Supplementary Information: Thermometer: a webserver to predict protein thermal stability

Mattia Miotto,
¹ Alexandros Armaos,² Lorenzo Di Rienzo,¹ Giancarlo

 $\operatorname{Ruocco},^{1,\,3}$ Edoardo Milanetti,^{3,\,1} and Gian Gaetano Tartaglia $^{2,\,1}$

¹Center for Life Nano & Neuroscience, Istituto Italiano di Tecnologia, Viale Regina Elena 291, 00161, Rome, Italy

²Department of Biology, Sapienza University, Piazzale Aldo Moro 5, 00185, Rome, Italy

³Department of Physics, Sapienza University, Piazzale Aldo Moro 5, 00185, Rome, Italy

I. DATASET

A. Datasets

Proteins with known melting temperature (T_m) were obtained from the ProTherm database [1]. We selected all wild-type proteins for which the following thermodynamic data and experimental conditions were reported: $T_m \ge 0$ $^{\circ}C$; $6.5 \le \text{pH} \le 7.5$ and no denaturants. Experimentally determined structures were collected from the PDB (Berman et al. 2) and filtered according to method (x-ray diffraction), resolution (below 3\AA) and percentage of missing residues (5% compared to the Uniprot (Pundir et al. 3) sequence). Proteins for which experimentally determined structures were only available in a bound state, i.e. in complex with either a ligand or a ion, were excluded. Proteins were filtered using the CD-HIT software (Huang et al. 4) to remove proteins with chain sequence identity $\ge 40\%$ to each other. The final dataset, hereinafter referred to as the T_m dataset, consisted of 86 proteins. Consistently with previous reported dataset, thermostable proteins ($T_m \ge 70^{\circ}C$) represent about a third of the overall dataset (Karshikoff and Ladenstein 5, Parthasarathy and Murthy 6, Kannan and Vishveshwara 7). In order to have a dataset as balanced as possible, we also manually collected a second, independent dataset consisting of proteins from hyperthermophilic organisms with optimal growth at T $\ge 90 \ ^{\circ}C$ and pH between 6.5 and 7.5. Experimentally determined structures were collected and filtered according to same criteria described above for the T_m dataset, leading to a total of 13 protein structures. This second dataset is referred to as the T_{hyper} dataset. The union of the two dataset, referred as the T_{whole} dataset, accounts of 99 proteins

B. Clustering analysis

We clustered the T_s descriptors using the Euclidean distance and the Ward method as linkage function (Ward 8) via the hclust function of the Stats package of R (Ihaka and Gentleman 9). To better compare the different T_s score between them we normalize the data dividing each T_s score for the maximum of the absolute values. Finally, using the R package "clValid" (Brock et al. 10), we performed an internal validation for the hierarchical cluster considering both the Connectivity, Dunn and Silhouette parameters.

[11] U. Ermler, M. Merckel, R. Thauer, and S. Shima, Structure 5, 635 (1997).

[14] R. Kawakami, H. Sakuraba, S. Goda, H. Tsuge, and T. Ohshima, Biochim. Biophys. Acta 1794, 1496 (2009).

[18] C. Wang, Q. Jia, R. Chen, Y. Wei, J. Li, J. Ma, and W. Xie, Sci Rep p. 33553 (2016).

^[1] R. Nikam, A. Kulandaisamy, K. Harini, D. Sharma, and M. M. Gromiha, Nucleic Acids Res 49, D420 (2021).

^[2] H. M. Berman, J. Westbrook, Z. Feng, G. Gilliland, T. N. Bhat, H. Weissig, I. N. Shindyalov, and P. E. Bourne, Nucleic Acids Res. 28, 235 (2000).

^[3] S. Pundir, M. J. Martin, and C. O'Donovan, Methods Mol. Biol. 1558, 41 (2017).

^[4] Y. Huang, B. Niu, Y. Gao, L. Fu, and W. Li, Bioinformatics 26, 680 (2010).

^[5] A. Karshikoff and R. Ladenstein, Protein Eng. 11, 867 (1998).

^[6] S. Parthasarathy and M. R. Murthy, Protein Eng. 13, 9 (2000).

^[7] N. Kannan and S. Vishveshwara, Protein Eng. 13, 753 (2000).

 $^{[8]\,}$ J. H. Ward, Journal of the American Statistical Association ${\bf 58},\,236$ (1963).

^[9] R. Ihaka and R. Gentleman, Journal of Computational and Graphical Statistics 5, 299 (1996).

^[10] G. Brock, V. Pihur, S. Datta, and S. Datta, Journal of Statistical Software 25 (2008).

^[12] H. Tanaka, M. Chinami, T. Mizushima, K. Ogasahara, M. Ota, T. Tsukihara, and K. Yutani, J. Biochem. 130, 107 (2001).

^[13] C. Charron, X. Manival, B. Charpentier, C. Branlant, and A. Aubry, Acta Crystallogr. D Biol. Crystallogr. 60, 122 (2004).

^[15] S. Yoshinari, T. Shiba, D. K. Inaoka, T. Itoh, G. Kurisu, S. Harada, K. Kita, and Y. Watanabe, Nucleic Acids Res. 37, 4787 (2009).

^[16] M. Blaise, M. Frechin, V. Olieric, C. Charron, C. Sauter, B. Lorber, H. Roy, and D. Kern, J. Mol. Biol. 412, 437 (2011).

