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Model Organisms (Ensembl Bacteria Release 46)

Bacillus subtilis (B. subtilis) - Strain BEST7003 - Assembly ASM52304v1: B. subtilis is a Gram-positive,
genetically tractable, non-pathogenic model organism used in the industrial production of enzymes. It is
part of the Firmicute phylum and is a useful model in the study of Mycobacterium tuberculosis, which is
the the causative agent of tuberculosis. The strain BEST7003 with assembly ASM52304v1 was chosen for
this study (Itaya et al., |2005).

Caulobacter crescentus (C. crescentus) - Strain CB15 - Assembly ASM690v1: C. crescentus is a Gram-
negative, oligotrophic bacterium commonly found throughout freshwater lakes and streams. It is an
important model organism for studying the regulation of the cell cycle, asymmetric cell division, and
cellular differentiation and is part of the Proteobacteria phylum. The CB15 strain with the ASM690v1
assembly was chosen for this study (Nierman et al.l 2001)).

Escherichia coli (E. coli) K-12 - Strain ER3413 - Assembly ASM80076vi: E. coli is one of the most
extensively studied microorganisms and is part of the Proteobacterium phylum. E. coli is Gram-negative
and its genome was first completely sequenced in 1997. It was chosen then for its unique biochemical,
molecular and biotechnological attributes but it widely studied now due to its tractability. The K-12
ER3413 strain with the ASM80076v1 assembly was chosen for this study (Anton et al., [2015)).

Mycoplasma genitalium (M. genitalium) - Strain G37 - Assembly ASM2732v1: M. genitalium is a parasitic
bacterium with one of the smallest currently known genomes of any free living bacterium at around 580,000
bps. Due to it being a human pathogen and its unique genome size, M. genitalium has been used as a
model for a minimal organism in the study of essential genes due to being one of the most streamlined
bacterial genomes currently known (Glass et al., [2006). Although M. genitalium does not have cell walls,
it is believed to have evolved from Gram-positive bacteria which had lost their cell wall and is part of
the Firmicute phylum. The G-37 strain with ASM2732v1 assembly was chosen for this study (Hutchison:
et al.l 1999)).



e Pseudomonas fluorescens (P. fluorescens) - Strain UK/ - Assembly ASM73042v1: P. fluorescens is a rod-
shaped, Gram-negative bacterium and is part of the Proteobacteria phylum.The antibiotic Mupirocin can
be produced by cultured P. flurescens and is used in the treatment of skin, ear and eye disorders and is
a model organism for cell cycle, cell division and differentiation. The UK4 strain with the ASM73042v1
assembly was chosen for this study (Dueholm et al.l |2014)).

o Staphylococcus aureus (S. aureus) - Strain 502A - Assembly ASM59796v1: S. aureus is Gram-positive
bacterium of the Firmicute phylum and is commonly found on the human body, including the nose, skin
and the respiratory tract. It has been known to cause diseases such as infective endocarditis and a drug
resistant strain is commonly known as Methicillin-resistant Staphylococcus aureus (MRSA). The 502A
strain with assembly ASM59796v1 was chosen for this study (Parker et al., [2014).



2 Supplementary Figures
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Figure 1: GC content of the six model organisms and their Ensembl annotated CoDing Sequences (CDSs). Note
the high levels of variance within and between each genome.
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Figure 2: CoDing Sequence (CDS) lengths plotted for each model organism. The black, solid vertical lines are
at the overall first quartile (494), median (824) and third quartile (1220) for all six model model organisms. The
red dotted lines show the first quartile, the median and the third quartile for each organism individually. The
x-axis is truncated at 3000 nt. The proportion of CDS lengths at or below this value are 0.964 for M. genitalium,
0.984 for P. fluorescens, 0.987 for E. coli, S. aureus and C. crescentus, and 0.990 for B. subtilis. A total of 23
CDSs were longer than 5000 nt. The distributions of CDS lengths for FE. coli, S. aureus, C. crescentus and P.
fluorescence are comparable to the overall distribution. The lengths for B. subtilis are somewhat smaller than
expected overall, while the lengths for M. genitalium are longer than expected.



Overall rankings
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Figure 3: Heatmaps showing rankings of the tools by the 12 chosen metrics, overall and for each organism in
turn. The tools are shown ordered by the summed ranks across the 12 metrics. While red is ‘better’ and blue
is ‘worse’, it is clear that across the 6 model organisms, no tool stands out for these 12 metrics chosen as most
representative. For example, for C. crescentus, GeneMark with E. coli model ranked 12th overall but reported
the most accurate number of overlapping genes. For P. fluorescens, Prodigal was the overall highest ranked
tool even though GeneMarkS detected the highest number of Ensembl genes. M. genitalium on the other hand,
which uses an alternative stop codon, has some very interesting results showing the difficulty of identifying its
genes by all tools. The pale coloured bands represent tools ranking the same for a particular metric.
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Figure 4: Lengths of Ensembl annotated CoDing Sequence (CDS) genes, those which were partially detected
by Prodigal and those which were missed, for each model organism. The x-axis is truncated at 3,000 nt. With
the exception of M. genitalium, the distributions of lengths of the missed genes are generally to the left of the
distributions of the detected genes. Thus short genes are commonly overlooked by Prodigal and other tools.



