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1. PROOF OF PROPOSITION 9
Proof of Proposition 9. In order to analyze the complexity of Algorithm 1, we consider each 15

step of the algorithm separately. In the nth step, i.e. for sampling the process perfectly at site
xn, we simulate Poisson points ζ and stochastic processes Y , until one of the following two
conditions is satisfied:

(a) ζ < Zn−1(xn). This condition is checked directly after the simulation of ζ and, in this case,
no stochastic process Y needs to be simulated. 20

(b) ζ > Zn−1(xn) and ζY (xi) ≤ Z(xi) for all 1 ≤ i < n− 1. In this case, Z is updated and ζY
is an extremal function as it contributes to Z at site xn (and possibly also at some of the sites
xn+1, . . . , xN ).

Thus, any stochastic process that is simulated is either rejected, i.e. it is not considered as contri-
bution to Z as it does not respect all the values Z(x1), . . . , Z(xn−1), or it leads to an extremal 25

function. Denoting by Φ(n) = {(ξ(n)
i , ψ

(n)
i ), i ≥ 1} a Poisson point process on (0,∞)× C with

intensity measure ξ−2dξ Pxn(dψ), the random number C1(N) of processes simulated in Algo-
rithm 1 satisfies

C1(N) = |Φ+
{x1,...,xN}|+

N∑
n=2

∣∣∣∣∣
{
i ≥ 1 : ξ

(n)
i > Z(xn), ξ

(n)
i >

n−1
min
j=1

Z(xj)

ψ
(n)
i (xj)

}∣∣∣∣∣ . (1)

In this formula, the term |Φ+
{x1,...,xN}| is the number of extremal functions that need to be simu- 30

lated, and the term with index n in the sum is the number of functions that are simulated at the nth
step but rejected since ξ(n)

i ψ
(n)
i (xj) > Z(xj) for some j ≤ n− 1. For the computation of the ex-

pectation of the second term, conditionally on Φ+
{x1,...,xn−1}, i.e. for fixed Z(xj), 1 ≤ j ≤ n− 1,

16 
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the two sets

Φ
(n)
1 = {(ξ(n)

i , ψ
(n)
i ) : ξ

(n)
i ψ

(n)
i (xj) > Z(xj) for some j = 1, . . . , n− 1},35

Φ
(n)
2 = {(ξ(n)

i , ψ
(n)
i ) : ξ

(n)
i ψ

(n)
i (xj) ≤ Z(xj) for all j = 1, . . . , n− 1}

are restrictions of the Poisson point process Φ(n) to disjoint sets and, thus, are indepen-
dent Poisson point processes with intensities ξ−21{ξ>minn−1

j=1 (Z(xj)/ψ(xj))}dξ Pxn(dψ) and

ξ−21{ξ<minn−1
j=1 (Z(xj)/ψ(xj))}dξ Pxn(dψ), respectively. Conditioning further on Φ

(n)
2 , Z(xn) is

also fixed and we obtain40

E

[∣∣∣∣∣
{

(ξ
(n)
i , ψ

(n)
i ) : ξ

(n)
i > Z(xn), ξ

(n)
i >

n−1
min
j=1

Z(xj)

ψ
(n)
i (xj)

}∣∣∣∣∣
]

= E
(
E
[∣∣∣{(ξ, ψ) ∈ Φ

(n)
1 : ξ > Z(xn)

}∣∣∣ ∣∣∣ Φ+
{x1,...,xn−1}, Φ

(n)
2

])
= E

[∫ ∫
ξ−21{ξ>Z(xn)}1

{
ξ>minn−1

j=1

Z(xj)

ψ(xj)

}dξ Pxn(dψ)

]

= E

[
min

{
1

Z(xn)
,
n−1
max
j=1

Yn(xj)

Z(xj)

}]
where Yn ∼ Pxn andZ are independent. The relation min{a, b} = a+ b−max{a, b}, a, b ∈ R,
and the fact that Yn(xn) = 1 almost surely yield

E

[∣∣∣∣∣
{

(ξ
(n)
i , ψ

(n)
i ) : ξ

(n)
i > Z(xn), ξ

(n)
i >

n−1
min
j=1

Z(xj)

