downloaded a benchmark v4 of ZDOCK3.0.2 IRAD algorithm using six-degree sampling. Ab-ag complexes overlapping with the Dockground data set were excluded. Out of 360,000 docked poses, we filtered the top 1,000 based on C RMSD and re-evaluated the predicted Ab-ag complexes using DockQ. Since each Ab-ag complex has different numbers of poses sorted by DockQ-CAPRI quality, we limited the maximum number of High, Acceptable, Medium and Incorrect poses to up to 15, 50, 50 and 50 poses, respectively. All docked poses were structurally non-identical to training structures showing the lowest interface RMSD (iRMSD) and ligand RMSD (LRMSD) of 1.88Å and 3.33Å for Dockground, and 0.64Å and 1.6Å for ZDOCK benchmark. The details of datasets used for training and blind test sets (Supplementary Table S3) are available at http://biosig.unimelb.edu.au/csm_ab/datasets.

Feature engineering
Graph-based signatures. The graph-based signature is a way to describe physicochemical properties and the geometry of 3D structures by encoding distance patterns labelled based on atom pharmacophores. While earlier approaches focused on the changes of graph-based signature between single amino acid (Myung, et al., 2020; Myung, et al., 2020) or ligand (Pires and Ascher, 2016) and its surrounding residues, CSM-AB was designed to consider all pharmacophores and atomic distance over interface residues. The pharmacophores consist of eight atom label types: Hydrophobic, Positive, Negative, Acceptor, Donor, Aromatic, Sulfur and Neutral. Atomic distances between interface residues and their surrounding residues were counted and represented as a cumulative distribution function for each atom pair type Ab-Ab, Ag-Ag or Ab-Ag, depending on whether they both belong to the antibody, to the antigen or one to the antibody and another to the antigen, respectively.

Non-covalent interactions. Arpeggio (Jubb, et al., 2017) was used to calculate non-covalent interactions across interface residues. Using an in-house script, the interactions only related to interface residues were processed into Ab-Ab, Ag-Ag or Ab-Ag interactions.

Complementary features. The distribution of residues per protein secondary structure type was computed using DSSP (Joosten, et al., 2011) for those occurring at the antibody-antigen interface. Additionally the solvent accessible surface area (SASA) was also calculated using FreeSASA (Mitternacht, 2016). We implemented four features: SASAAb, SASAAg, SASAAbAg, ∆SASAbinding by calculating SASA of the isolated antibody, the isolated antigen, the Ab-ag complex and the difference between SASA of the Ab-ag complex and individual structures.

Machine learning
CSM-AB predictive models were trained and validated via different cross validation schemes, including leave-one-out, 5-fold, 10-fold and 20-fold cross-validation. Different supervised learning algorithms were assessed including, Ensemble methods (Adaboost, Extra Trees, Gradient Boosting, Random Forest), Gaussian Processes, Nearest Neighbors (KNeighbor), Neural network (Multi-layer Perceptron) of Scikit-learn 0.21.1 (Pedregosa, 2011). The number of trees (n_estimators) was set to 300 for all Ensemble algorithms and default values were set for other parameters (Supplementary Table S4). A bottom-up greedy feature selection procedure was employed to reduce dimensionality and improve the performance of the models in predicting the binding affinity (∆G) and ranking of docked poses. The best performing model (Extra Trees) was selected based on Borda voting which can determine the rank of different metrics such as Pearson's correlation coefficient, RMSE and average docking rankings. The selected final model was deployed on the CSM-AB webserver for both binding affinity prediction and docking pose scoring.

Comparative study
We used standalone scripts to get the binding affinity scores of LISA (Raucci, et al., 2018) and CIPS (Nadalin and Carbone, 2018). For those scores (AP_DCOMPLEX, AP_DFIRE2, AP_PISA, AP_T2, AP_dDFIRE, CP_DDG_W, CP_TB, ELE, FIREDOCK, FIREDOCK_AB, HBOND2, LK_SOLV, PYDOCK_TOT, ROSETTADOCK, ZRANK and ZRANK2) compared in the recent study (Guest, et al., 2021) they were calculated via CCharPPI webserver (Moal, et al., 2015).