3 Prediction Tools

3.1 Prediction Tools Run-Parameters

All tools were provided with the same 6 DNA data files each containing the complete genome for an organism in
a single sequence. We did not provide genome-specific parameters such as alternative codon tables to the tools
as this study aimed to be representative of real-world analysis where such information may not be known. Each
tool was run using its default parameters with no user-defined filtering.

This was performed locally on a 64-bit Linux machine with an i7 2600k CPU with 32GB RAM, however
none of the tools required more than a few minutes to run or more than 500 MB of RAM.

While most of the tools were available as online resources, they were downloaded from the links included
in their associated publications and the specific versions used are listed below. Where no version number is
available, the year of when the tool was used is listed.

3.2 Prediction Tools
e Model-based group:

Some tools have been designed for a specific set genomes or strains and require a pre-built model (a
rigid set of parameters tuned to a particular organism) to perform predictions. The construction of these
models rely heavily on having an accurate and complete set of genes for a particular organism (among
other information). While inaccuracies or biases in the data are likely to be present in the final models,
model-based gene predictors trained on a particular species are expected to perform well on strains with
comparable gene and genome structure. Overfitting can occur, where only similar genes to those previously
found are detected at a high sensitivity. However, there can be large differences in gene number, gene length
and genome size between strains of the same species. Model-based prediction for certain model organisms
where specific strains are often used for scientific and industrial purposes can still be effective as there may
be little genetic difference between two isolates of the same strain.

The model-based tools were provided with two different organism models, E. coli K-12 and S. aureus -
Mu50 (strains selected where possible). These were chosen as both were in the set of six bacteria and were
models which were already available for all model-based tools. In addition, Augustus, which was originally
developed for eukaryotic gene prediction, was run with the inclusion of the H. sapiens model and each
individual Coding Sequence (CDS) predicted was retained as an independent predicted CDS.

— Augustus Keller et al.|(2011) - Version 3.3.3
Originally published in 2003, Augustus was developed as a eukaryote genome prediction tool com-
bining protein-family-based gene prediction and incorporated knowledge from external sources (pre-
computed genome models) to combine them with an ab initio prediction to specifically help with exon
prediction. Later versions of Augustus included 3 bacterial and 1 archaeal species to the pre-computed
model list to allow for a selection of prokaryotic genome annotation.

— EasyGene [Nielsen and Krogh| (2005) - Version 1.2
EasyGene 1.2 published in 2005, employs a genome specific Hidden Markov Model (HMM) which
after extracting all CDSs above 120 nt, filters them by using a sequence similarity search to a protein
database. The resulting genes and their start positions are then used to retrain the HMM. EasyGene
produces scores for multiple potential start codons for each gene and selects the one with the highest
computed confidence value.

— GeneMark.hmm [Lukashin and Borodovsky| (1998) - Prokaryote Model Version 3.2.5
GeneMark.hmm, published in 1998 was developed to be one of the first tools to “improve the gene pre-
diction quality in terms of finding exact gene boundaries”. A HMM is used to model gene boundaries
as transitions between hidden states along with ribosomal binding site patterns to refine translation
initiation codons. The current genome model parameters were derived from the use of GeneMarksS,
the successor of GeneMark.hmm.

— GeneMark [Borodovsky and Mclninch| (1993) - Version 2.5
GeneMark, developed in 1993, was one of the first gene prediction methods to efficiently perform
whole-genome annotation, notably for its ability to predict CDSs on both strands of DNA simultane-
ously. Markedly, GeneMark was used for the first annotation of a completely sequenced bacterium,



Haemophilus influenzae, and the first completely sequenced archaeon, Methanococcus jannaschii. The
GeneMark algorithm consists of species-specific inhomogeneous Markov chain models computed from
protein-coding DNA sequences and homogeneous Markov chain models of non-coding DNA. Probabil-
ity of a predicted sequence fragment to be protein coding in one of six possible frames (including three
frames in complementary DNA strand) or to be “non-coding” is computed to determine potential
genes in the opposite strand of DNA.

— FGENESB |Salamov and Solovyevand| (2011)) - ‘2020’ The FGENESB pipeline identifies protein,
tRNA and rRNA genes, potential promoters, terminators and operons and performs an initial pre-
diction of ‘long” CDSs as a starting point for calculating parameters for gene prediction. The gene
prediction algorithm is based on Markov chain models of coding regions and their translation and
termination sites. Furthermore, operon prediction is performed using distances between CDSs, fre-
quencies of neighboring genes in known bacterial genomes and positions of predicted promoters and
terminators. FGENESB, unlike other model-based prediction tools, presents its model selection as
“Choose closest organism”, rather than “select species/organism”, indicating that the developers
acknowledge the models may be used as best-fit rather than for exact species prediction.

e Ab initio group:

Self-training tools do not require any previous knowledge of the target genome and predict ab initio, directly
from sequence. These were developed to be used on different prokaryotic organisms, however, they do rely
on broad models either trained on features gathered directly from the input genome or predict CDSs using
a set of predefined parameters which may be adapted. The criteria considered while making predictions
include but are not limited to, overlapping CDSs, GC content, CDS length, predicted start and stop
codons, and distances between CDSs Delcher et al.| (1999); Besemer et al| (2001). Unfortunately, these
criteria and their thresholds are still based on prior knowledge as deciding between candidate CDSs still
requires a number of assumptions based on previously studied genes and genomes which the developer has
embedded into the algorithm.