ψ
(n)
i (xj)

}∣∣∣∣∣
]

= E

{
1

Z(xn)

}
+ E

{
n−1
max
j=1

Yn(xj)

Z(xj)

}
− E

{
n

max
j=1

Yn(xj)

Z(xj)

}
= 1 + E

(
|Φ+
{x1,...,xn−1}|

)
− E

(
|Φ+
{x1,...,xn}|

)
,

as E
(
|Φ+
{x1,...,xn}|

)
= E

{
maxnj=1 Yn(xj)/Z(xj)

}
by Lemma 4.7 in the 2013 technical report45

by M. Oesting, M. Schlather and C. Zhou (arXiv:1310.1813v1). Thus, by (1), we obtain

E {C1(N)} = E
(
|Φ+
{x1,...,xN}|

)
+
∑N

n=2

{
1 + E

(
|Φ+
{x1,...,xn−1}|

)
− E

(
|Φ+
{x1,...,xn}|

)}
= N − 1 + E

(
|Φ+
{x1}|

)
= N.

Moreover, by (2), we have that E{Z(xi)
−1} = 1 for i = 1, . . . , N , and, thus,

E

{
N

max
i=1

Z(xi)
−1

}
≥ 1,

with equality if only if Z(x1) = · · · = Z(xN ) holds almost surely. �
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2. PROOFS FOR SECTION 4
2·1. Moving maximum process 50

Proof of Proposition 3. In the case of the moving maximum process (12), the measure ν as-
sociated with the representation (1) is

ν(A) =

∫
X

1{h(·−χ)∈A}λ(dχ), A ⊂ C Borel.

We deduce from Proposition 1,

Px0(A) =

∫
C

1{f/f(x0)∈A}f(x0)ν(df) =

∫
X

1{h(·−χ)/h(x0−χ)∈A}h(x0 − χ)λ(dχ)

=

∫
X

1{h(·+u−x0)/h(u)∈A}h(u)λ(du)

where the last line follows from the simple change of variable x0 − χ = u. This proves the result
since h(u)λ(du) is a density function on X . � 55

2·2. Brown–Resnick process
Our proof of Proposition 4 relies on the following lemma on exponential changes of measures

for Gaussian processes. Note that the distribution of Px0 is strongly connected to the notion of
conditional intensity introduced in Dombry et al. (2013) and that the formula are similar.

LEMMA 1. The distribution of the random process (W (x))x∈X under the transformed prob- 60

ability measure p̂r = eW (x0)−σ2(x0)/2dpr is equal to the distribution of the Gaussian random
process

W (x) +K(x0, x), x ∈ X ,

where K(x, y) denotes the covariance between W (x) and W (y).

Proof of Lemma 1. We need to consider finite dimensional distributions only and we com-
pute for some x1, . . . , xk ∈ X the Laplace transform of (W (xi))1≤i≤k under the transformed 65

probability measure p̂r. For all θ = (θ1, . . . , θk) ∈ Rk, we have

L(θ1, . . . , θk) = Ê
{
e
∑k

i=1
θiW (xi)

}
= E

{
eW (x0)−σ2(x0)/2e

∑k

i=1
θiW (xi)

}
= exp

(
1

2
θ̃TΣ̃θ̃ − 1

2
σ2(x0)

)
, (2)

with θ̃ = (1, θ) ∈ Rk+1 and Σ̃ = (K(xi, xj))0≤i,j≤k the covariance matrix. We introduce the
block decomposition 70

Σ̃ =

(
σ2(x0) Σ0,k

Σk,0 Σ

)
with Σ = (K(xi, xj))1≤i,j≤k and Σk,0 = ΣT

0,k = (K(x0, xi))1≤i≤k. The quadratic form in
Equation (2) can be rewritten as

1

2
θ̃TΣ̃θ̃ − 1

2
σ2(x0) =

1

2

{
σ2(x0) + θTΣθ + 2θTΣk,0

}
− 1

2
σ2(x0) = θTΣk,0 +

1

2
θTΣθ.

