Nursing Rehabilitation and Exercise Strategies in the Nursing Home

John N. Morris, Maria Fiatarone, Dan K. Kiely, Pauline Belleville-Taylor, Katharine Murphy, Steven Littlehale, Wee Lock Ooi, Evelyn O’Neill, and Nancy Doyle

The Hebrew Rehabilitation Center for Aged Research and Training Institute, Boston, Massachusetts.

Background. The purpose of this study was to evaluate how weight training or nursing-based rehabilitative care programs in nursing homes impact on resident performance of Activities of Daily Living (ADL) and objectives tests of physical performance.

Methods. This study involved a quasi-experimental control, longitudinal comparison of functional status over a 10-month period, where baseline status was adjusted through a weighting procedure based on functional status, cognitive status, and age. All residents from six residential care nursing home facilities were eligible except those with a terminal prognosis, a projected stay of less than 90 days, or with health complications that prohibited contact. Homes were placed into matched triplets based on patient characteristics: two members of each triplet were randomly designated to be experimental sites, the third became the control site. Baseline data were available for 468 subjects, follow-up for 392. ADL self-performance measures derived from the Minimum Data Set, including indicators of early loss ADL, locomotion, and late loss ADL; a number of objective functional tests (including measures of balance, power, and endurance); and mood state as measured by the Geriatric Depression Scale.

Results. Mean ADL values in the two experimental groups declined at a significantly lower rate than did rates for the controls. Functional decline was also lower in more specific measures: locomotion, early loss ADL, and late loss ADL.

Conclusions. With both interventions, facilities were able to implement a broad-based intervention that resulted in a significant reduction in ADL decline rates. A facility-wide nursing rehabilitation program can play a useful role in reversing functional decline, helping residents to maintain their involvement in a broad spectrum of ADL activities.

For long-stay residents in nursing homes, functional decline is often viewed as an inevitable consequence of chronic disease, cognitive disability, and extreme age. Too frequently the forces driving functional decline are viewed as immutable and few strategies have been developed to reduce these rates of decline. From our view, the central issue is one of attention to the possibility of breaking this cycle of decline, and in this article we describe two rehabilitative strategies that are hypothesized to either improve underlying physical capacity or alter dependency-inducing behaviors.

These interventions are built around different compensatory mechanisms: a progressive resistance weight-training initiative (“Fit for Your Life”); and a nursing-based rehabilitation care program (“Self Care for Seniors”). In addition, key administrative personnel are instructed to encourage staff to believe that it is possible and desirable to maintain or improve resident self-involvement in Activities of Daily Living (ADLs), by overcoming perceptual and environmental barriers (1).

Ultimately, our goal is to provide staff with tools that will permit them to take steps to better maintain the balance between the resident’s capacity to perform ADL activities and the actual performance of those activities on a day-by-day basis. The findings reflect the efficacy of this program, looking at ADL performance over a 10-month period for residents in four experimental and two control nursing homes.

Methods

Hypothesis

The central hypothesis is that residents in homes implementing the experimental interventions will better maintain their prior levels of involvement in ADLs, including ADLs that are lost early in the spiral of functional decline (e.g., dressing) as well as ADLs that tend to be maintained for a more protracted period of time (e.g., eating). The goal is not so much to improve function (although improvement will occur) but to maintain it. A secondary hypothesis, applying only to the exercise intervention, is that we will begin to observe positive effects in objective physical tests of balance, power, and endurance. Finally, assuming the above hypotheses are correct, we also hypothesize that we will begin to see an initial indication of a reduction in distressful symptoms as measured on the average problem count on the Geriatric Depression Scale (GDS) (2).

Study Sites

Six nursing facilities participated in this study: Two were randomly designated to be control sites, whereas four were randomly designated as experimental sites. These facilities were recruited from a pool of 15 interested nursing homes from within a 60-mile radius of Boston, each of which had 80 or more long-stay nursing home beds. Homes were matched into
sets of triplets (from which sites were randomized to the three study conditions) based on reviewing 40 of their most recent federally required Minimum Data Set (MDS) resident assessments (3). This matching reduced the probability that the experimental and control sites would differ at a gross level with respect to resident characteristics—measures of ADLs, communication, cognition, and behavior symptoms. In each triplet, one home was randomly assigned as the site for the Fit for Your Life exercise intervention, a second for the Self Care for Seniors nursing rehabilitation intervention, and the third to be the control.

