Background. Giant cell arteritis (GCA) is a systemic vasculitis of elderly individuals associated with significant morbidity, including blindness, stroke, and myocardial infarction. Previous studies have investigated whether GCA is associated with increased mortality, with conflicting results. The objective of this study is to determine whether GCA, is associated with increased mortality.

Methods. Forty-four cases with GCA were identified from the University of Utah Health Sciences Center, the major tertiary care center for the Intermountain West. The Utah Population Database, a unique biomedical information resource, selected cases and age- and gender-matched controls. Cases were defined as patients with a temporal artery biopsy-proven diagnosis of GCA (international classification of diseases [ICD]-9 code 446.5) between 1991 and 2005. Exclusion criteria included a negative biopsy, alternative diagnoses, or insufficient clinical data. For each of the 44 cases, 100 controls were identified; thus, 4,400 controls were included in the data analysis. Median survival time and 5-year cumulative survival were measured for cases and controls.

Results. The median survival time for the 44 GCA cases was 1,357 days (3.71 years) after diagnosis compared with 3,044 days (8.34 years) for the 4,400 controls \((p = 0.04)\). Five-year cumulative survival was 67\% for the control group versus 35\% for the cases \((p < .001)\). Survival rates for cases and controls converged at approximately 11.12 years.

Conclusions. Patients with GCA were more likely than age- and gender-matched controls to die within the first 5 years following diagnosis.

Key Words: Giant cell arteritis—Vasculitis—Temporal arteritis—Mortality—Utah population database.
A biostatistician (S.C.A.) analyzed the data using the Kaplan-Meier (product limit) method with a post hoc log-rank comparison of the survival of cases and controls. SPSS 15.0 for Windows© (SPSS Inc., Chicago, IL) was used for the analysis. For statistical significance, α was set at 0.05. Five-year survival curves, median survival times, and 95% confidence intervals were calculated for each group. Survival was measured in days to maximize the sensitivity of the analysis.

RESULTS

Two hundred eighty-eight subjects were initially identified by the UPDB as having an ICD-9 diagnosis of 446.5. After medical record review, GCA diagnosis was confirmed in 44 subjects. Clinical and demographic data for these 44 cases are summarized in Table 2. From 236,217 UPDB-identified potential controls, 4,400 were randomly selected.

At the time of this analysis, 21 of the 44 patients were deceased. Analysis of cause of death information revealed that none of the patients had died as a direct result of GCA. Seven patients had died as a result of treatment (gastrointestinal hemorrhage, pneumonia, urinary tract infection, sepsis), eight patients had died as a result of diseases unrelated to GCA or its treatment, and for six patients there were insufficient data to make a determination as to the cause of death and its relationship to GCA or its treatment.

The median survival time for the 44 GCA cases was 1,357 days (3.71 years) after diagnosis, compared with 3,044 days (8.34 years) for the controls ($p = .04$). The 5-year cumulative survival for the 44 GCA cases was 35%, versus a 5-year survival of 67% for the 4,400 control subjects ($p < .001$; Figure 1). The cumulative survival in the control group reached 35% at approximately 11.12 years.

DISCUSSION

Our results indicate that a diagnosis of GCA is significantly associated with reduced 5-year survival. The survival rates for cases and controls converge at 11.12 years, suggesting that the adverse affect on survival is present only in the years immediately following diagnosis. At this time survival data beyond this point are limited, making further inferences difficult.

When compared with clinical and demographic features described in the literature, the ages of our 44 GCA cases are representative of other study populations with the disease. Although only nine of our 44 patients (20.5%) had a concurrent diagnosis of PMR, many more had symptoms that closely resembled those of PMR. Thus, PMR prevalence in our subjects is consistent with previous reports. The ratio of females to males in our study was 6.3:1, whereas most studies have found this ratio to be closer to 2:1 (6, 12). We found that almost 55% of our patients had vision loss, more than other studies have reported, because as ophthalmologists we emphasize vision loss assessment. Another study has reported that GCA patients with vision loss have a reduced survival rate when compared with GCA patients with unchanged vision (34). Therefore, patients who present with new visual symptoms should receive especially careful and regular follow-up assessment and care.

