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APPENDIX 1
The dynamic programming algorithm for optimal stratification

We will describe the dynamic programming algorithm for identifying the optimal grouping in this
section. Below we first provide a brief introduction to the dynamic programming algorithm. To this end,
assume that our objective is to find the minimum total cost of n stages:

min
(a1,...,an)

n∑
t=1

ct(st, at)|s1 ,

where st is the state of stage t, at is the action we take at stage t, and ct(st, at) is the cost associated with
state st and action at. The state of the next stage st+1 is determined by both st and at: st+1 = ft(st, at),
t = 1, . . . , n− 1, and initial state s1 is given. If we know that the minimum total cost from stage m+ 1
through stage n starting at state sm+1 = s is

Cm+1(s) = min
(am+1,...,an)

n∑
t=m+1

ct(st, at)|sm+1=s,
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then the optimal cost from stage m at a given state s is simply

Cm(s) = min
(am,am+1,...,an)

n∑
t=m

ct(st, at)|sm=s

= min
am

{
cm(s, am) + min

(am+1,...,an)

n∑
t=m+1

ct(st, at)|sm+1=fm(s,am)

}
20

= min
am

[cm(s, am) + Cm+1{fm(s, am)}] .

Thus we can start from the minimum cost Cn(s) = minan cn(s, an) at stage n to consecutively find
Cn−1(s), Cn−2(s), . . . , C2(s) and C1(s) and the corresponding optimal solutions at stages n− 1, n−
2, . . . , 2 and 1.

Our problem is more complicated than the formulation above due to the presence of constraints, but
the basic principle remains the same. Without loss of generality, we assume that the data consists of
{Yi, wi, µ̂(Vi)} , i = 1, . . . , n, with µ̂(V1) < µ̂(V2) < . . . < µ̂(Vn). Here Yi and wi are response and as-
sociated nonnegative weight for the ith observation. The objective is to group n observations intoK strata:
Sk, k = 1, . . . ,K, such that

K∑
k=1

∑
i∈Sk

|Yi − Ȳ (Sk)|wi,

is minimized under the constraints that

nk ≥ np0 and Ȳ (Sk)− Ȳ (Sk−1) ≥ d0,

where p0 is the minimum stratum fraction, Si denotes the set of observations in the ith stratum and

Ȳ (S) =

∑
i∈S wiYi∑
i∈S wi

, for S ⊂ {1, . . . , n}.

Here d0 and p0 are given a priori but K is unknown. To solve this optimization problem, we first consider
the optimal grouping for observations m, . . . , n with the first stratum Smj1 comprised of j observations.
That is, the optimal grouping Smj1, Smj2, . . . , SmjKmj

for observations m, . . . , n minimizes the loss
function

K∑
k=1

∑
i∈Sk,i≥m

|Yi − Ȳ (Sk)|wi,

under the constraints

nk ≥ np0, Ȳ (Sk)− Ȳ (S(k−1)) ≥ d0 and S1 = {m, . . . ,m+ j − 1}.

Here j = 1, . . . , n−m+ 1. Let Lmj be the minimum L1 loss for grouping observations m, . . . , n with25

j observations in the first stratum under the constraint above. Let the corresponding optimal grouping
Smj1, . . . , SmjKmj

be denoted by Gmj . If there is no stratification satisfying the constraints, e.g., when
j < np0, then Lmj = +∞. In such a case, we let Gmj = φ for convenience in notations. Also, denote
Ȳ (Smj1) by Ȳmj .

Like the standard dynamic programming algorithm, we start from the last observation and
(Gn1, Ln1, Ȳn1) can be obtained easily since (Gn1, Ln1, Yn1) = ({n}, 0, Yn) if 1 ≥ np0 and (φ,+∞, Yn)
otherwise. Assume that for 1 < m ≤ n we have obtained

(Gn1, Ln1, Ȳn1)
(G(n−1)1, L(n−1)1, Ȳ(n−1)1) (G(n−1)2, L(n−1)2, Ȳ(n−1)2)

· · ·
(G(m+1)1, L(m+1)1, Ȳ(m+1)1) . . . (G(m+1)(n−m), L(m+1)(n−m), Ȳ(m+1)(n−m)).
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We can construct {Gmj , Lmj} from the previous set of optimal solutions based on the fact that

Lmj = min
{i|Ȳmj−Ȳ(m+j)i≥d0,j≥np0}

{
m+j−1∑
i=m

|Yi − Ȳmj |wi + L(m+j)i

}
as in the general dynamic programming algorithm given above. Specifically, if j < np0, then

(Gmj , Lmj) = (φ,+∞).