Resident Recruitment

For all samples, we attempted to enroll all residents in long-stay beds, excluding residents who had a terminal prognosis, a projected length of stay of less than 90 days, or health complications that prohibited contact. Residents for which a baseline assessment was obtained were scheduled for a 10-month follow-up assessment, and our findings are based on the experience of this follow-up cohort. From an intervention perspective, although all residents were eligible for the nursing rehabilitation intervention, residents with severe cognitive disability (i.e., had an estimated Mini Mental score of 5 or less based on the Cognitive Performance Scale (4) or who had an unstable cardiac condition were excluded from participation in the exercise intervention. (Note: These residents have not been excluded from the evaluation sample; nor were any other residents who failed to take part in the intervention component of the study.)

At the point of initial contact, 849 residents were in the subject pool in the six facilities. Our enrollment window covered a 90-day period, during which time 100 residents died or left the facilities, staff judged 55 to be too sick to participate, 162 were unavailable for the institutional review board required consent process, and 32 did not meet study criteria. After these exclusions, the sample included 468 residents with required informed consents and baseline assessments (Table 1). At 10 months, follow-up data were available for 392 (83.8%) residents—124 controls, 124 residents in exercise intervention homes, and 144 residents in nursing rehabilitation homes. Only nine subjects were lost to follow-up due to refusal (three of these had moved to another facility).

Program Interventions

Nursing Rehabilitation Care Initiative (“Self Care for Seniors”—Although certified nurse assistants (CNAs) are the major providers of personal ADLs (5–7) they often receive inadequate direction and their work can be inadequately monitored (8–10). The emphasis is on getting things done—making sure residents look well cared for, well nourished, and ready for activities. For sake of expediency, many residents receive help with care even when they would be able to do for themselves (11–13).

In the “Self Care for Seniors” (SCS) program, facility nursing staff are taught how to break the cycle of dependence and functional decline. This dynamic rehabilitative program provides a structured approach to on-going rehabilitative care to all residents. Nursing staff are guided through the process of assessing functional capacity and linking specific rehabilitation care protocols to assessed capacity. Protocols assist both licensed and nonlicensed nursing staff to: (i) identify residents with a capacity for greater involvement in ADLs, (ii) evaluate the gap between current performance and capacity for greater independence, (iii) target and individualize rehabilitation interventions; and (iv) incorporate rehabilitation approaches into daily nursing and resident routines.

The SCS initiative is a five-step assessment and care-planning process based on explicit protocols (SCS protocols are available from the authors). Step One builds on the federally mandated MDS assessment process. The protocol directs nursing staff to review the most recent MDS assessment, focusing on current function in ADLs and related areas (e.g., cognition, communication and sensory patterns, balance). The MDS ADL emphasizes performance (what the resident actually does for himself/herself) rather than capacity (what the resident is able to do).

Step Two directs two pairs of nurses and CNAs from the day and evening shift, to complete a bedside assessment of capacity. Each ADL activity is broken into a series of performance subtasks. This protocol requires collaboration between the nursing staff on the day and evening shifts as the resident’s capacity may vary as the day wears on. The two sets of assessors then compare their results, resolve disagreement, and compare the resident’s capacity with current performance. Residents fall into two categories: those performing at capacity, and those performing below capacity. Both groups are included in the program. Staff select one of nine rehabilitation protocols for eating or dressing based on the resident’s capacity for involvement in self-care.

In **Step Three**, nursing staff tailor the selected protocol to meet the individual needs of the resident. Staff select environmental, communication, and motivational guidelines as directed in each protocol to assist the resident in ADL self-care.

In **Step Four**, staff identify and review the rehabilitation goals and objectives (with the resident, family and CNAs). For residents performing at capacity, the focus is on keeping abilities
intact in order to prevent decline. For residents functioning below capacity, the focus is on achieving improvements needed to function at capacity.

In Step Five, nursing staff implement the plan of care and track progress toward goals through communication, documentation, and regular review of care objectives.

