Endogenous Anticholinergic Substances May Exist During Acute Illness in Elderly Medical Patients

Jonathan M. Flacker1 and Jeanne Y. Wei2

1The Hebrew Rehabilitation Center for Aged Research and Training Institute, Boston, Massachusetts.
2The Division on Aging, Harvard Medical School, Boston, Massachusetts.

Background. The purpose of this study was to determine if serum anticholinergic activity (SACA) arises from endogenous substances produced during illness.

Methods. Elderly medical inpatients (N = 612) were screened for anticholinergic medication use in the week prior to the study by interviews of subjects and proxies and review of emergency room, hospital, and nursing home medication administration records. Of 24 subjects without a recent anticholinergic medication history, 15 were recruited and 10 completed the study. Serum samples were obtained on Day 2 of hospital admission. SACA was measured using a radio-nuclide displacement assay. Medications taken by subjects were assayed for central muscarinic receptor binding at therapeutic concentrations.

Results. Eight of the ten subjects had SACA detectable in the serum. No medication used by these subjects had anticholinergic activity at usual therapeutic concentrations.

Conclusions. Endogenous anticholinergic substances may exist during acute illness. Characterization of such substances may increase the depth of our understanding of delirium and lead to useful intervention strategies.
vitro anticholinergic activity. If there was any question as to whether a medication might have anticholinergic activity, the medication was categorized as anticholinergic. Medications used by subjects that were categorized as anticholinergic in this study were as follows: codeine, compazine, digoxin, diphenhydramine, dexmethasone, doxepin, famotidine, fentanyl, fludrocortisone, furosemide, hydrocortisone, hydroxyzine, hyoscymine, ipratropium, isosorbide, meclizine, meperidine, methylprednisolone, morphine, nifedipine, nortriptyline, oxbytynin, oxycodone, prednisone, procainamide, prochlorperazine, promethazine, quinidine, trazodone, trilafon, triamcinolone, and triamterene.

Informed consent was obtained from subjects and/or their proxies on the first day after admission. Six hundred and twelve individuals were screened. Of these potential subjects, 24 had no history of any anticholinergic medication during the hospital admission or for the week prior to admission. Of these 24 subjects, 9 subjects declined participation and 15 subjects were recruited. The analysis, however, excludes 5 subjects who consented but did not have a serum sample drawn due to hospital discharge (2 subjects), missed blood draw (2 subjects), and refusal (1 subject). Thus, complete data were available for 10 subjects.

Data Collection

On the second morning following admission, a blood sample was drawn in a 10-cc heparinized tube. The blood was centrifuged, and the serum was separated and stored at −80°C. Our previous experience has shown that SACA levels remain stable up to 1 year following collection when stored in this fashion. SACA was measured using the competitive binding radionuclide assay described by Tune and Coyle (2). In this assay, a radio-labeled reversible binder of the forebrain muscarinic receptor, 3H-quinuclidinyl benzilate (H3-QNB; New England Nuclear, Boston, MA), was added to a Sprague-Dawley rat forebrain membrane preparation. Separate samples of increasing dilutions of atropine were assayed, and displacement of the H3-QNB was measured by counting residual radioactivity after each preparation was washed with buffer. The assay was then repeated, substituting the subject’s serum for atropine to determine the equivalents of atropine that would be as anticholinergic as the subject’s serum. All controls and samples were run in duplicate. The rat forebrain preparation was custom prepared and stored in phosphate buffer at −80°C (Analytic Biological Services, Wilmington, DE). All medications that were used by subjects who were found to have detectable SACA levels were diluted to therapeutic serum concentrations (9) in the phosphate buffer system and tested for anticholinergic activity. The SACA testing on all subjects’ serum was performed at the same time to reduce the effect of interassay variability. The intraassay variability was 6.7%. The SACA testing on all medications also was performed together, but on a different day than the assay of the subjects’ serum.

RESULTS

SACA was present in 8 of the 10 subjects who had taken no anticholinergic medications. SACA in these 8 subjects ranged from 0.23–1.72-nmol/l atropine equivalents per 200-μl sample (mean = 0.69 [SD ± 0.52] nmol/l atropine equivalents/200-μl sample). Medications taken by these individuals are listed in Table 1. None of the medications that were used by these 8 subjects had demonstrable anticholinergic activity as measured by the anticholinergic activity assay.

DISCUSSION

Although the present study does not address the pathophysiologic relationship between SACA and delirium, it does present evidence that SACA is detectable in ill elderly persons who are receiving no anticholinergic medications. This finding challenges the hypothesis that medications are the sole source of SACA and adds to several lines of evidence that other sources of SACA exist. One study of six hospitalized older persons showed a decline in SACA with a resolution of delirium that was seemingly unrelated to medication changes (6). Another study has demonstrated that SACA declined significantly following resolution of febrile illness in elderly nursing home residents, and this decline also was seemingly unrelated to medication changes (10). Interestingly, despite the accepted belief and common observation that anticholinergic medications may contribute to delirium, some large epidemiological studies of delirious patients found no association between anticholinergic medication use and delirium in either elderly medical (11,12) or postoperative surgical patients (13). Although this finding may be due in part to improper classification of medications, the presence of endogenous anticholinergic substances in those patients classified as not being exposed to anticholinergic substances might also obscure this relationship.

