Relation Between Maximum Replicative Capacity and Oxidative Stress-Induced Responses in Human Skin Fibroblasts In Vitro

Pim Dekker,1,2 Mark J. de Lange,1 Roeland W. Dirks,3 Diana van Heemst,1,2 Hans J. Tanke,3 Rudi G. J. Westendorp,1,2 and Andrea B. Maier1,2

1Department of Gerontology and Geriatrics, 2Netherlands Consortium for Healthy Aging, and 3Department of Molecular Cell Biology, Leiden University Medical Center, The Netherlands.

Address correspondence to Andrea B. Maier, MD, PhD, Department of Gerontology and Geriatrics, Leiden University Medical Center, 2300 RC Leiden, The Netherlands. Email: a.b.maier@lumc.nl

Cellular senescence, an important factor in ageing phenotypes, can be induced by replicative exhaustion or by stress. We investigated the relation between maximum replicative capacity, telomere length, stress-induced cellular senescence, and apoptosis/cell death in human primary fibroblast strains obtained from nonagenarians of the Leiden 85-plus Study.

Fibroblast strains were cultured until replicative senescence and stressed with rotenone at low passage. Telomere length, senescence-associated-β-galactosidase activity, sub-G1 content, and Annexin-V/PI positivity were measured in nonstressed and stressed conditions.

Fibroblast strains with a higher replicative capacity had longer telomeres (p = .054). In nonstressed conditions, replicative capacity was not associated with β-gal activity (p = .07) and negatively with sub-G1 (p = .008). In rotenone-stressed conditions, replicative capacity was negatively associated with β-gal activity (p = .034) and positively with sub-G1 (p = .07).

Summarizing, fibroblast strains with a higher maximum replicative capacity have longer telomeres, are less prone to go into stress-induced cellular senescence, and more prone to die after stress.

Key Words: Replicative senescence—Apoptosis—Fibroblasts—Stress.

Received June 7, 2010; Accepted August 13, 2010

Decision Editor: Rafael de Cabo, PhD

CELLULAR senescence and apoptosis are suggested to be important drivers of ageing phenotypes and age-related diseases, such as diabetes mellitus and coronary heart disease (1). Cellular senescence is characterized by an irreversible state of replication arrest and can be induced by two factors. First, after a finite number of cell population doublings (PDs), cells will cease to divide, a phenomenon also known as the Hayflick limit or replicative senescence (RS) (2). Current knowledge indicates that this form of senescence is mostly telomere driven, which means that with every cell division, the telomere length shortens until it reaches a critical length after which the cell stops dividing (3). Second, cells can become senescent by exposure to stress, which is called stress-induced premature senescence (SIPS) (4). Reactive oxygen species seem to play a major role in this process because they cause damage to DNA and proteins, resulting in an accelerated accumulation of mutations that eventually causes early senescence (5).

Although cellular senescence can be induced by replicative exhaustion and by stress, the relation between RS and SIPS has remained largely unknown. It has been shown that fibroblasts aged in vitro, that is, having undergone PDs in vitro, are more prone to go into stress-induced cellular senescence than those that have undergone less PDs (6). If this is indeed the case, fibroblast strains from participants of the same chronological age but with different maximum replicative capacities may have undergone different numbers of PDs during in vivo life history, affecting the response to stress-induced cellular senescence in vitro. Factors determining a long-term cell fate decision, undergoing senescence or apoptosis, are not yet fully understood, but there seems to be a clear dependence on cell type and the nature and extent of the damage (7). The transcriptional regulator p53 plays an important role in both senescence and apoptosis and in the interaction between these processes. DNA-damage is one of the important stimuli activating p53, which subsequently regulates the expression and activity of the cell cycle inhibitors p21 (8) and later p16 (9). If the DNA damage is reversible, p53 activity will decrease after quick repair. However, when repair is slow and/or incomplete, p53 activity
is sustained and p16 will also be induced in most cells, which will enter the senescence state. Indeed, earlier, we showed that most stress-induced senescence-associated β-galactosidase (SA-β-gal) positive fibroblasts are also p16 positive but not exclusively so (10). Furthermore, p53 plays a major role in RS induced by telomere erosion (11,12). When telomeres reach a critical length, they will resemble broken DNA strands, which cells will recognize as DNA damage and will respond accordingly, in a p16-independent fashion (8).