The following example illustrates SCS processes. Mrs. B is an octogenarian with moderate cognitive impairment. An MDS review (Step One) reveals that she is dependent in dressing self-performance despite having adequate balance and range of motion. The assessment of capacity (Step Two) staff learn that Mrs. B. can dress herself when she receives physical and verbal prompts throughout the activity. As she has been functioning below capacity, staff select a rehabilitation protocol that builds on her newly identified strengths for responding to specific prompts (Step Three) and set the goal for her to dress herself with this type of staff support (Step Four). The details of the new care approach are communicated to all caregivers, documented in the plan of care, and progress monitored quarterly (Step Five).

Exercise intervention initiative (“fit for your life”).—The rationale for the use of exercise rests upon the central role of disuse atrophy (14). The plasticity of the musculoskeletal and cardiovascular systems permits a robust training adaptation (15), and makes alteration of physiological capacity via exercise training an attractive target in this population. The emphasis is placed on muscle strengthening exercise, because muscle weakness appears even more limiting than cardiovascular endurance in the performance of functional tasks and mobility. Additionally, resistance training is feasible even in nonambulatory elders, whereas weight-bearing exercise such as aerobic activities may be impossible to initiate.

The exercise regime involves progressive resistance training of the major muscle groups related to clinical function and mobility in the elderly. The emphasis is on strength training as a way to maintain physical capacity (16). Because of the specificity of the training response, muscle groups that are of particular relevance to gait [hip and knee extensors, ankle dorsiflexors; (17–19)] or the performance of ADLs [forearm and shoulder muscles; (20)] are emphasized.

Coordinators are chosen by each home and serve as supervisors of other staff members and volunteers who are trained to carry out the exercise regimen on 3 nonconsecutive days per week. The team of exercise leaders, including staff, families, and volunteers, are encouraged to take a 10-hour course for which continuing education credit is given. A multimedia approach of slide lectures, videos, workshops, manuals, and graphic materials are used to facilitate skill acquisition.

The resistance training consists of dynamic (concentric and eccentric) progressive resistance exercise (PRE) of the upper and lower extremities using incremental lead shot weights worn around the ankles and a variety of dumbbell weights for the upper body. Two sets of eight repetitions of each exercise are done at each exercise session, using progressively heavier weights as tolerated.

Endurance training is accomplished in separate sessions from the weight-lifting exercise via the initiation of walking groups on alternate days. Residents are monitored by staff while they gradually increase the durations of walks from initial tolerance (1–5 minutes) to continuous 20-minute sessions. All exercise training sessions are documented daily in a log book by the exercise trainers. Rewards for resident participation are made accordingly.

Establishing a supportive institutional context.—Each intervention utilized a comparable approach to increase the likelihood that the facility would stand behind the intervention. Research staff worked with administrators to prepare them to accept the program and answer staff questions (e.g., staff questions about whether rehabilitation is possible; institutional focus on issues other than rehabilitation; competing demands). We helped them “gear up” for the philosophical and programming changes required by the intervention including, (i) selecting a facility Program Coordinator, (ii) developing a facility-wide planning committee for introducing the program and integrating it into daily routines, and (iii) conducting a system analysis to assure that the necessary structures and processes are in place.

Analysis Strategy and Study Measures

To evaluate these programs we used a quasi-experimental approach to compare the experience of residents in six matched facilities with and without one of the two rehabilitation initiatives. Impact findings have been adjusted through a subject-weighting process that accounts for residual cross-sample baseline variations in the distribution of resident subgroups based on a limited set of key parameters. We did not expect, even after the random assignment of nursing homes to treatment groups, that the distribution of residents on key characteristics would be identical. More specifically, we believe that facilities could differ in terms of resident impairment status, cognitive disabilities, and baseline proximity to death.