Some naturally occurring substances have been shown to have antimuscarinic activity in vitro. For example, dynorphin A and myelin basic protein have been shown to inhibit binding at muscarinic receptors by altering the receptor conformation (14). Promotagine may also inhibit binding at muscarinic receptors through a similar mechanism (15). Furthermore, a naturally occurring inhibitor of antagonist binding to cholinergic receptors has been described in human brains (16). It seems unlikely that such a protective system would have evolved in the absence of any anticholinergic substance to inhibit. Thus, our conclusion that clinically important endogenous anticholinergic substances exist seems reasonable.

Table 1. Medication Use in Subjects With Serum Anticholinergic Activity (SACA)

<table>
<thead>
<tr>
<th>Age (years)</th>
<th>Gender</th>
<th>Diagnosis</th>
<th>Medications</th>
<th>SACA†</th>
</tr>
</thead>
<tbody>
<tr>
<td>87</td>
<td>F</td>
<td>Pneumonia</td>
<td>Cefuroxime, insulin, glyburide</td>
<td>1.72</td>
</tr>
<tr>
<td>75</td>
<td>F</td>
<td>Pneumonia</td>
<td>Erythromycin, cefuroxime</td>
<td>1.20</td>
</tr>
<tr>
<td>94</td>
<td>F</td>
<td>Pneumonia</td>
<td>Cefuroxime</td>
<td>0.73</td>
</tr>
<tr>
<td>78</td>
<td>F</td>
<td>Urosepsis</td>
<td>Ampicillin, aspirin, gentamicin, metoprol</td>
<td>0.60</td>
</tr>
<tr>
<td>81</td>
<td>F</td>
<td>C. Difficile</td>
<td>Lorzazepam, potassium, vancomycin</td>
<td>0.41</td>
</tr>
<tr>
<td>77</td>
<td>F</td>
<td>Delirium</td>
<td>Ampicillin, ducosate, lorazepam, L-thyroxine, valproate</td>
<td>0.38</td>
</tr>
<tr>
<td>94</td>
<td>F</td>
<td>Dehydration</td>
<td>None</td>
<td>0.24</td>
</tr>
<tr>
<td>85</td>
<td>F</td>
<td>C. Difficile</td>
<td>Aspirin, metformidazole, multivitamin</td>
<td>0.23</td>
</tr>
</tbody>
</table>

Note: SACA = serum anticholinergic activity; F = female.

†Units of SACA are nmol/l atropine equivalents per 200-μl sample.
This study has several limitations. First, the serum anticholinergic activity assay itself is not standardized. Previous studies have not reported inter- and intraassay variability, but in our laboratory, this has been up to 20% and 10%, respectively, despite our efforts at standardization. In addition, we cannot completely exclude the possibility that a metabolite of the medication(s) used by these subjects was the source of anticholinergic activity. However, this is very unlikely given the fact that the medications used by these subjects were demonstrated not to have any anticholinergic activity. Furthermore, one subject who received no medications at all still had detectable SACA. It is also important to note that although there was no gender exclusion for this study, all the subjects were women. Finally, while in-hospital medication use was obtained from medical records, self and/or proxy-reported medication use was used in many cases to identify the medications that were taken prior to admission. However, as blood samples were taken on Day 2 of admission to the hospital, a minimum of 36 hours had passed since the most recent possible ingestion of any potentially anticholinergic medication.

It is also important to point out that “normal” levels of SACA have not been defined, but it is generally assumed that under conditions of health and no medication use, humans should have no detectable SACA. Systematic assessments of SACA in otherwise healthy individuals not receiving medications have not been performed. Although the presence of circulating endogenous anticholinergic substances in healthy young or older individuals would be a significant finding on its own, no data exist to support such a hypothesis. One study that measured SACA during relative good health 1 month following a febrile illness in older persons found a mean SACA of 0.09- nmol/l atropine equivalents per 200-µl sample (substantially lower than the SACA levels found in the present study), and no SACA in 14 of 22 subjects (63%), although this study did not control for medication use.

Although the SACA assay was initially developed to evaluate the anticholinergic effects of medications, its application to the syndrome of delirium has led to important insights regarding that syndrome’s pathophysiology. Although medications are undoubtedly a source of anticholinergic activity in the serum in some cases, the present study suggests that clinically important endogenous anticholinergic substances may also exist during acute illness. Further characterization of such substances may increase the depth of our understanding of delirium and lead to new treatment options for those suffering from this common, morbid, and costly complication of illness.

ACKNOWLEDGMENTS

This study was supported by the Hebrew Rehabilitation Center for Aged Research and Training Institute and the National Institute on Aging (Grants AG08812, AG04390, and AG05134). Dr. Flacker was supported in part by a fellowship from the Medical Foundation Charles A. King Trust.

Address correspondence to Jonathan M. Flacker, MD, Grady Geriatrics Center, Emory University Division of General Medicine, 69 Butler Street S.E., Atlanta, GA 30303. E-mail: jflacker@emory.edu

REFERENCES

Received May 6, 2000
Accepted June 1, 2000
Decision Editor: John E. Morley, MB, BCh