We recognize the Laplace transform of a Gaussian random vector with mean Σk,0 and covariance
matrix Σ whence the Lemma follows. � 75
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Proof of Proposition 4. Equations (5) and (13) together with Lemma 1 yield, for all Borel set
A ⊂ C,

Px0(A) =

∫
C

1{f/f(x)∈A}f(x)ν(df) = E

[
eW (x0)− 1

2
σ2(x0)1

{eW (·)− 1
2σ

2(·)/eW (x0)−
1
2σ

2(x0)∈A}

]
= p̂r

(
exp

[
W (·)−W (x0)− 1

2

{
σ2(·)− σ2(x0)

}]
∈ A

)
= pr

(
exp

[
W (·) +K(x0, ·)−W (x0)−K(x0, x0)− 1

2

{
σ2(·)− σ2(x0)

}]
∈ A

)
= pr

(
exp

[
W (·)−W (x0)− 1

2

{
σ2(·) + σ2(x0)− 2K(x0, ·)

}]
∈ A

)
.

Using the fact that for all x ∈ X

σ2(x) + σ2(x0)− 2K(x0, x) = var{W (x)−W (x0)}

we deduce that Px0 is equal to the distribution of the log-normal process

Ỹ (x) = exp

[
W (x)−W (x0)− 1

2
var {W (x)−W (x0)}

]
, x ∈ X .

This proves Proposition 4. �80

2·3. Extremal-t process
It is worth noting that the formula for Px0 provided in Proposition 5 is similar to the formula

for the conditional intensity of the extremal-t process that was computed in Ribatet (2013). In
the sequel, we write shortly zα+ = max(0, z)α for all real numbers z.

LEMMA 2. The distribution of the random process (W (x)/W (x0))x∈X under the trans-85

formed probability measure p̂r = cαW (x0)α+dpr is equal to the distribution of a Student process
with α+ 1 degrees of freedom, location parameter µk and scale matrix Σ̂k given by

µk = Σk,0, Σ̂k =
Σk − Σk,0Σ0,k

α+ 1
,

where Σk = (K(xi, xj))1≤i,j≤k and Σk,0 = ΣT
0,k = (K(x0, xi))1≤i≤k.

Proof of Lemma 2. We consider finite dimensional distributions only. Let k ≥ 1 and x1, . . . ,

xk ∈ X . We first assume that the covariance matrix Σ̃ = (K(xi, xj))0≤i,j≤k is non singular so90

that (W (xi))0≤i≤k has density

g̃(y) = (2π)−(k+1)/2det(Σ̃)−1/2 exp

(
−1

2
yTΣ̃−1y

)
, y = (yi)0≤i≤k.

Setting z = (yi/y0)1≤i≤k, we have for all Borel sets A1, . . . , Ak ⊂ R

p̂r

{
W (xi)

W (x0)
∈ Ai, i = 1, . . . , k

}
=

∫
Rk+1

1{yi/y0∈Ai, i=1,...,k}cα(y0)α+g̃(y) dy

=

∫
Rk

1{zi∈Ai, i=1,...,k}

{∫ ∞
0

cα(y0)α+g̃(y0, y0z) y
k
0dy0

}
dz
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We deduce that under p̂r, the random vector (W (xi)/W (x0))1≤i≤k has density

g(z) =

∫ ∞
0

cαy
k+α
0 g̃(y0, y0z) dy0

= cα(2π)−(k+1)/2det(Σ̃)−1/2

∫ ∞
0

yk+α
0 exp

(
− z̃

TΣ̃−1z̃

2
y2

0

)
dy0

with z̃ = (1, z). Using the change of variable u = z̃TΣ̃−1z̃
2 y2

0 , we get

∫ ∞
0

yk+α
0 exp

(
− z̃

TΣ̃−1z̃

2
y2

0

)
dy0 =

1

2

(
z̃TΣ̃−1z̃

2

)−α+k+1
2 ∫ ∞

0
u(k+α−1)/2 exp (−u) du

=
1

2

(
z̃TΣ̃−1z̃

2

)−α+k+1
2

Γ

(
k + α+ 1

2

)
and we obtain after simplification 95

g(z) = π−k/2
Γ
(
k+α+1

2

)
Γ
(
α+1

2

) det(Σ̃)−1/2
{
z̃TΣ̃−1z̃

}−α+k+1
2

.