Transdecoder, while technically an ab initio tool, is unlike the others in this group as it was specifically
designed to predict CDS regions in transcript data.

— Prodigal [Hyatt et al.|(2010]) - Version 2.6.2 Prodigal is an unsupervised gene predictor which exam-
ines the input genome for the creation of its input-specific training set. 100 prokaryote genomes were
selected in the initial development of the algorithm to determine “very general rules about the nature
of prokaryotic genes, such as gene size, maximum overlap between two genes... and RBS (ribosomal
binding site) motif usage”. A number of constants within the algorithm were tuned to the genetic
makeup of the 100 genomes. GC is an important statistic for Prodigal and it is used for a number
of steps in the prediction process such as coding scores for each gene predicted. Prodigal performs
a number of scoring functions on different aspects of each DNA region selected, thus producing a
set of putative “most-likely real” genes. These genes are then examined and are used to tune the
model before prediction of genes which exhibit lower likelihood scores. Furthermore, Prodigal has
been designed to detect whether genetic code 4 is needed (Mysoplasma) and use it instead of the
default code 11.

— GeneMarkS Besemer et al.| (2001)) - Version 4.25 Developed in 2001, GeneMarkS was one of the first
ab initio gene prediction methods which could learn directly from short (>400) sequences without
prior knowledge or pre-trained models. As with other contemporary tools, HMMs were trained
on protein-coding sequence data, non-coding DNA samples and modelled on transition and initiation
parameters trained from input sequence. Codon frequencies and positional statistics are utilised along
with genomic GC content to learn coding potential for identified CDSs. GeneMarkS has become a
bedrock for future prediction tools and has been used as part of wider genome annotation pipelines.

— GeneMarkS 2 |Lomsadze et al.|(2018) - Version ‘2020’ An advancement over the original GeneMark$S
tool, GeneMarkS-2 further utilises a self-derived ab initio training model learnt from input sequences
for finding species-specific (native) genes. A collection of pre-computed “heuristic” models are utilised
to identify harder-to-detect genes (horizontally transferred). GeneMarkS-2 learns distinct sequence
patterns inherent to prokaryotic genomes which are involved in gene expression control. The majority
of protein-coding regions in prokaryotic genomes are known to carry species-specific codon usage



patterns and GeneMarkS-2 learns these patterns and estimates parameters of typical protein-coding
regions of a target genome. This process is similar to the one employed by GeneMarkS(1) but
extended.

GLIMMER 3 [Delcher et al| (2007)) - Version 3.02 GLIMMER 3, published in 2007 is the third
iteration of the GLIMMER, microbial gene predictor software. A number of improvements over the
previous implementations include improved coding region and start codon detection, along with a
reduction in incorrectly reported overlapping genes. GLIMMER 3, as with the previous versions,
starts by predicting CDSs with little filtering and then using a number of user defined (or default)
parameters (such as start codon selection, CDS length and overlap length). These CDSs are then
scored for their coding potential. To overcome the high levels of potential false positive overlapping
CDSs, GLIMMERS uses these scores to select which of any two overlapping CDSs are more likely
to be real (in cases where maximum overlap is surpassed). An Interpolated Markov Model (IMM) is
used in the prediction process to help identify coding regions and has also been shown to separate
DNA between bacterium and host DNA. GLIMMER, along with GeneMarkS, was also used as part
of the NCBI prokaryote annotation pipeline (Tatusova et al., [2016).

GeneMark Heuristic Approach Besemer and Borodovsky| (1999) - Version 3.25 As with many
other tools from the GeneMark suite, GeneMark Heuristic Approach (GeneMark HA) was devel-
oped on the observations made from GeneMark and GeneMark.hmm. The method was designed to
build Markov models derived on a minimal amount of DNA information from 17 completed bacte-
rial genomes. Linear regression was performed to approximate relationships between positional and
global nucleotide frequencies, relationships between the amino acid frequencies and the global GC%
of the bacterial genomes. Amino acids frequencies were calculated mostly from an E. coli genome to
build constants for the algorithm. The algorithm builds a heuristic model for every sequence longer
than 400 nt. GeneMark HA derived models are expected to be applied to the analysis of the input
sequence by the GeneMark and GeneMark.hmm programs.