In order to investigate if there is a relation between RS and SIPS, we tested fibroblast strains with a range of maximum replicative capacities in nonstressed conditions and on their ability to react to oxidative stress. We are in the unique position to have access to a large number of fibroblasts strains, which have been cultured to the end of their replicative potential but which have also been stored frozen at low PDs. We hypothesize that fibroblast strains with a higher replicative capacity will have longer telomeres. Furthermore, if telomere shortening also plays an important role in SIPS, fibroblast strains with a higher replicative capacity will be more resistant to oxidative stress-induced cellular senescence and apoptosis/cell death at low PDs.

METHODS

Study Design

The Leiden 85-plus Study (13) is a prospective population-based study in which all inhabitants aged 85 year or older of the city of Leiden, The Netherlands, were invited to take part. Between September 1997 and September 1999, 599 of 705 eligible participants (85%) were enrolled. All participants were followed for mortality, and 275 participants survived to the age of 90 years. During the period December 2003 up to May 2004, a biobank was established from fibroblasts cultivated from skin biopsies from 68 of the 275 surviving 90-year-old participants.

Cell Strains and Maximum Replicative Capacity

Fibroblast strains were isolated from biopsies of the upper medial arm obtained from 68 participants of the Leiden 85-plus Study at the age of 90 years (14). All fibroblast strains were cultured under highly standardized conditions and serially passaged until the onset of replicative cellular senescence. Maximum replicative capacity was defined as maximum PDs and differed significantly between individual strains (14). Thirty strains with maximum replicative capacity, ranging from 51 to 108 PDs, were randomly selected. One strain with the highest maximum replicative capacity was found to yield results that were not in line with the results for the other strains. Because the highest maximum replicative capacity differed 3.5x SD of the mean of the other strains, this strain was considered to be an outlier and was not included in further analyses.

The relation between known maximum replicative capacity and markers of cellular senescence and apoptosis/cell death was determined at low passage on average at PD 21 ± 3 (±SD, range: 17–30). Because the fibroblast strains entered phase IIb at PD 52 on average, ranging from PD 26 to 79, these strains were in phase IIa when the experiments were carried out.

Culture Conditions

All fibroblasts cultures were grown in Dulbecco’s Modified Eagle Medium:F-12 (1:1) medium supplemented with 10% fetal calf serum (batch no. 40G4932F), 1 mM MEM sodium pyruvate, 10 mM HEPES, 2 mM glutamax I, antibiotics (100 U/mL penicillin, 100 μg/mL streptomycin, and 0.25–2.5 μg/mL amphotericin B, all obtained from Gibco, Breda, The Netherlands) incubated at 37°C with 5% CO2 and 100% humidity. Trypsine (Sigma, St Louis, MO) was used to split cells using a 1:4 ratio each time they reached 80%--100% confluence.

Experimental Setup

To test the inducibility of SIPS, cells were thawed from frozen stocks on Day 0. On Day 1, the medium was changed, and on Day 4, cells were passaged from 25- to 75-cm² flasks. Cells were passaged further on Days 6 and 8. To have similar confluences for experiments, cells were counted on Day 8 and subcultured in equal numbers. On Day 11, fibroblasts were seeded for the experiment; a remaining part was kept in culture for repeat experiments.

Fibroblasts were stressed using 600 μM rotenone (Sigma) for 3 days. Rotenone is known to induce reactive oxygen species at the mitochondrial level (15), and increased reactive oxygen species induce cellular senescence (16). Rotenone-induced increased levels of reactive oxygen species were confirmed for the experiments described here (data not shown). Because rotenone is light sensitive, experiments were performed in darkness as much as possible. Samples were prepared 3 days after exposure to a stressor (Day 14).

Stock solutions of rotenone were prepared in dimethylsulfoxide at a concentration of 500 μM and stored at −40°C (aliquots). Initial tests showed that dimethylsulfoxide (0.2%) did not affect the results. Experiments were repeated for each cell strain and each condition and were performed in batches of maximally four strains simultaneously.

Telomere Length Analysis

Telomere length was measured for 19 of 30 randomly chosen fibroblast strains in nonstressed conditions. To measure telomere length, a flow-FISH kit was used (DAKO, Heverlee, Belgium), and fibroblasts were treated according to the manufacturer’s protocol. In short, fibroblasts were trypsinized, mixed with the reference cell line (line 1301; Banca Biologica e Cell Factory, Genoa, Italy), and hybridized.
without and with Cy3-labeled peptide nucleic acid probe. After labeling with propidium iodide for DNA content, samples were measured on a FACS Calibur II flow cytometer (Becton Dickinson, Franklin Lakes, NJ). The probe signal was measured in the fl-1 channel and the propidium iodide (PI) signal in the fl-3 channel. Results were calculated according to the manufacturer’s protocol.