Webserver
The front-end and back-end frameworks of CSM-AB webserver were developed using Materialize-1.0.0 and Flask-1.0.2. For rendering 3D protein structure and Arpeggio interactions, NGLviewer (Rose, et al., 2018) was implemented in the result page of binding affinity prediction and scoring poses.




SUPPLEMENTARY TABLES
Table S1. Performance comparison of available methods on the binding affinity prediction and docking decoy data sets.
	
	Pearson's correlation coefficient
(RMSE (Kcal/mol))
	Number of
Top1 ranked 
near-native poses

	Methods
	Training
	Blind test #1
(mCSM-AB2)
	Blind test #2
(mmCSM-AB)
	Blind test #3
(Dockground)

	CSM-AB
	0.40
(1.71)
	0.61
(1.68)
	0.64
(1.75)
	6

	CIPS
	0.25*
	0.23*
	0.52*
	6

	LISA
	0.09*
	0.16*
	0.05*
	0

	AP_DCOMPLEX
	0.15*
	0.02*
	0.11*
	0

	AP_DFIRE2
	0.13*
	0.10*
	0.16*
	1

	AP_PISA
	0.26*
	0.27*
	0.01*
	2

	AP_T2
	0.17*
	0.07*
	0.22*
	1

	AP_dDFIRE
	0.15*
	0.29*
	0.31*
	3

	CP_DDG_W
	0.09*
	0.03*
	0.12*
	0

	CP_TB
	0.16*
	0.03*
	0.30*
	5

	ELE
	0.17*
	0.21*
	0.30*
	3

	FIREDOCK
	0.23*
	0.24*
	0.60
	1

	FIREDOCK_AB
	0.23*
	0.28*
	0.57
	0

	HBOND2
	0.04*
	0.16*
	0.10*
	0

	LK_SOLV
	0.08*
	0.05*
	0.20*
	0

	PYDOCK_TOT
	0.24*
	0.34*
	0.48*
	4

	ROSETTADOCK
	0.15*
	0.09*
	0.28*
	0

	ZRANK
	0.22*
	0.21*
	0.50*
	2

	ZRANK2
	0.25*
	0.19*
	0.41*
	0


*P-value < 0.05 (two-tailed);  The statistical significance of the difference between Pearson's correlations of CSM-AB and 18 tools was evaluated using Fisher's r-to-Z transformation.




Table S2. Performance of available methods on the ZDOCK benchmark v4 data set. Kendall's correlation coefficient was calculated for 19 methods using 13 antibody-antigen complexes, including two nanobody-antigen complexes (1KXQ and 2I25).
	
	Kendall’s correlation coefficient
(Rank across 19 tools)

	
	Bound form
	Unbound form
	All

	Methods
	1BJ1
	1FSK
	1IQD
	1KXQ
	1NCA
	2JEL
	1AHW
	1DQJ
	1JPS
	1MLC
	2FD6
	2I25
	Mean

	CSM-AB
	0.59
(1)
	0.45
(3)
	0.48
(1)
	0.40
(1)
	0.42
(2)
	0.38
(2)
	0.00
(19)
	0.05
(15)
	0.18
(7)
	0.41
(1)
	0.03
(17)
	0.27
(3)
	0.43
(1)