TransDecoder [Haas et al.| (2013) - 5.5.0 TransDecoder was designed to identify candidate coding
regions within transcript sequences, such as those generated by de novo RNA-Seq transcript assembly,
or constructed based on RNA-Seq alignments to the genome. TransDecoder identifies likely coding
sequences based on a minimum ORF length and a computed log-likelihood score >0. The coding
score is greatest when the ORF is scored in the 1st reading frame as compared to scores in the other 5
reading frames. The longer of two CDSs is reported if one is encapsulated by the others coordinates.
However, a single transcript can report multiple CDSs (allowing for operons, chimeras, etc).

FragGeneScan Rho et al| (2010]) - 1.3.0 FragGeneScan has been specifically designed to improve
prediction performance on metagenomic and short-read sequence data with high levels of sequencing
errors, but also perform comparably with other contemporary tools on complete genomes. A combi-
nation of probabilistic models trained on codon usage and sequence error data, was used to evaluate
sections of DNA for their gene encoding potential. This method has shown higher performance for
predicting genes on short-reads with high levels of sequence error than other contemporary methods
but can be used on complete low-error genomes.

MetaGene Noguchi et al.| (2006)) - 2.24.0 MetaGene, one of the first gene prediction tools specifically
developed for prediction on fragmented and metagenomic genomes, examines di-codon frequencies
estimated by the GC content of a given sequence with other measures such as length, distance
between CDSs and start codon distribution. MetaGene can predict a whole range of prokaryotic
genes based on the anonymous genomic sequences of a few hundred bases and identify partial CDSs
which have are located on the terminus of the fragmentary genomic sequences.

MetaGeneMark|Zhu et al.|(2010) - ‘2020’ The heuristic model behind MetaGeneMark was developed
to replace traditional methods of ORF prediction parameter estimation such as supervised training
on a set of “validated” genes or unsupervised training on an input sequence. Dependencies which
had formed in evolution, between codon frequencies and genome nucleotide composition are utilised
to derive patterns of codon frequencies, critical for the model parameterisation, from frequencies of
nucleotides observed in a short or metagenomic sequences. An effective method to estimate prediction
parameters was derived from the frequencies of oligonucleotides in protein-coding regions and whole-
genome nucleotide composition.



— Meta Gene Annotator [Noguchi et al| (2008]) - Version ‘2008/8/19’ Published in 2008, MetaGe-
neAnnotator predicts all kinds of prokaryotic genes from anonymous genomic sequences. It integrates
statistical models of prophage, bacterial and archaeal genes, and builds a self-trained model from
input sequences for the predictions. This results in the detection of not only “typical genes but also
atypical genes, such as horizontally transferred and prophage genes in a prokaryotic genome”. The
algorithm also includes a novel approach for the analysis of ribosomal binding sites, which has enabled
the detection of species-specific patterns, thus allowing for “precise” prediction of translation starts
sites.

Metagenomic gene predictors form a subset of ab initio self-training tools which primarily rely on the same
methods but involve additional parameters. They must contend with a number of additional difficulties common
to metagenomic annotation. The dynamics of metagenomic DNA sequences such as chimeric contigs assembled
from different organisms, cause a number of problems for even self-learning predictors. Any model or parameters
chosen would need to be recalculated for every metagenomic contig as each is likely to be from a different organism
and therefore have different characteristics. Metagenomic assemblies often consist of fragmented genomes which
can lead to a number of problems for gene prediction. A given contig may only contain a fragment of a gene.
Therefore, simply looking for start and stop codons, which may not be present, along with changes in GC content
outside of predicted gene regions, will not be as useful to help to distinguish between coding and non-coding
regions. These errors are extremely difficult to account for and tools have been produced to tackle them directly
Rho et al.| (2010) We have included 3 metagenome prediction tools in this study.

Many of the tools comprise different versions of the same core software but produced differing results.
For example, GeneMark, MetaGeneMark, GeneMark Heuristic Approach, GeneMark Hidden Markov Model,
GeneMark S and GeneMark S2 were all from the same suite of tools and have many similarities with each other
but are designed for different purposes and produce different results.

It was decided that no specific rules were to be enforced on the tools. Each tool was run using its default
parameters and this was to get a baseline for their accuracy with the least amount of human support. Many
hard-coded assumptions were consistent across the tools, such as minimum ORF length and the codons allowed
to identify the start and end of an ORF. Some of the tools allowed the minimum ORF length to be altered, but
the majority fixed the threshold to around 100 nucleotides.



4 Code and analysis scripts

To inspect the various differences between the six genomes, a number of additional Python3 scripts were writ-
ten to interrogate the canonical annotations. These scripts are available at https://github.com/NickJD/
ORForise/tree/master/src/ORForise/ORForise_Analysis).

Python3 (Van Rossum and Drake, 2009) with Matplotlib and R (R Core Team), 2020) with
ggplot2 (Wickham) 2016|) were used to produce the figures.
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5 Description of Comparison Metrics

Number of Predicted CDSs:

This is the number of CDSs that the tool has predicted. Some tools predict a large number of potential
CDSs and then filter them. All ‘Predicted CDS’ metrics correspond to the remaining predicted CDSs
presented to the user after default filtering.