Flow Cytometric Measurement of SA-β-galactosidase Activity

Cells were seeded at 1,000 cells/cm² in 25-cm² flasks. Cells were prepared as described recently (10). In short, to change the lysosomal pH to pH 6, cells were incubated with medium containing 100 nM bafilomycin A1 (VWR, Amsterdam, The Netherlands) for 1 hour. Cells were then incubated with 33 μM of the β-galactosidase substrate C12-FDG (Invitrogen, Breda, The Netherlands) in the presence of 100 nM bafilomycin. After trypsinization, cells were washed once and resuspended in 200 μL ice cold phosphate-buffered saline (PBS). Cells were measured in the fl-1 channel, and analysis was performed on the median fluorescence intensity values.

Flow Cytometric Annexin V/PI Analysis

Cells were seeded at 1,000 cells/cm² in 75-cm² flasks. Sample preparation was performed on ice. Aspirated medium and washes were collected so that any floating cells and cell debris indicating cell death would be included in the analysis. Cells were trypsinated and washed with PBS. The suspension was divided over two tubes, one for Annexin V/PI analysis and one for cell cycle analysis. For the Annexin V/PI analysis, the TACS Annexin V-fl-1 kit was used (R&D Systems, Abingdon, UK). Cells were processed according to the manufacturer’s guidelines. Analysis was performed on a FACS Calibur II flow cytometer (Becton Dickinson). The Annexin V-fl-1 signal was measured in the fl-1 channel and the PI signal in the fl-3 channel. Cells were gated into quadrants, and Annexin-positive/PI-negative (early apoptotic) cells and Annexin-positive/PI-positive (apoptosed) cells were analyzed as percentages of the total cell population.

Flow Cytometric Cell Cycle Analysis

After trypsinization, fibroblasts were centrifuged at 1,000 rpm for 5 minutes, washed by resuspending in PBS, centrifuged again, and resuspended in 200 μL 70% ethanol. Samples were kept at −40°C at least overnight. After adding 1 mL PBS, fibroblasts were centrifuged at 2,000 rpm for 5 minutes and resuspended in 200 μL PBS containing 50 μg/mL PI and 20 μg/mL RNase (Sigma). Fibroblasts were stored overnight at 4°C and measured in the fl-3 channel. In the resulting histograms, sub-G1 events (dead cells and cell debris) were gated and analyzed as percentages of the total cell population.

Statistics

All analyses were performed with the software package SPSS 16.0.01 (SPSS Inc., Chicago, IL). Fibroblast strains were tested in batches of maximally four strains simultaneously. No intraexperiment replicates were used, but experiments were repeated for each strain (in the same batches) one passage later. Values were acquired for nonstressed conditions and for rotenone-treated conditions of each strain and parameter. The former was then subtracted from the latter to acquire rotenone-induced increases.

For parameters of telomere length, cellular senescence, and cell death/apoptosis, linear regression analysis was performed between values for the nonstressed condition and maximum replicative capacity and between rotenone-induced increases and maximum replicative capacity, using a linear mixed model taking into account the duplicate experiments as repeated measures and the batches of experiments as random effect.

The different batches of strains were run in two rounds of multiple experiments. To be able to better compare the results of these two rounds, the data of the SA-β-gal assay were normalized by z transforming the data within these rounds of experiments and use these values for the statistical analysis.

RESULTS

Baseline characteristics of the participants from whom the tested fibroblast strains were derived are summarized in Table 1. The mean maximum replicative capacity was 71 ± 11 (SD) PDs, ranging from 51 to 94. Table 2 shows the rotenone-induced increases in the measured parameters regardless of the maximum replicative capacity of the fibroblast strains.

<table>
<thead>
<tr>
<th>Table 1. Clinical Characteristics and Fibroblast Growth Characteristics of Participants From the Leiden 85-plus Study (N=29)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Demographic and anthropometric data</td>
</tr>
<tr>
<td>N (female)</td>
</tr>
<tr>
<td>Age (y, mean ± SD)</td>
</tr>
<tr>
<td>Height (cm, mean ± SD)</td>
</tr>
<tr>
<td>Weight (kg, mean ± SD)</td>
</tr>
<tr>
<td>Current smokers, N</td>
</tr>
<tr>
<td>Growth characteristics of fibroblast strains</td>
</tr>
<tr>
<td>PD at which strains were tested (mean ± SD, range)</td>
</tr>
<tr>
<td>Onset phase IIb (PD, mean ± SD, range)</td>
</tr>
<tr>
<td>Onset phase III, replicative capacity (PD, mean ± SD, range)</td>
</tr>
<tr>
<td>Growth speed phase IIa (PD per day, mean ± SD, range)</td>
</tr>
<tr>
<td>Growth speed phase IIb (PD per day, mean ± SD, range)</td>
</tr>
</tbody>
</table>

Notes: PD=population doubling.