Introducing the block decomposition Σ̃ =

(
1 Σ0,k

Σk,0 Σk

)
, the inverse matrix is

Σ̃−1 =

(
1 + Σ0,k(Σk − Σk,0Σ0,k)

−1Σk,0 −Σ0,k(Σk − Σk,0Σ0,k)
−1

−(Σk − Σk,0Σ0,k)
−1Σk,0 (Σk − Σk,0Σ0,k)

−1

)
.

By the definition of µk and Σ̂k, we have

Σ̃−1 =
1

1 + α

(
1 + α+ µT

k Σ̂−1
k µk −µT

k Σ̂−1
k

−Σ̂−1
k µk Σ̂−1

k

)
and

z̃TΣ̃−1z̃ = (1, z)TΣ̃−1(1, z) = 1 +
(z − µk)TΣ̂−1

k (z − µk)
α+ 1

Finally, we obtain after simplification

g(z) = π−k/2(α+ 1)−k/2
Γ
(
k+α+1

2

)
Γ
(
α+1

2

) det(Σ̂k)
−1/2

{
1 +

(z − µk)TΣ̂−1
k (z − µk)

α+ 1

}−α+k+1
2

.

We recognize the k-variate Student density with α+ 1 degrees of freedom, location parameter 100

µk and scale matrix Σ̂k. �

Proof of Proposition 5. Consider the set

A = {f ∈ C0 : f(x1) ∈ A1, · · · , f(xk) ∈ Ak}.
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Equations (5) and (14) together with Lemma 2 yield

Px0(A) =

∫
C

1{f/f(x)∈A}f(x)ν(df) = E
[
cαW (x0)α+1{W (xi)α+/W (x0)α+∈Ai, i=1,...,k}

]
= p̂r

{
W (xi)

α
+/W (x0)α+ ∈ Ai, i = 1, . . . , k

}
= pr

{
(Ti)

α
+ ∈ Ai, i = 1, . . . , k

}
where T = (T1, . . . , Tk) has a multivariate Student distribution with α+ 1 degrees of freedom,
location parameter µk and dispersion matrix Σ̂k. This proves the result. �105

2·4. Multivariate extreme value distributions
Proof of Proposition 6. It is easily shown that the logistic model admits the representation

Z = max
i≥1

ζiFi

where the Fi’s are independent random vectors with independent Frechet(β, cβ)-distributed
components. To check this, we compute

E

(
N

max
j=1

Fj
zj

)
=

∫ ∞
0

pr

(
N

max
j=1

Fj
zj

> u

)
du =

∫ ∞
0

{
1−

∏N

j=1
pr(Fj < zju)

}
du110

=

∫ ∞
0

{
1−

∏N

j=1
e−(zju/cβ)−β

}
du =

∫ ∞
0

{
1− e−u

−β
∑N

j=1
(zj/cβ)−β

}
du

=

(∑N

j=1
z−βj

)1/β

.

For the computation of the last integral, we recognize the expectation of a Fréchet distribution.
Next we use the fact that Pj0 is the distribution of F/Fj0 under the transformed density

yj0

N∏
k=1

β

cβ

(
yk
cβ

)−1−β
e−(yk/cβ)−β .

We recognize a product measure where the jth margin, j 6= j0, has a Frechet(β, cβ) distribution.115

The j0th marginal has density

yj0
β

cβ

(
yj0
cβ

)−1−β
e−(yj0/cβ)−β

and a simple change of variable reveals that this is the density of cβZ
−1/β with Z ∼

Gamma(1− 1/β, 1). �

Proof of Proposition 7. Similarly to the logistic model, we have the spectral representation

Z = max
i≥1

ζiWi
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where the Wi’s are independent random vectors with independent Weibull(θ, cθ)-distributed 120

components with scale parameter cθ = 1
Γ(1+1/θ) . To check this, we compute

E

(
N

max
j=1

Wj

zj

)
=

∫ ∞
0

pr

(
N

max
j=1

Wj

zj
> u

)
du =

∫ ∞
0

1−
N∏
j=1

pr(Wj < zju)

du

=

∫ ∞
0

1−
N∏
j=1

{
1− e−(zju/cθ)θ

}du = −
∑
J

(−1)|J |
∫ ∞

0
e
−uθ

∑
j∈J (zj/cθ)θ

du

= −
∑
J

(−1)|J |
{∑

j∈J
(zj/cθ)

θ
}−1/θ

Γ(1 + 1/θ) = −
∑
J

(−1)|J |
(∑

j∈J
zθj

)−1/θ
.