By limiting the analysis to residents who were alive at 10 months, we effectively handled the issue of differential proximity to death. (Note: There was some outer sample differences on this factor [Table 1].) For the other factors, we had two possible control options—covariance adjustment or multivariate weighting. We chose the latter, believing that this approach would best permit us to address the full interactions of the biasing factors. The actual weighting factors include measures of functional status (as measured by a three-item ADL summary scale, including measures of dressing, transfer, and eating), cognitive status (as measured by the MDS four-category Decision Making measure, which has a weighted kappa reliability of .93), and age. Using this methodology, the three samples were weighted to achieve equivalence in overall distribution of the subgroups of residents as defined by the cross-sectional distribution of these baseline characteristics. After weighting, all samples are equivalent along these dimensions. For example, although there might have been a preweighing difference in the distribution of residents across the three groups who had minor ADL deficits and who were cognitively intact, the weighting procedure equated all three samples along these parameters. Although the immediate effect of this weighting procedure is to equate the samples on the specific weighting parameters; the more profound consequence is our finding of nonsignificant differences across the samples on a wide variety of factors that have been shown to be relevant to subsequent functional decline. More specifically, for a set of in-
In this article we describe the efficacy of exercise and nursing-based rehabilitative care programs in helping residents to maintain their baseline levels of self-involvement in ADLs. The systems approach to intervention involves an initial step of review of the recent clinical record, interaction with the resident, discussion with direct care staff, and discussion with a knowledgeable clinical coordinator. These assessments were completed by trained research staff, all of whom were blinded to the intervention status of the study subjects. Finally, these measures were aggregated into an overall ADL summary scale (Kinder-Richardson-20 [K.R. 20] alpha reliabilities = .96) and a series of stage-of-loss ADL indicators (23). The stage-of-loss measures, each of which is a sum of multiple ADL indicators, refer to early loss ADLs (K.R. 20 alpha reliability = .89), late loss ADLs (K.R. 20 alpha reliability = .90), and Locomotion (K.R. 20 alpha reliability = .88).

In addition to these ADL measures, we also evaluated resident functioning based on objective tests. Included are measures of: Power (time required to stand up five times in a row), Balance (time able to stand normally in five different feet placements), and Endurance [number of feet walked; (24–26)]. These measures are presented in a collapsed format in light of skewed distributions and high numbers of residents who were unable to even start to initiate these activities. Our field protocol required an extensive period of training on all measures, including a review by one of the coinvestigators of videotapes of measurement sessions. Staff had to achieve an acceptable level of interassessor reliability and had to demonstrate an appropriate ease of interaction with the subject population.

The final outcome measure is the Yesavage Geriatric Depression Scale [GDS; (2)], where higher values indicate a greater problem.

RESULTS
In the baseline sample, the average age was 84.7 years and 79% were female. Thirty-one percent of the subjects had independent cognitive skills and 38% had severely impaired cognitive skills. Sixty-six percent had a short-term memory problem. Twenty-six percent were independent in transfer and 20% were totally transfer dependent. Twelve percent could dress independently and 27% were dependent on others to dress. Fifty-eight percent could eat independently and 16% were dependent in eating. Concerning diseases and conditions, 21% had CHF, 22% had arthritis, 7% had osteoporosis, 24% had Alzheimer’s disease, 27% had dementia other than Alzheimer’s disease, 4% had Parkinson’s disease, 22% were depressed, 4% had cancer, 16% had unstable conditions or diseases, and 10% had pressure ulcers.

Table 2 presents baseline and follow-up mean scores for the four ADL measures. In each instance, the effect estimate that represents the interaction of the experimental group by time is significant at the .02 level or lower. For the nursing rehabilitative group, experimental decline was at a significantly lower level than the decline rates observed for the control group. For example, on the ADL summary measure, which has a range between 0 and 40 points, where 40 is the most dependent, control subjects increased by an average of 3.5 points between baseline and follow-up, whereas subjects in the nursing rehabilitation sample, increased by only 4/10 of one point. Looking at the separate ADL indicators of locomotion, early loss ADLs and late loss ADLs, we find a similar set of findings in all ADL areas: The experiments in the nursing rehabilitative program were significantly less likely to decline than were the controls.

For the exercise intervention group, we also observe a significant beneficial effect when contrasted with controls for the ADL summary measure. For this measure, although controls increased by an average of 3.5 points, residents in the exercise intervention group increased by an average of 1.7 points. For the four other disaggregated ADL measures, however, only the contrast for late loss ADLs was significant at the .05 level. All other contrasts were slightly less significant.

For the three objective functional tests (Table 3), Experimental Group by Time interactions were significant \((p = .01)\) for two of the measures—Balance and Endurance. The contrast analysis shows that the exercise therapy group is maintaining endurance, as measured by the 6-minute walk \((p = .07)\), whereas for the balance measure, the nursing rehabilitation group actually declined at a higher rate than the controls.