Percentage Difference of Number of Predicted CDSs: (IM3)
This is the percentage change between the number of predicted CDSs and the number of actual reference
Genes. 100 * (Number of predicted CDSs - Number of reference Genes) / Number of reference Genes

Number of Predicted CDSs that Detect a Gene:
This is the number of CDSs that correctly detect at least 75% of the nucleotides of a reference Gene and
are in the same frame.

Percentage of Predicted CDSs that Detected a Gene: (M2)
This is the percentage of predicted CDSs that correctly detect at least 75% of the nucleotides of a reference
Gene and are in the same frame.

Number of Genes Detected:
The number of reference Genes Detected is characterised as the number of predicted CDS which are in
frame with a reference gene and has captured at least 75% of its nucleotide sequence.

Percentage of Genes Detected: (M1)
The percentage of reference Genes Detected is characterised as the percentage of predicted CDS which are
in frame with a reference gene and has captured at least 75% of its nucleotide sequence.

Median Length of All Predicted CDSs:
Median length of all predicted CDSs, in nucleotides.

Percentage Difference of Median CDS Length: (M4)

This is the Percentage Difference from the mean length of reference Genes compared to the mean length
of all predicted CDSs. 100 * (Median CDS length - reference gene median length) / reference gene median
length

Minimum Length of All Predicted CDSs:
The length of the shortest predicted CDS, in nucleotides.

Minimum Length Difference:

This is the percentage difference from the shortest reference gene compared to the length of the shortest
predicted CDS. 100 * (Minimum CDS length - Minimum reference gene length) / Minimum reference gene
length

Maximum Length of All Predicted CDSs:
The length of the longest predicted CDS, in nucleotides.

Maximum Length Difference:

This is the percentage difference from the longest reference Gene compared to the length of the longest
predicted CDS. 100 * (Mazimum CDS length - Maximum reference gene length) / Maximum reference
gene length

Median GC Content of All Predicted CDSs:
This median GC content calculated from all predicted CDSs.

Percentage Difference of All Predicted CDSs Median GC:

This is the Percentage Difference of the median GC content of all predicted CDSs compared to the median
GC content of all reference Genes. 100 * (Median GC content of all CDSs - Median GC' content of all
reference genes) / Median GC content of all reference genes

Median GC Content of Matched Predicted CDSs:
This median GC content calculated from predicted CDSs that detected a reference gene.
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Percentage Difference of Matched Predicted CDS GC:

This is the Percentage Difference of the median GC content of predicted CDSs that detected a reference
gene compared to the median GC content of all reference genes. 100 * (Median GC content of matched
CDSs - Median GC content of all reference genes) / Median GC content of all reference genes

Number of Predicted CDSs that Overlap Another Predicted CDS:
This is the number of predicted CDSs that overlap another predicted CDS by at least one nucleotide base.

Percentage Difference of Overlapping Predicted CDSs:

This is the Percentage Difference of overlapping predicted CDSs as compared to the number of overlapping
reference Genes. 100 * (Number of overlapping CDSs - Number of overlapping reference genes) / Number
of overlapping reference genes

Maximum Length of Predicted CDS Overlap:
This is the maximum length of predicted CDS overlap, in nucleotides.

Median Length of Predicted CDS Overlap:
This is the median length of predicted CDS overlap calculated from all CDS overlap lengths.

Number of Matched Predicted CDSs Overlapping Another Predicted CDS:
This is the number of predicted CDSs that detected a reference gene that overlap another predicted CDS
by at least one base.

Percentage Difference of Matched Overlapping Predicted CDSs: (MS8)

This is the percentage difference of overlapping CDSs that detected a reference gene as compared to the
number of overlapping annotated reference genes. 100 * (Number of matched overlapping CDSs - Number
of overlapping reference genes) / Number of overlapping reference genes

Maximum Length of Matched Predicted CDS Overlap:
This is the maximum length of matched predicted CDS overlap, in nucleotides.

Median Length of Matched Predicted CDS Overlap:
This is the median length of matched predicted CDS overlap calculated from all predicted CDS overlap
lengths.

Number of Short Predicted CDSs:
This is the number of predicted CDSs that are under 100 nucleotide bases.

Percentage Difference of Short Predicted CDSs:

This is the percentage difference of predicted short CDSs as compared to the number of annotated reference
short genes (short defined as less than 100 nucleotide bases). 100 * (Number of short CDSs - Number of
short genes) / Number of short genes

Number of Matched Short Predicted CDSs:
This is the number of CDSs which detected a reference gene and that are under 100 nucleotide bases.

Percentage Difference of Matched Short Predicted CDSs: (IM9)

This is the percentage difference of short CDSs which detected a gene as compared to the number of
reference short genes. 100 * (Number of s short matched CDSs - Number of short genes) / Number of
short genes

Number of Perfect Matches: (M5)
This is the number of predicted CDSs that have correctly identified the exact start and stop position of a
reference gene.