	LISA
	-*
	0.02
	0.06
	0.04
	0.06
	0.21
	0.02
	0.01
	0.03
	0.02
	0.05
	0.05
	0.05

	CIPS
	0.03
	0.25
	0.17
	0.40
	0.03
	0.04
	0.08
	0.07
	0.03
	0.24
	0.42
	0.18
	0.16

	AP_DCOMPLEX
	0.15
	0.26
	0.14
	0.07
	0.16
	0.03
	0.28
	0.12
	0.09
	0.22
	0.25
	0.09
	0.14

	AP_DFIRE2
	0.19
	0.46
	0.43
	0.28
	0.42
	0.35
	0.39
	0.00
	0.29
	0.28
	0.00
	0.15
	0.27

	AP_PISA
	0.10
	0.21
	0.25
	0.04
	0.08
	0.16
	0.05
	0.14
	0.09
	0.05
	0.29
	0.10
	0.12

	AP_T2
	0.15
	0.24
	0.04
	0.16
	0.12
	0.03
	0.11
	0.13
	0.09
	0.07
	0.46
	0.01
	0.13

	AP_dDFIRE
	0.13
	0.42
	0.36
	0.32
	0.36
	0.30
	0.37
	0.09
	0.24
	0.33
	0.07
	0.03
	0.24

	CP_DDG_W
	0.17
	0.14
	0.23
	0.10
	0.03
	0.01
	0.01
	0.18
	0.14
	0.35
	0.11
	0.31
	0.17

	CP_TB
	0.21
	0.28
	0.20
	0.35
	0.31
	0.38
	0.12
	0.23
	0.22
	0.23
	0.30
	0.25
	0.26

	ELE
	0.19
	0.41
	0.48
	0.01
	0.43
	0.43
	0.25
	0.26
	0.22
	0.32
	0.09
	0.22
	0.26

	FIREDOCK
	0.30
	0.42
	0.37
	0.24
	0.24
	0.30
	0.07
	0.12
	0.06
	0.26
	0.14
	0.30
	0.22

	FIREDOCK_AB
	0.16
	0.27
	0.19
	0.00
	0.01
	0.25
	0.07
	0.05
	0.09
	0.09
	0.23
	0.21
	0.13

	HBOND2
	0.21
	0.36
	0.35
	0.20
	0.22
	0.32
	0.31
	0.04
	0.27
	0.13
	0.02
	0.01
	0.20

	LK_SOLV
	0.30
	0.25
	0.36
	0.08
	0.21
	0.34
	0.15
	0.16
	0.24
	0.21
	0.18
	0.24
	0.22

	PYDOCK_TOT
	0.01
	0.39
	0.24
	0.31
	0.34
	0.28
	0.09
	0.12
	0.03
	0.37
	0.25
	0.05
	0.20

	ROSETTADOCK
	0.21
	0.00
	0.22
	0.07
	0.00
	0.25
	0.05
	0.10
	0.14
	0.07
	0.28
	0.24
	0.13

	ZRANK
	0.14
	0.48
	0.01
	0.06
	0.15
	0.15
	0.32
	0.03
	0.04
	0.25
	0.31
	0.13
	0.16

	ZRANK2
	0.19
	0.12
	0.23
	0.06
	0.06
	0.29
	0.09
	0.10
	0.11
	0.03
	0.29
	0.23
	0.14


*Unable to get the results on 1BJ1 due to unknown errors.






Table S3. Number of data points for training and blind test. The number of data points for Dockground and Zdock benchmark v4 was calculated by summing docked poses for all complexes. Unique structures were determined by comparing the PDB ID for antibody-antigen complexes of each dataset.
	
	Training data
	Single-point mutation
	Multiple-point mutation
	Dockground
	ZDOCK benchmark v4
(decoys_bm4_zd3.0.2_irad)

	Number of data points
	472
	689
	301
	1500
	1951

	Number of Ab-ag complexes
	472
	49
	30
	15
	13

	Number of same Ab-ag templates used for training
	-
	47
	29
	-
	7




Table S4. Hyperparameters used for the final CSM-AB model.
	Hyperparameter name
	Value

	n_estimators
	300

	max_depth
	None

	min_samples_split
	2

	min_samples_leaf
	1

	max_features
	auto

	random_state
	1
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Figure S1. Predictive performance of CSM-AB under different validation schemes including leave-one-out cross-validation (top-left), 5-fold (top-right), 10-fold (bottom-left) and 20-fold (bottom-right) cross validation, demonstrating consistency and robustness of the method. The red (triangle) and black (circle) data points indicate datasets with and without 10% outliers, respectively. Metrics in red represent performance on the whole data set and in black on the 90% best performing predictions
[image: Chart, scatter chart

Description automatically generated]

Figure S2. Performance of CSM-AB on predicting binding affinity (∆G), derived from single-point (left)  and multiple mutation (right) data sets, respectively. The red datapoints and metric represent 10% outliers and performance on the 90% predictions. The black datapoints and performance on datasets without 10% outliers is shown in black.
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Figure S3. Outlier distribution per complex for single-point (top) and multiple mutations (bottom). The high mutation number and strong binders accounted for a substantial number of outliers in 3BDY and 3L5X complexes, respectively.
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Figure S4. Distribution of experimental binding affinities for the different data sets used in CSM-AB (training and blind tests on left-hand side) and distribution of antibody types.
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