Because this study is a retrospective chart review, it lacks uniformity of history taking, chart information, and treatment. An additional limitation is the variability of follow-up time and attrition during the study. Information regarding treatment regimens and duration, as well as presence or absence of standard cardiovascular risk factors, was not consistently available. Nonetheless, this investigation represents a unique approach to the assessment of GCA-associated...
mortality in that we have compared our GCA cases with controls matched by age, gender, and geography.

In order to optimally understand our results in the context of previous studies, it is important to compare the statistical methods previously employed. A number of prior studies relied on life tables, which demographers construct by defining an age interval (generally 1 year) and then comparing the number of subjects alive at the beginning of the interval with the number of subjects alive at the interval’s end. Age-specific mortality rates are calculated if the subjects are divided by age. The 1-year time intervals typically used for life tables have limited sensitivity in an elderly population; for example, the life expectancy of an 80-year-old individual may differ significantly from that of an 80.5-year-old. In addition, the age-specific rates in the standard population are based on empirical observations, which will show random fluctuation (35). We have addressed the limitations of using life tables by defining a cohort of 100 control subjects for each study subject and then performing a survival analysis of the two groups.

Some previous studies attempted to integrate both early and late effects on longevity, to detect an initial negative effect on survival, or to identify a return to normal age-related mortality rates (23,24,28,29). One research team initially observed that patients with GCA had a significantly reduced mortality when compared with the expected mortality rate, but this finding was not observed with long-term follow-up (24,36). We found that the diagnosis of GCA significantly affects the 5-year survival rate; but by 11.12 years the mortality rates of the groups converge, suggesting that the negative impact of GCA on survival is eventually lost. Our statistical methodology enabled us to demonstrate both the initial, negative effect on longevity and the loss of this effect over time.

Although our results indicate that the 5-year survival of GCA patients is significantly less than that of a control group, our results do not address whether GCA itself or consequences of treatment of GCA is directly responsible for this increase in mortality. Elderly individuals, such as those in our study population, often have comorbidities that affect longevity. Furthermore, although GCA typically runs a self-limited course of 1–2 years, some patients experience spontaneous relapses during or after the 5 years following diagnosis (6,8,12,37). One may hypothesize that because the disease is more likely to be active during the first 5 years than during the subsequent 6–10 years, mortality from GCA and its treatment is greatest during the first 5 years following diagnosis. Based on our results, patients who survive the first 5 years after diagnosis may have a mortality rate that reflects that of other elderly patients in the general population (38–40).

We recommend that further studies be directed at identifying risk factors for early death after a diagnosis of GCA. Specific attention should be given to known vascular disorders, cardiac disease, and large vessel disease. Furthermore, genetic testing has proven to be useful in diagnosis or treatment of ophthalmic as well as vascular disorders, and development of such tests in the future may enhance our ability to identify risk factors for increased GCA-associated morbidity and mortality (41–44). Perhaps by identifying those patients at risk for early death, we can intervene before life-threatening complications arise.

Funding

B.J.K. is an American Geriatrics Society Dennis W. Jahnigen Career Development Scholar. This research was also supported by an unrestricted grant to the Department of Ophthalmology and Visual Sciences from Research to Prevent Blindness, Inc., New York, NY. Partial support for all data sets within the Utah Population Database is provided by the Huntsman Cancer Institute.

Conflicts of Interest

None declared.

Acknowledgments

The authors gratefully acknowledge Jennifer Harmon, Geraldine P. Mineau, Richard Pimentel, and Tien Y. Wong for assistance with use of the UPDB and review of the manuscript. B.J.K. thanks Mark A. Supiano, MD, Chief, Division of Geriatrics, University of Utah, for his guidance and advice on this project. B.J.K. has listed everyone who contributed significantly
1. Save-Soderbergh J, Malmvall BE, Andersson R, Bengtsson BA.
 Rescue.katz@hsc.utah.edu
 Eye Center, 65 Mario Capecchi Drive, Salt Lake City, UT 84132. Email:
 niet authors and are listed as follows:

2. Lie JT, Failoni DD, Davis DC, Jr. Temporal arteritis with giant cell
 granulomatous arteritis.

3. Caselli RJ, Daube JR, Hunder GG, Whisnant JP. Peripheral neuro-
 pathic syndromes in giant cell (temporal) arteritis. A case report and review of the litera-

4. Evans JM, O’Fallon WM, Hunder GG. Increased incidence of aortic
 aneurysm and dissection in giant cell (temporal) arteritis: a popula-

5. Salvarani C, Cantini F, Boiardi L, Hunder GG. Polymyalgia rheu-

6. Caselli RJ, Daube JR, Hunder GG, Whisnant JP. Peripheral neuro-
 pathic syndromes in giant cell (temporal) arteritis. Neurology.