Finally, for the Geriatric Depression Scale, the cross-group comparison was not significant \((p = .40)\). The control group was largely unchanged over 10 months (going from an average score of 4.03 to 4.10), whereas both experimental groups experienced a slight decline in the average problem summary (the exercise group went from 3.55 to 3.11, the nursing rehabilitation group went from 3.55 to 3.25). (No table).

DISCUSSION
In this article we describe the efficacy of exercise and nursing-based rehabilitative care programs in helping residents to maintain their baseline levels of self-involvement in ADLs. The systems approach to intervention involves an initial step of preparing the facility to go forward with the program, as well as more specific program initiatives for delivering rehabilitative
Table 2. Longitudinal Comparison of Mean ADL Dependency Levels for Residents in Control and Experimental Groups (N = 392)

<table>
<thead>
<tr>
<th>Functional self performance measures</th>
<th>Time period</th>
<th>Control group</th>
<th>Exercise group</th>
<th>Nursing rehabilitation group</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADL summary*</td>
<td>Baseline</td>
<td>19.96</td>
<td>20.48</td>
<td>21.37</td>
</tr>
<tr>
<td></td>
<td>Follow-up</td>
<td>23.43</td>
<td>22.17</td>
<td>21.76</td>
</tr>
<tr>
<td>Early loss ADL†</td>
<td>Baseline</td>
<td>4.66</td>
<td>4.95</td>
<td>4.89</td>
</tr>
<tr>
<td></td>
<td>Follow-up</td>
<td>5.44</td>
<td>5.38</td>
<td>5.11</td>
</tr>
<tr>
<td>Late loss ADL§</td>
<td>Baseline</td>
<td>6.83</td>
<td>7.14</td>
<td>7.18</td>
</tr>
<tr>
<td></td>
<td>Follow-up</td>
<td>8.16</td>
<td>7.83</td>
<td>7.41</td>
</tr>
<tr>
<td>Locomotion**</td>
<td>Baseline</td>
<td>4.25</td>
<td>4.08</td>
<td>4.93</td>
</tr>
<tr>
<td></td>
<td>Follow-up</td>
<td>4.99</td>
<td>4.38</td>
<td>4.74</td>
</tr>
</tbody>
</table>

Significance Levels

<table>
<thead>
<tr>
<th>Study group</th>
<th>Time</th>
<th>Group by time interaction</th>
<th>Exercise vs control</th>
<th>Nursing rehabilitation vs controls</th>
<th>Exercise vs nursing rehabilitation</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADL summary*</td>
<td>0.98</td>
<td><0.001</td>
<td>0.01</td>
<td><0.001</td>
<td>0.07</td>
</tr>
<tr>
<td>Early loss ADL†</td>
<td>0.86</td>
<td><0.001</td>
<td>0.02</td>
<td>0.09</td>
<td>0.006</td>
</tr>
<tr>
<td>Late loss ADL§</td>
<td>0.94</td>
<td><0.001</td>
<td>0.005</td>
<td>0.05</td>
<td>0.001</td>
</tr>
<tr>
<td>Locomotion**</td>
<td>0.25</td>
<td>0.01</td>
<td>0.11</td>
<td>0.003</td>
<td>0.007</td>
</tr>
</tbody>
</table>

*Sum of Dressing, Hygiene, Walk on Corridor, Walk in Room, Locomotion on Unit, Locomotion off Unit, Transfer, Toilet Use, Bed Mobility, Eating; range 0–40; KR 20 alpha reliability = 0.95.
†Sum of Dressing, Personal Hygiene; range 0–6; KR 20 alpha reliability = 0.89.
§Sum of Transfer, Toilet Use, Bed Mobility, Eating; range 0–16; KR 20 alpha reliability = 0.89.
**Sum of Locomotion on Unit, Locomotion off Unit; range 0–8; KR 20 alpha reliability = 0.88.