Percentage of Perfect Matches:

This is the percentage of CDSs that have correctly identified the exact start and stop position of a reference
gene. 100 * Number of CDSs which matched a reference gene - Number of reference genes) / Number of
reference genes
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Number of Perfect Starts:
This is the number of Matched CDSs that have correctly identified the start position of a reference gene.

Percentage of Perfect Starts:
This is the percentage of Matched predicted CDSs that have correctly identified a reference gene and its
start position.

Number of Perfect Stops:
This is the number of matched predicted CDSs that have correctly identified the stop position of a reference
gene.

Percentage of Perfect Stops:
This is the percentage of matched CDSs that have correctly identified a reference gene and its stop position.

Number of Out of Frame Predicted CDSs:
This is the number of predicted CDSs that covered more than 75% of a reference gene but were out of
frame, thus classified as Unmatched.

Number of Matched Predicted CDSs Extending a Coding Region:
This is the number of matched predicted CDSs that extend the 3 and 5-prime end of its detected reference
gene.

Percentage of Matched Predicted CDSs Extending a Coding Region:
This is the percentage of matched CDSs that extend the 3 and 5-prime end of its detected reference gene.

Number of Matched Predicted CDSs Extending Start Region:
This is the number of matched predicted CDSs that extend the 5-prime end of its detected reference gene.

Percentage of Matched Predicted CDSs Extending Start Region:
This is the percentage of matched CDSs that extend the 5-prime end of its detected reference gene.

Number of Matched Predicted CDSs Extending Stop Region:
This is the number of matched CDSs that extend the 3-prime end of its detected reference gene.

Percentage of Matched Predicted CDSs Extending Stop Region:
This is the percentage of matched CDSs that extend the 3-prime end of its detected reference gene.

Number of All Predicted CDSs on Positive Strand:
This is the number of all predicted CDSs on the positive strand.

Percentage of All Predicted CDSs in Positive Strand:
This is the percentage of all predicted CDSs on the positive strand.

Number of All Predicted CDSs in Negative Strand:
This is the number of all predicted CDSs on the negative strand.

Percentage of All Predicted CDSs in Negative Strand:
This is the percentage of all predicted CDSs on the negative strand.

Median Start Difference of Matched Predicted CDSs: (M6):

This is the median difference calculated by taking all matched predicted CDSs start position differences
from the detected reference genes and finding the median of these differences. This is calculated in
nucleotides and the closer to 0, the lower the difference or effective error.

Median Stop Difference of Matched Predicted CDSs: (MT)

This is the median difference calculated by taking all matched predicted CDSs stop position differences from
the detected reference genes and finding the median of these differences. This is calculated in nucleotides
and the closer to 0, the lower the difference or effective error.

ATG Start Percentage:
This is the percentage of all predicted CDSs which begin with the ATG codon.
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GTG Start Percentage:
This is the percentage of all predicted CDSs which begin with the GTG codon.

TTG Start Percentage:
This is the percentage of all predicted CDSs which begin with the TTG codon.

ATT Start Percentage:
This is the percentage of all predicted CDSs which begin with the ATT codon.

CTG Start Percentage:
This is the percentage of all predicted CDSs which begin with the CTG codon.

Other Start Codon Percentage:
This is the percentage of all predicted CDSs which begin with an alternative start codon.

TAG Stop Percentage:
This is the percentage of all predicted CDSs which end with the TAG codon.

TAA Stop Percentage:
This is the percentage of all predicted CDSs which end with the TAA codon.

TGA Stop Percentage:
This is the percentage of all predicted CDSs which end with the TGA codon.

Other Stop Codon Percentage:
This is the percentage of all predicted CDSs which end with an alternative stop codon.

True Positive:

The true positive value is calculated by dividing the number of reference genes correctly detected by the
total number of reference genes (75% detected and in frame). Number of reference CDSs detected / Number
of reference genes

False Positive:

The false positive value is calculated by dividing the number of predicted CDSs which did not match any
reference genes by the total number of reference genes. Number of unmatched CDSs / Number of reference
genes

False Negative:
The false negative value is calculated by dividing the number of reference genes missed by the predicted
CDSs by the total number of reference genes.

Precision: (M10)
The precision value is calculated by dividing the true positive value by the sum of the true positive and
false positive values.

Recall: (M11)
The recall value is calculated by dividing the true positive value by the sum of the true positive and false
negative values.

False Discovery Rate: (M12)
The false discovery rate is calculated by dividing the false positive value by the sum of the false positive
and true positive values.

True Positive (Nucleotide):
The true positive value is calculated by dividing the number of nucleotides in reference genes correctly
detected by the total number of nucleotides in all reference genes.

False Positive (Nucleotide):
The false positive value is calculated by dividing the number of nucleotides in predicted CDSs but not in
any reference genes by the total number of nucleotides not in any reference genes.
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True Negative (Nucleotide):
The true negative value is calculated by dividing the number of nucleotides not in any predicted CDSs by
the number of nucleotides not in any reference genes.

False Negative (Nucleotide):
The false negative value is calculated by dividing the number of nucleotides in reference genes but not in
predicted CDSs by the total number of nucleotides in all reference genes.