For np0 ≤ j ≤ n−m+ 1, since the first stratum of size j is fixed, we only need to choose the op-
timal grouping strategy for the remaining n−m− j + 1 observations, while satisfying the necessary
constraints. To examine the minimum incremental constraint between consecutive groups, we only need
to consider the first two groups since the constraint is satisfied for all existing groupings Gm̃j̃ , 1 ≤ j̃ ≤
n+ 1− m̃,m+ 1 ≤ m̃. To this end, we may let

i∗ = argminilmj(i), (i = 1, . . . , n−m− j + 1),

where

lmj(i) =

{∑m+j−1
i=m |Yi − Ȳmj |wi + L(m+j)i if Ȳmj − Ȳ(m+j)i ≥ d0 and L(m+j)i <∞

∞ if Ȳmj − Ȳ(m+j)i < d0 or L(m+j)i =∞
.

Once i∗ is identified with a finite loss lmj(i∗) <∞, we let

Lmj = lmj(i
∗) and Gmj = {m, . . . ,m+ j − 1} ∪ G(m+j)i∗ .

If all lmj(i) =∞, then we set (Gmj , Lmj) = (φ,∞) again. Therefore, one may construct
(Gmj , Lmj), j = 1, . . . , n−m+ 1 by tracking (Gm̃j̃ , Lm̃j̃), 1 ≤ j̃ ≤ n+ 1− m̃,m+ 1 ≤ m̃. Repeat-
ing this process for m = n− 1, . . . , 1, (G1j , L1j), j = 1, . . . , n, the optimal grouping for n observations
{1, . . . , n} with the first group having j observations, are obtained in the end. The optimal stratification
is simply G1j∗ , where

j∗ = argminjL1j , (j = 1, . . . , n).

The complexity of the algorithm is O(n3) and therefore the computation can be slow when n is big. In 30

such a case, one may pre-group observations with similar µ̂(Vi)s together before applying the dynamic
programming. One way to achieve this is to divide the interval containing all the estimated scores into
subintervals and represent all the µ̂(Vi)s in the same subinterval by its center. In this way, we effectively
reduce the choices of potential grouping while using the original Yis and wis to calculate the Ȳk and
prediction error. The computation speed can be substantially improved without sacrificing much precision 35

in locating the optimal stratification scheme.

APPENDIX 2
The Proof of Lemma 1

Let

Ln(c) = n−1
n∑
i=1

|Yi − f(Vi|c)
∣∣

and

L(c) = E|Yi − f0(Vi|c)
∣∣,
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where c = (c1, · · · , cK)T,−∞ = c1 < c2 < . . . < cK =∞, µ̂(Vi) = g(β̂TZi), µ(Vi) = g(βT
0Zi),

f(Vi|c) =

K∑
k=1

µ̂Y (ck−1, ck)I{µ̂(Vi) ∈ (ck−1, ck]},

f0(Vi|c) =

K∑
k=1

µY (ck−1, ck)I{µ(Vi) ∈ (ck−1, ck]}

µ̂Y (a, b) =
n−1

∑n
i=1 YiI{µ̂(Vi) ∈ (a, b]}

n−1
∑n
i=1 I{µ̂(Vi) ∈ (a, b]}

and µY (a, b) = E{Y |µ(Vi) ∈ (a, b]}.

Firstly, we will show that

sup
c
|Ln(c)− L(c)| = op(1),

where the sup is over all c such that pr{µ(Vi) ∈ (ck−1, ck]} ≥ δ0 > 0. Since K is bounded and takes
only finite number of possible values, it is sufficient to show the above uniform convergence for any fixed
K. To this end, we note that the coverage number N[](ε,F , L1) <∞ for the class of functions F =
{yI(g(βTz) ∈ (a, b]) | max(|a|, |b|, ‖β‖1) < C0} or {I{g(βTz) ∈ (a, b]} | max(|a|, |b|, ‖β‖1) < C0},
where C0 <∞ is a constant. Thus it follows from the Glivenko-Cantelli theorem that