* According to change-point model (14).

† Number of observed PD during serial culturing.
Table 1. Stress-Induced Increases in Parameters Measured in Human Fibroblasts (N = 29 strains). Values Are Given as Mean (SE)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Nontreated</th>
<th>0.6 μM Rotenone, 3 d</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>β-gal FACS, z score of median fluorescence intensity</td>
<td>Sub-G1, %</td>
<td>5.4 (0.7)</td>
<td>22.7 (0.7)</td>
</tr>
<tr>
<td>Annexin V+/PI− cells, %</td>
<td>1.21 (0.38)</td>
<td>7.15 (0.38)</td>
<td><.001</td>
</tr>
<tr>
<td>Annexin V+/PI+ cells, %</td>
<td>3.02 (0.46)</td>
<td>6.67 (0.46)</td>
<td><.001</td>
</tr>
</tbody>
</table>

Note: MdFI = median fluorescence intensity. Data were analyzed with a linear mixed model, taking into account different batches of experiments and repeated measures (duplicate experiments). p Values are results of linear mixed models.

Telomere length was measured for fibroblast strains in nonstressed conditions. A positive relation was found between maximum replicative capacity and telomere length (p = .054, Figure 1), which was borderline significant. For nonstressed fibroblasts, no significant correlation was found between maximum replicative capacity and SA-β-gal activity (Table 3, Figure 2A), whereas rotenone-stressed fibroblasts showed a significant negative relation (Table 3, Figure 2B).

To determine the level of cell death, levels of sub-G1 cell debris were measured. In nonstressed conditions, there was a significant negative correlation between maximum replicative capacity and sub-G1 content (Table 3, Figure 2C). In rotenone-stressed conditions, a positive correlation was found, which was borderline significant (Table 3, Figure 2D). Apoptosis was assessed by the Annexin V/PI assay. Results were tested for correlations between maximum replicative capacity and percentage Annexin V-positive/PI-negative (early apoptotic) and Annexin V-positive/PI-positive (late apoptotic or necrotic) fibroblasts. For both Annexin V-positive/PI-negative and Annexin V-positive/PI-positive fibroblasts, no significant correlations were found under nonstressed conditions nor under rotenone-stressed conditions (Table 3).

DISCUSSION

The aim of this study was to investigate whether observed variations in maximum replicative capacities of fibroblast strains derived from the oldest old correlate with telomere length and inducibility of stress-induced parameters of cell death and cellular senescence in vitro. We found that fibroblast strains with a higher maximum replicative capacity have longer telomeres, are less prone to go into stress-induced cellular senescence, and more prone to die after exposure to stress.

Telomere Shortening and Senescence

There is much variation in maximum replicative capacity of human fibroblast in vitro (14). This could be due to inter-individual differences in number of PDs obtained during in vivo life history and/or differences in intrinsic replicative capacity and telomere length, which is supported by the observation that telomere length varies already considerable very early in life (17). Telomeres clearly play an important role in cellular senescence because in vitro every cell lacking the enzyme telomerase can undergo a limited number of cell divisions before becoming senescent. Even so, murine cells in vitro senesce after a few PDs despite expressing telomerase (7). Hence, it is questionable whether data that have been used for establishing the maximum replicative capacity of cells in vitro are a reliable reflection of the real maximum replicative capacity in vivo.

However, it has been described that telomere length is a good indicator for the maximum replicative capacity of fibroblasts (17). Indeed, we found that fibroblasts with a high maximum replicative capacity had long telomeres, although the correlation was borderline significant due to the small sample size tested. Thus, fibroblasts already having shorter telomeres (i.e., lower maximum replicative capacity) might enter the senescent state faster than those

Figure 1. Correlation between maximum replicative capacity population doubling (PDs) of human fibroblasts and telomere length (% of telomere length of reference cell line 1301). p Value is result of linear mixed model.
with longer telomeres (i.e., higher maximum replicative capacity).

Oxidative stress accelerates the rate of telomere shortening mainly because of insufficient repair mechanisms (18, 19). We did not measure telomere length after induction of acute stress, but it is unlikely that after 3 days of stress, telomeres would have shortened measurably within a cell, because shortening of telomeres is the result of cell division.