Precision (Nucleotide):
This precision value is calculated by dividing the nucleotide true positive value by the sum of the nucleotide
true positive and false positive values.

Recall (Nucleotide):
This recall value is calculated by dividing the nucleotide true positive value by the sum of the nucleotide
true positive and false negative values.

False Discovery Rate (Nucleotide):
This false discovery rate is calculated by dividing the nucleotide false positive value by the sum of the
nucleotide false positive and true positive values.

Predicted CDS Nucleotide Coverage of Genome:
This is the percentage of nucleotides in all predicted CDSs out of all nucleotides in the genome.

Correctly Matched CDS Nucleotide Coverage of Genome:
This is the percentage of nucleotides in Matched CDSs which correctly detected a reference gene out of all
nucleotides in the genome.
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6 Supplementary Tables

Table 1: Start codon usage for Current Ensembl Annotation CoDing Sequence (CDS) genes for the six model
organisms. Note the variation in usage of canonical start codon ATG and the alternative GTG and TTG codons.

Model Organism ATG GTG TTG ATT CTG Other

B. subtilis 76.81% 10.10% 13.09% 0.00% 0.00% 0.00%
C. crescentus 68.58% 17.69% 13.73% 0.00% 0.00% 0.00%
E. coli 90.67% 7.50% 1.70% 0.06% 0.05% 0.02%

M. genitalium 88.45% 7.56% 3.99% 0.00% 0.00% 0.00%
P. fluorescens 88.55%  7.55%  2.92% 0.21% 048% 0.29%
S. aureus 86.80% 6.62% 6.58% 0.00% 0.00% 0.00%

Table 2: Start codon substitution table for genes which were misreported on the 5’ prime end by Prodigal,
combined for the six model organisms. Column headers represent Ensembl annotated start codons and row
headers represent the incorrectly predicted start codons, having chosen an alternative further upstream or
downstream of the true start codon. The last row, ‘Correct codon’, shows the numbers of Perfect Match
predicted CDSs by Prodigal with the specified start codons. Further start codons with low usage were combined
into the category labelled ‘other’.

Correct codon

ATG GTG TTG CTG Other
Incorrect ATG 817 371 357 19 24
Incorrect GTG 106 76 49 4 0
Incorrect TTG 81 47 37 3 3
Incorrect CTG 0 0 0 0 1
Incorrect other 0 0 0 0 0
Correct codon | 14933 1321 847 0 0

Table 3: Stop codon usage for Current Ensembl Annotation CoDing Sequence (CDS) genes for the six model
organisms. M. genitalium recodes TGA for Tryptophan and E. coli uses CTT for one gene.

Model Organism TAG TAA TGA  Other

B. subtilis 13.96% 62.93% 23.11% 0.00%
C. crescentus 32.78% 19.86% 47.36% 0.00%
E. coli 6.89% 64.68% 28.41% 0.02%

M. genitalium 27.10% 72.90%  0.00% 0.00%
P. fluorescens 14.18% 30.42% 55.41% 0.00%
S. aureus 15.01% 74.17% 10.82% 0.00%
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Table 4: GC content differences for Prodigal annotations. Shown here as median values are: GC content of
Current Ensembl Annotation CoDing Sequence (CDS) genes, the genes detected by Prodigal, those Prodigal
obtained a partial match and those it missed.

Model Organism Ensembl GC Detected GC Partial GC  Missed GC

B. subtilis 44.19% 44.25% 43.99% 39.13%
C. crescentus 67.52% 67.71% 67.69% 65.65%
E. coli 52.15% 52.21% 52.14% 43.14%
M. genitaliuvm 31.44% 32.90% 32.75% 30.76%
P. fluorescens 61.25% 61.36% 60.25% 53.36%
S. aureus 33.33% 33.33% 30.13% 32.62%

Table 5: Percentages of the Current Ensembl Annotation CoDing Sequence (CDS) genes and Predicted CDSs
identified as overlapping. We show averages for ab initio and model-based predicted CDSs.

Model Organism Ensembl  Ab initio Model-Based

B. subtilis 21.37% 21.44% 15.44%
C. crescentus 32.73% 25.51% 21.84%
E. coli 22.53% 22.68% 18.20%
M. genitalium 46.43% 16.47% 11.65%
P. fluorescens 24.16% 25.42% 18.08%
S. aureus 19.61% 19.98% 15.72%

Table 6: Percentage Difference of overlapping predicted CDSs as compared to the Current Ensembl Annotation
CoDing Sequence (CDS) genes. Ab initio and model based tools are separated into 2 groups each. ‘Matched’
represents the Percentage Difference for those predicted CDSs which were able to detect an Current Ensembl
Annotation CDS gene whereas ‘All’ represents the Percentage Difference of the number of overlapping predicted

CDSs across all predicted CDSs.