^[17] H. M. Park, M. Shin, J. Sun, G. S. Kim, Y. C. Lee, J. H. Park, B. Y. Kim, and J. S. Kim, Proteins 80, 1895 (2012).

		PDB	Tm $[C^o]$	Type	1					
	1	1a3v	69.1	M	1					
	2	1ako	42.6	М	1					
	3	1b8e	78.0	Т	1					
	4	1bd8	51.9	М	1					
	5	1bk7	64.4	М	1					
	6	1bni	54.0	М	1					
	7	1bpi	104.0	Т	1	51	1rtb	61.3	М	n
	8	1btl	56.4	М	1	52	1sfp	78.6	Т	Н
	9	1c5g	67.5	М	1	53	1spp	60.1	M	Н
	10	1c9o	76.9	Т	1	54	1stn	52.7	Μ	Η
	11	1cec	70.4	Т	1	55	1tca	57.7	Μ	Η
	12	1chk	52.2	Μ		56	1tpe	51.4	Μ	Π
	13	$1 \mathrm{cm} 2$	63.4	Μ		57	1udv	157.5	Т	Π
	14	1 cm 7	34.0	Μ		58	1v6h	112.7	Т	H
	15	$1 \mathrm{cmb}$	54.0	Μ		59	1y4y	88.3	Т	H
	16	1 csp	52.8	Μ		60	1ypr	67.9	Μ	H
	17	1czd	52.3	Μ		61	1zdr	66.2	Μ	l
	18	1div	77.6	Т		62	$2 \mathrm{cro}$	56.0	Μ	l
	19	1ekg	58.2	М		63	2dri	57.5	Μ	
	20	1 ew 4	53.8	М		64	2gd 1	78.5	Т	
	21	1fsf	66.9	М		65	2izp	83.7	Т	
	22	1fvk	76.8	Т		66	2lzm	62.2	Μ	
	23	1gtm	114.4	Т		67	2prd	86.0	Т	
	24	1gwy	67.0	М		68	2sil	57.0	Μ	
	25	1h7m	93.5	Т		69	2y3z	87.0	Т	
	26	1h09	51.4	M		70	2zta	77.9	Т	Π
	27	1hix	66.7	M		71	3chy	57.8	Μ	Π
	28	1hk0	80.0	T		72	3d2a	63.4	M	
	29	114n	90.3	T		73	3dfq	61.2	M	
	30	lino	58.0	M		74	3enj	47.8	M	
	31	1j2v	148.5	1 M		75	3ssi	82.2	Т	
	32	1j4s	66.0	M		76	4ake	51.8	Μ	
	33	1))1	99.0	1 M		77	4blm	67.0	Μ	
	34	1jyd	68.9	M		78	4g03	66.4	M	
	30	1 Ke4	54.0	M		79	4gcr	70.4	Т	Ц
	30	1 inw	50.0	M		80	4lyz	80.0	Т	Ц
	31	1mjc	09.0 46.6	M		81	4n9h	66.4	M	L
	00 20	1msi 1nplr	40.0 62.0	M		82	5fb6	68.7	M	H
	39	1ора	02.0	T		83	5pep	52.0	M	
	40	1one	57.0	M		84	2x9b	67.2	M	
	41	10it 1pii	51.0	M		85	3kvd	84.1	Т	
	42	1pn 1pn	63.4	M		86	3n4y	100.2	Т	
	40	1 abo	56.0	M						-
H	45	1r56	68.0	M						
H	46	1ro8	30.8	M						
	17	1rgg	19.0	M						
H	18	1188 1rha	60.0	M						
H	40	1rn1	48.0	M						
	49 50	1rop	68 7	M						
	50	nob	00.1	111	J					

TABLE I: Table of the 86 proteins of the ${\cal T}_m$ dataset, collected from ProTherm database.

[19] W. G. Touw, C. Baakman, J. Black, T. A. te Beek, E. Krieger, R. P. Joosten, and G. Vriend, Nucleic Acids Res. 43, D364 (2015).

Name	Organism	PDB	Ref.
Formylmethanofuran	Methanopyrus kandleri	$1 \mathrm{ftr}$	[11]
pyrrolidone carboxyl peptidase	Pyrococcus furiosus	1iof	[12]
L7Ae sRNP core protein	Pyrococcus abyssi	1pxw	[13]
malate dehydrogenase	Aeropyrum pernix	2d4a	[14]
D-Tyr-tRNA(Tyr) deacylase	Aquifex aeolicus	2dbo	To Be Published
hypothetical protein (Aq-1549)	Aquifex aeolicus	2e8f	To Be Published
3-oxoacyl-[acyl-carrier-protein] synthase III	Aquifex aeolicus	2ebd	To Be Published
aq-1716	Aquifex aeolicus	2p68	To Be Published
3-dehydroquinate dehydratase	Aquifex aeolicus	2ysw	To Be Published
splicing endonuclease	Pyrobaculum aerophilum	2zyz	[15]
archaeal asparagine synthetase A	Pyrococcus abyssi	3p8t	[16]
Cas6	Pyrococcus furiosus	3ufc	[17]
tRNA methyltransferase Trm5a	Pyrococcus abyssi	5hjj	[18]

TABLE II: Table of Hyperthermophiles proteins manually collected on the PDB bank [19].