Table 3. Longitudinal Comparison of Mean Objective Measures of Performance for Residents in Control and Experimental Groups (N = 370)

<table>
<thead>
<tr>
<th>Time period</th>
<th>Control group</th>
<th>Exercise experimental group</th>
<th>Nursing rehabilitation experimental group</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power*</td>
<td>Time required to stand up five times in a row</td>
<td>Baseline 2.44</td>
<td>2.36</td>
</tr>
<tr>
<td></td>
<td>Follow-up</td>
<td>2.51</td>
<td>2.43</td>
</tr>
<tr>
<td>Balance†</td>
<td>Time able to stand normally in 5-feet positions (max. of 15) seconds per position (N = 55)</td>
<td>Baseline 2.41</td>
<td>2.55</td>
</tr>
<tr>
<td></td>
<td>Follow-up</td>
<td>2.09</td>
<td>2.37</td>
</tr>
<tr>
<td>Endurance§</td>
<td>Number of feet walked in 6 minutes</td>
<td>Baseline 1.82</td>
<td>1.77</td>
</tr>
<tr>
<td></td>
<td>Follow-up</td>
<td>1.58</td>
<td>1.77</td>
</tr>
</tbody>
</table>

Significance Levels

<table>
<thead>
<tr>
<th>Study group</th>
<th>Time</th>
<th>Group by Time interaction</th>
<th>Exercise vs control</th>
<th>Nursing rehabilitation vs controls</th>
<th>Exercise vs nursing rehabilitation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power</td>
<td>0.19</td>
<td>0.02</td>
<td>0.93</td>
<td>0.96</td>
<td>0.76</td>
</tr>
<tr>
<td>Balance</td>
<td>0.80</td>
<td>0.001</td>
<td>0.01</td>
<td>0.50</td>
<td>0.03</td>
</tr>
<tr>
<td>Endurance</td>
<td>0.67</td>
<td>0.001</td>
<td>0.01</td>
<td>0.07</td>
<td>0.20</td>
</tr>
</tbody>
</table>

*0 seconds through 13=0; 13.1 through 27=1; 27.1 through 179=2; 180 or more=3.
†Each of five stance position scores: 0=not able; 1=less than 15 seconds; 2=15 seconds. The five are summed so that 0=not able to stand and 10=stood for 15 seconds in all five stance positions.
§0 feet=0; 1 through 135=1; 136 through 272=2; 273 through 435=3; 436 or more=4.
EXERCISE STRATEGIES IN NURSING HOMES

M499

care services. The large majority of elderly nursing home resi-
dents are physically vulnerable, cognitively impaired, and at
risk of premature functional loss and institutionally induced de-
pendency; and our two interventions seek to counter those
forces that would otherwise promote progressive ADL declines.
Despite the Nursing Home Reform Law of 1987, and demon-
strated efficacy of exercise intervention in this setting (15,27),
many nursing homes have yet to develop institutional philos-
ophies and programs that promote individualized resident reha-
bitation for most residents. Barriers include lack of institu-
tional support, lack of professional staff training in specific
rehabilitative methodologies, misconceptions about the benefits
of initiating rehabilitative practices, and lack of availability of
exercise equipment and space.

The physiologic benefits of strength training have previously
been documented in more focused trials using intensive one-
on-one training with volunteers in nursing homes (15,27). This
study is the first to report on the relative benefit to residents in a
facility-wide intervention. What was not known prior to this ef-
fectiveness trial was whether the results of earlier small-scale
trials could be translated to interventions that may benefit the
average resident in a facility. That is one of the crucial research
questions to which this aspect of our work contributes. Such a
transference has now been shown to be possible for real-world
ADL outcome measures.

In addition, for the first time, we have shown that a facility-
wide nursing rehabilitation program can play a useful role in
reversing functional decline, helping residents to maintain their
involvement in a broad spectrum of ADL activities.

It is also important to acknowledge that our program of inter-
vention goes beyond the two rehabilitation initiatives. Our goal
has been to bring consistency and order into processes that are
often idiosyncratic by developing an organizational infrastruc-
ture to support meaningful rehabilitative care. We worked with
the administrator and director of nursing to assist them in artic-
ulating a rehabilitative focus of care and enabling them to take
the necessary steps to encourage staff to provide the required
care services (11).

Potential limitations of the study need to be addressed. First,
although measurements and data collection were performed as
accurately as possible following the study protocols, some de-
gree of measurement error in information ascertainment occurs
in every study. This level of misclassification is likely to be non-
differential and could be a problem if no differences were found
between the experimental and control groups, but does not in-
vailate differences that were observed.