It has been shown that high passage fibroblasts in vitro (i.e., more PDs) show more stress-induced cellular senescence when compared with low passage fibroblasts of the same strain (6). It could be argued that a fibroblast strain with a higher maximum replicative capacity in vitro underwent less PDs in vivo (and as such has longer telomeres) and would thus be less inclined to go into stress-induced cellular senescence at low passage in vitro. Our results seem to be consistent with the data of Gurjala and colleagues because we found a significant negative correlation between maximum replicative capacity and stress-induced cellular senescence as measured by SA-β-gal activity, suggesting that fibroblasts with a higher maximum replicative capacity would indeed be less prone to go into cellular senescence.

Because there is debate about the validity of SA-β-gal as a marker of cellular senescence, we earlier performed a proof-of-principle experiment to ascertain to what extent our SA-β-gal results are consistent with the more conventional marker of cellular senescence p16 (10). From this, we concluded that the increase in SA-β-gal activity after rotenone treatment does indeed reflect senescence.

Apoptosis and Senescence

Cell death, and more specifically apoptosis, is an important factor in tissue dysfunction during the aging process (7, 20). Possibly, apoptosis contributes even more to this process than cellular senescence because dysfunctional cells are removed altogether. In healthy tissues, these cells are replaced with new ones from a pool of proliferative cells to prevent tissue atrophy. It has already been described that, in contrast to cellular senescence, in vitro aged fibroblasts are increasingly resistant to oxidative stress-induced apoptosis (7, 21). This would be consistent with the fact that we found a positive correlation between maximum replicative capacity and amounts of stress-induced sub-G1 cell debris. Furthermore, under nonstressed conditions, there was a negative correlation between maximum replicative capacity and the amount of sub-G1 cell debris. This is especially striking because earlier, we described that fibroblasts derived from chronologically young participants, when compared with those from chronologically old participants, also show less sub-G1 cell debris under nonstressed conditions and more stress-induced sub-G1 cell debris (22). This would suggest that fibroblast strains with a high maximum replicative capacity but derived from old participants are more comparable with those from young participants than from old participants (with average maximum replicative capacity), that is, are biologically younger. The sub-G1 results were not corroborated by the Annexin V/PI results for which no significant relations were found. Possibly, we missed the early phase of the apoptotic response.

Figure 2. Correlation between maximum replicative capacity and markers of cellular senescence (SA-β-galactosidase [SA-β-gal] activity, A and B) and cell damage (sub-G1 cell debris, C and D) under nonstressed and rotenone-stressed conditions. Due to batch differences, SA-β-gal values were z transformed.
and were only able to measure the end result (sub-G1 cell debris).

Culture Conditions

To determine stress resistance in fibroblasts, strains were selected on their maximum replicative capacity in vitro (14). Not much is known about the process of culturing itself, but it is suggested to be an important stressor by which fibroblasts undergo cellular senescence following the pathway of SIPS (23). An important factor in the process of culturing is the concentration of oxygen (pO$_2$) to which fibroblasts are exposed. The pO$_2$ in most tissues is much lower than the atmospheric pO$_2$, which is often used for cell culture. These hypoxic conditions are a significant stress for cells. Murine fibroblasts go into senescence after only a few PDs at 20% oxygen but proliferate much longer at 5% oxygen (24). Although less dramatic, a similar effect can be observed for human fibroblasts, which grow considerably slower in 20% oxygen when compared with 5% oxygen (25). Additionally, the density at which fibroblasts are grown determines to what extent hypoxic conditions affect growth speed (25). Furthermore, when fibroblasts are explanted from skin biopsies, they are removed from their normal environment in which they were exposed to lower pO$_2$, different levels and types of growth factors, and many other factors (eg, cytokines, metabolites).

Summarizing, fibroblast strains with a higher maximum replicative capacity seemed to have longer telomeres, are less prone to go into stress-induced cellular senescence, and more sensitive to stress-induced stimuli as measured by levels of sub-G1 cell debris. These results suggest that replicative cellular senescence and stress-induced premature cellular senescence share interacting cellular pathways, which should be determined within individual cell strains in further studies.

Funding

This work was funded by the Innovation Oriented research Program on Genomics (SenterNovem; IGE01014 and IGE5007), the Netherlands Genomics Initiative/Netherlands Organization for scientific research (NGI/NWO; 05040202 and 050-060-810), and the EU funded Network of Excellence Lifespan (FP6 036894). Prof R.G.J.Westendorp is supported by an unrestricted grant from the Netherlands Genomics Initiative (NCHA 050-060-810).

Acknowledgments

We thank Corine de Koning-Treurniet and Joke Blom for all their help in the laboratory. Also we thank Judith Campisi and Arturo Orjado for sharing their experience with the use of rotenone as senescence-inducing agent, Gerard Noppe for his help setting up the SA-β-galactosidase assay for flow cytometry, and Martijn van Baalen for performing part of the telomere length measurements.

References