Group Average Standard Deviation Standard Error
Matched, ab initio -23.62% 7.16% 2.27%
Matched, model -52.89% 24.79% 7.47%
All, ab initio -6.07% 11.55% 3.65%
All, model -30.15% 29.41% 8.87%

Table 7: Percentage of the Current Ensembl Annotation CoDing Sequence (CDS) genes and predicted CDSs
categorised as Short CDSs (<100 amino acids). We show averages for ab initio and model-based predicted
CDSs. Note the large increase in Short CDSs predicted for M. genitalium.

Model Organism Ensembl  Ab initio Model-based

B. subtilis 13.66% 12.58% 13.24%
C. crescentus 7.60% 8.11% 15.33%
E. coli 10.24% 10.45% 13.04%
M. genitalium 4.83% 38.44% 36.99%
P. fluorescens 7.84% 9.06% 19.01%
S. aureus 10.05% 11.26% 15.59%
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Table 8: Percentage Difference of short predicted CDSs (<100 amino acids) as compared to the Current Ensembl
Annotation CDS genes. Ab initio and model based tools are separated into 2 groups each. ‘Matched’ represents
the Percentage Difference for those predicted CDSs which were able to detect a Current Ensembl Annotation
CDS gene whereas ‘All’ represents the Percentage Difference of the number of Short CDSs across all predicted
CDSs. The results from M. genitalium were not included in this table’s calculations.

Group Average Standard Deviation Standard Error
Matched, ab initio -26.38% 25.68% 8.12%
Matched, model -53.69% 21.71% 6.55%
All, ab initio 9.07% 39.87% 12.61%
All, model 39.10% 91.22% 27.50%

Table 9: M. genitalium-only Percentage Difference of short CDSs (<100 amino acids) as compared to the
Current Ensembl Annotation CoDing Sequence (CDS) genes. Ab initio and model based tools are separated
into 2 groups each. ‘Matched’ represents the Percentage Difference for those CDSs which were able to detect
a Current Ensembl Annotation CDS gene whereas ‘All’ represents the Percentage Difference of the number of
Short CDSs across all predicted CDSs.

Group Average Standard Deviation Standard Error
Matched, ab initio -27.34% 25.15% 7.95%
Matched, model -55.28% 20.62% 6.22%
All, ab initio 261.11% 139.28% 44.04%
All, model 148.00% 164.58% 49.62%

Table 10: Aggregated tool predictions provide a small increase in Percentage of Genes Detected (M1) but
over-predict a large number of additional CDSs. Here we compare the ‘best tool’ (tool with highest M1 score)
predictions versus ‘aggregated tools’ (combination of predictions from top 5 ranked tools; Prodigal, GeneMark-S-
2, MetaGeneAnnotator, MetaGeneMark and GeneMark-S) for the percentage of detected genes, partial matches
and additional over-predictions made by the aggregated tools which did not detect a Current Ensembl Annotation
CDS gene. GeneMark.hmm results are reported for S. aureus as even though it performed joint best with
GeneMarkS (M1), it reported a higher proportion of Perfect Matches (M5). Agg’ and Perc’ stand for Aggredate
and Percentage respectively

Model CEA

Organism CDS Best Tool Best Tool Detected Agg’ Detected Best Tool| Agg’ Extra CDSs
[Partial Matches]| [Partial Matches]| CDSs [Per’ Increase]

B. subtilis | 4,011 | MetaGeneAnnotator| 99.85% [1.40%] 100% [0.37%] 4,058 1,692 [41.09%]
C. crescentus | 3,737 | MetaGeneMark 92.83% [31.62%] | 93.66% [23.17%)] 3,770 1,304 [34.59%)]
E. coli 4,052 Prodigal 98.05% [5.94%)] 98.82% [1.57%)] 4,253 1,635 [38.44%)]

M. genitalium | 476 Prodigal 39.92% [32.63%] | 40.13% [30.89%)] 995 426 [42.81%)]
P. fluorescens | 5,178 GeneMarkS 99.29% [12.97%] 99.92% [3.05% 5,513 1,891 [34.03%)]

S. aureus 2,478 | GeneMark.hmm 99.60% [4.58%)] 99.84% [0.28% 2,582 774 [29.98%)]

(S. aureus model)

Table 11: Numbers of additional CDSs predicted by Prodigal that can be added to Ensembl gene annotations.
Additional CDSs are chosen if there are no fewer than 50 nucleotides overlapping with an Ensembl gene.

Model Organism Ensembl Genes

B. subtilis

C. crescentus
E. coli

M. genitalium
P. fluorescens
S. aureus

4,011
3,737
4,052

476
5,178
2,478
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Additional Prodigal CDSs

62
64
270
70
293
74




Table 12: Numbers of Ensembl genes which form an intersection (100% or 75%) with CDSs predicted by Prodigal.

Model Organism Ensembl Genes Prodigal CDSs 100% Intersection 75% Intersection

B. subtilis 4,011 4,016 3,673 3,943
C. crescentus 3,737 3,704 2,393 3,433
E. coli 4,052 4,263 3,737 3,973
M. genitalium 476 995 128 190
P. fluorescens 5,178 5,421 4,736 5,100
S. aureus 2,478 2,534 2,434 2,457
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