Secondly, concerning the Nursing Rehabilitation Care Ini-
itiative, all the nursing staff members of the facilities included
in this study were consistently taught how to break the "cycle of
dependence" and consequential functional decline. However, we
did not measure the degree of transference of new skills into
everyday clinical practice over time. Thus, it is difficult to accu-
rately assess the degree to which the intervention was imple-
mented within the entire facility. Likewise, in the Exercise
Intervention Initiatives, although facility staff were consistently
trained to implement the exercise regimen across nursing
homes, efforts to motivate and implement the regimen may dif-
fer. However, in both regimens, there is no reason to believe
that these differences were greater in a particular nursing home.
In addition, for the first time, we have shown that a facility-
wide nursing rehabilitation program can play a useful role in
reversing functional decline, helping residents to maintain their
involvement in a broad spectrum of ADL activities.

Finally, in subsequent work under our National Institute on
Aging Roybal Center, we will be able to extend the time period
to 18 months. The very idea that functional decline can be de-
layed in the nursing home, even for 10 months, is important
and is in full accord with the governmental mandates of the 1987
Nursing Home Reform Law. For the average resident, ap-
plying appropriate interventions significantly improves func-
tional status.

ACKNOWLEDGMENTS
This work was supported by Grant AG11719 from the National Institute of
Health, National Institute on Aging, HRCA Roybal Center of Research on
Applied Gerontology. Dr. Morris holds the Alfred A. and Gilda Silfia Chair in
Social Gerontological Research.

Address correspondence to Dr. John N. Morris, HRCA Research and
Training Institute, 1200 Centre Street, Boston, MA 02131. E-mail: jnm@tor.hcra.harvard.edu

REFERENCES

1. Taft SH, Stearns JE. Organizational change toward a nursing agenda.

2. Sheikh J, Yesavage JA. Geriatric Depression Scale: recent evidence and

3. Morris JN, Murphy K, Nonemaker S. Long Term Care Facility Resident
 1995.

5. Hall NJ. Mental illness and the elderly. In RJ Vogel, HC Palmer, eds.
 Long Term Care Perspectives: From Research and Demonstrations.
 Washington, DC: Health Care Financing Administration, US Dept. of
 Health and Human Services; 1988.

6. Administration on Aging, Human Resources in the Field of Aging. The
 papers in gerontology. Publication No. (OHDS)80-20009.

7. Tellis-Nayak V, Tellis-Nayak M. Quality of care and the burden of two
cultures: when the world of the nurse's aid enters the world of the nursing

8. Ferris M. What's really the problem in nursing homes? (Letter.) JAGS.

9. Sheridan, JE, White, J, Fairchild, TJ. Ineffective staff, ineffective supervi-
sion, or ineffective administration? Why some nursing homes fail to pro-

10. Aroskar MA, Urv-Wong, EK, Kane RA. Building an effective caregiving
 staff: transforming the nursing service. In Kane RA, Caplan AL, eds.
 Everyday Ethics: Resolving Dilemmas in Nursing Home Life. New York,

11. Ellipooles C. A self-care model for gerontological nursing. Geriatric

12. Coons DH. Training direct service staff members to work in dementia
 care units. In Coons DH, ed. Specialized Dementia Care Units. Baltimore:
 Johns Hopkins University Press, 1991; 126-143.

 Specialized Dementia Care Units. Baltimore: Johns Hopkins University

14. Fiatarone MA, Evans WJ. The etiology and reversibility of muscle dys-

15. Fiatarone MA, O'Neill EF, Ryan ND, et al. Exercise training and nutri-
tional supplementation for physical frailty in very elderly people. N Engl J

 1990;5:63-77.

Received May 16, 1998
Accepted October 2, 1998

The Oklahoma University Health Sciences Center

DONALD W. REYNOLDS DEPARTMENT OF GERIATRIC MEDICINE

The Department is searching for clinician educators who are board eligible or board certified in geriatrics to enhance educational programs within the College of Medicine. The Donald W. Reynolds Department of Geriatric Medicine at University of Oklahoma is committed to the development of significant geriatrics exposure for medical students in every year of medical school training. Individuals interested in joining this evolving educational endeavor should contact Marie A. Bernard, M.D., Professor and Chairman, 921 N.E. 13th (11G), Oklahoma City, OK, 73104, #405-297-5957, Fax #405-270-5195. The University of Oklahoma is an equal opportunity institution.