7. Huston KA, Hunder GG, Lie JT, Kennedy RH, Elveback LR. Temporal
 arteritis: a 25-year epidemiologic, clinical, and pathologic study.

8. Mersen GA. Involvement of the vertebro-carotid arterial system in

9. Wilkinson IM, Russell RW. Arteries of the head and neck in giant cell
 arteritis. A pathological study to show the pattern of arterial involve-

10. Pascuzzi RM, Roos KL, Davis TE, Jr. Mental status abnormalities in
 temporal arteritis: a treatable cause of dementia in the elderly.

12. Weyand CM, Goronzy JJ. Giant-cell arteritis and polymyalgia rheu-

14. Hellman DB, Hunder GG. Giant cell arteritis and polymyalgia rheu-
 matica. In: Harris ED, Budd RC, Genovese MC, Firestein GS,

15. Uriu SA, Reinecke RD. Temporal arteritis, steroid therapy, and pul-

16. Nuenninghoff DM, Hunder GG, Christianson TJ, McClelland RL,
 Matteson EL. Mortality of large-artery complication (aortic aneu-
 rysm, aortic dissection, and/or large-artery stenosis) in patients with giant cell arteritis: a population-based study over 50 years. Arthritis

17. Nordborg E, Bengtsson BA. Death rates and causes of death in 284
 consecutive patients with giant cell arteritis confirmed by biopsy.

18. Hauser WA, Ferguson RH, Holley KE. Kurland LT. Temporal arteri-

19. Jonason F, Cullen JF, Elton RA. Temporal arteritis. A 14-year epide-
 miological, clinical and prognostic study. Scott Med J. 1979;24:
 111–117.

21. Chuang TY, Hunder GG, Ilstrup DM, Kurland LT. Polymyalgia rheu-
 1982;97:672–680.

 1209–1210.

23. Andersson R, Malmvall BE, Bengtsson BA. Long-term survival in
 giant cell arteritis including temporal arteritis and polymyalgia rheu-
 matica. A follow-up study of 90 patients treated with corticosteroids.

25. Nesher G, Sonnenblick M, Friedlander V. Analysis of steroid related
 complications and mortality in temporal arteritis: a 15-year survey of

26. Matteson EL, Gold KN, Bloch DA, Hunder GG. Long-term survival
 of patients with giant cell arteritis in the American College of Rheu-

 Giant cell arteritis (GCA): survival analysis of 54 patients from Gal-

 Lugo, Spain, is associated with low longterm mortality. J Rheumatol.
 1997;24:2171–2176.

29. Gran JT, Myklebust G, Wilsgaard T, Jacobsen BK. Survival in poly-
 myalgia rheumatica and temporal arteritis: a study of 398 cases and
 matched population controls. Rheumatology (Oxford). 2001;40:
 1238–1242.

30. Uddhammar A, Eriksson AL, Nystrom L, Stenling R, Rantapaa-Dahlqvist S. Increased mortality due to cardiovascular disease in pa-

31. Salvarani C, Crowson CS, O’Fallon WM, Hunder GG, Gabriel SE.
 Reappraisal of the epidemiology of giant cell arteritis in Olmsted
 County, Minnesota, over a fifty-year period. Arthritis Rheum.
 2004;51:264–268.

32. Wylie JE, Mineau GP. Biomedical databases; protecting privacy and

 and long-term evolution in a cohort of 133 patients with giant cell

34. Klein JP, Moeschberger ML. Survival Analysis: Techniques for Cen-

35. Bengtsson BA, Malmvall BE. Prognosis of giant cell arteritis includ-

36. Kyle V, Hazelman BL. Stopping steroids in polymyalgia rheumatica