For the computation of the last integral, we recognize the expectation of a Weibull distribution. 125

As for the logistic model, Pj0 is the distribution of W/Wj0 under the transformed density

yj0

N∏
k=1

θ

cθ

(
yk
cθ

)θ−1

e−(yk/cθ)θ .

We recognize a product measure where the jth margin, j 6= j0, has a Weibull(θ, cθ) distribution.
The j0th marginal has density

yj0
θ

cθ

(
yj0
cθ

)θ−1

e−(yj0/cθ)θ

and a simple change of variable reveals that this is the density of cθZ1/θ with Z ∼ Gamma(1 +
1/θ, 1). � 130

Proof of Proposition 8. By definition, Pj0 has the form

Pj0(A) = N
m∑
k=1

πk

∫
SN−1

yj01{y/yj0∈A}diri(y | α1k, . . . , αNk) dy

= N
m∑
k=1

π̂k

∫
SN−1

yj01{y/yj0∈A}diri(y | α1k, . . . , αNk) dy∫
SN−1

yj0diri(y | α1k, . . . , αNk) dy
, A ⊂ (0,∞)N .

Thus, Pj0 is given as the mixture Pj0 =
∑m

k=1Nπ̂kP
(k)
j0

, where for each k = 1, . . . ,m, the prob-

ability measure P (k)
j0

is equal to the distribution of the random vector Ỹ (k)/Ỹ
(k)
j0

, and Ỹ (k) has 135

a transformed density proportional to yj0
∏N
j=1 y

αj−1
j . We recognize the Dirichlet distribution

with parameters α̃1k, . . . , α̃Nk given by

α̃j0k = αj0k + 1 and α̃jk = αjk j 6= j0.

It is well known that Dirichlet distributions can be expressed in terms of Gamma distributions.
More precisely, we have the stochastic representation

Ỹ (k) =

G(k)
1

/ N∑
j=1

G
(k)
j , . . . , G

(k)
N

/ N∑
j=1

G
(k)
j

 ,
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Fig. 1. Histogram of N0 based on 5000 realizations of a
Brown–Resnick process associated to the semi-variogram
γ(h) = c‖h‖α with c = 1 and α = 1.5 (left), c = 2.5 and
α = 1 (middle) and c = 5 and α = 0.5 simulated via Al-
gorithm 1 with the deterministic design (grey) and the

adaptive design (21) (white), respectively.

where G(k)
j are independent Gamma(α̃jk, 1) random variables. The result follows since P (k)

j0
is

the distribution of Ỹ (k)/Ỹ
(k)
j0

. �

3. SIMULATION STUDY140

We perform a simulation study to compare the adaptive version of Algorithm 1 intro-
duced in (21) to a version, where the numbering of locations is deterministic. The simula-
tion study is based on 5000 simulations of a Brown–Resnick process associated to a semi-
variogram of the type γ(h) = c‖h‖α on the two-dimensional grid {0.05, 0.15, . . . , 0.95} ×
{0.05, 0.15, . . . , 0.95}. We run Algorithm 1 with the deterministic design (the grid points are145

ordered by their coordinates in the lexicographical sense) and with the adaptive design (21).
The simulation is repeated for different values of the parameter vector (c, α) representing strong
dependence ((c, α) = (1, 1.5)), moderate dependence ((c, α) = (2.5, 1)) and weak dependence
((c, α) = (5, 0.5)). The histograms of N0 are shown in Figure 1. For each of the three parameter
vectors, the number N0 for the adaptive design is stochastically smaller than the corresponding150

number for the deterministic design.
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