sup
max{|a|,|b|,‖β‖1}<C0

∣∣∣∣ n−1
n∑
i=1

YiI{g(βTZi) ∈ (a, b]} − E [YiI{g(βTZi) ∈ (a, b]}]
∣∣∣∣= op(1)

and

sup
max{|a|,|b|,‖β‖1}<C0

∣∣∣∣ n−1
n∑
i=1

I{g(βTZi) ∈ (a, b]} − pr{g(βTZi) ∈ (a, b]}
∣∣∣∣= op(1),

which implies that

sup
(a,b,β)∈Ω0

∣∣∣∣ n−1
∑n
i=1 YiI{ĝ(βTZi) ∈ (a, b]}

n−1
∑n
i=1 I{ĝ(βTZi) ∈ (a, b]}

− E{Y |g(βTZi) ∈ (a, b]}
∣∣∣∣= op(1), (A1)

where Ω0 = {a, b, β | pr{g(βTZi) ∈ (a, b]} ≥ δ0,max{|a|, |b|, ‖β‖1} < C0}. Next, consider

Un(a, b, β) = n−1
n∑
i=1

I{g(βTZi) ∈ (a, b]}
∣∣∣∣ Yi − n−1

∑n
i=1 YiI{g(βTZi) ∈ (a, b]}

n−1
∑n
i=1 I{g(βTZi) ∈ (a, b]}

∣∣∣∣ .
It follows from (A1) that

sup
(a,b,β)∈Ω0

∣∣∣∣ Un(a, b, β)− n−1
n∑
i=1

I{g(βTZi) ∈ (a, b]}
∣∣Yi − E{Y |g(βTZi) ∈ (a, b]}

∣∣ ∣∣∣∣= op(1).

Now, consider the class of functions F = {I{g(βTv) ∈ (a, b]}|y − µ̃(a, b, β)| | (a, b, β) ∈ Ω0}, where
µ̃(a, b, β) has continuous partial derivatives with respect to a, b and β. The covering number of the class
is finite as well, and it follows from the Glivenko-Cantelli theorem that

n−1
n∑
i=1

I{g(βTZi) ∈ (a, b]}
∣∣Yi − E{Y |g(βTZi) ∈ (a, b]}

∣∣
uniformly converges to u(a, b, β) = E

{
I{g(βTZi) ∈ (a, b]}

∣∣Yi − E{Y |g(βTZi) ∈ (a, b]}
∣∣} over the set

Ω0 and thus

sup
(a,b,β)∈Ω0

∣∣∣∣ Un(a, b, β)− u(a, b, β)

∣∣∣∣= op(1).
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Coupled with the fact that u(a, b, β̂)− u(a, b, β0) = op(1) and triangular inequality, it implies that

sup
(a,b,β0)∈Ω0

∣∣∣∣ Un(a, b, β̂)− u(a, b, β0)

∣∣∣∣= op(1).

Now, note the fact that

Ln(c) =

K∑
k=1

Un(ck−1, ck, β̂) and L(c) =

K∑
k=1

u(ck−1, ck, β0),

we have

sup
c

∣∣∣∣ Ln(c)− L(c)

∣∣∣∣= op(1).

Secondly, we will derive the upper bound of L(ĉ) as n→∞. To this end, let the constraint be written
as Sn(c) ≥ 0, where

Sn(c) =


Ȳ2 − Ȳ1 − d0

· · ·
ȲK − ȲK−1 − d0

n−1
∑n
i=1 I{c1 < µ̂(Vi) ≤ c2} − p0

· · ·
n−1

∑n
i=1 I{cK−1 < µ̂(Vi) ≤ cK} − p0

 .

We also define the limiting constraint by S0(c) ≥ 0, where 40

S0(c) =


µ̄2 − µ̄1 − d0

· · ·
µ̄K − µ̄K−1 − d0

pr{c1 < µ̃(Vi) ≤ c2} − p0

· · ·
pr{cK−1 < µ̃(Vi) ≤ cK} − p0

 .

Let c0 be the minimizer of L(c) subject to the constraint S0(c) ≥ 0 and ĉ be the minimizer of Ln(c)
subject to the constraint Sn(c) ≥ 0. Furthermore, we let

ĉε = argminc:S0(c)≥εLn(c) and cε = argminc:S0(c)≥εL(c).

Under a rather mild condition that the numbers of strata of both stratification rules cε̃ and c0 are the
same for some ε̃ > 0,

L(cε)→ L(c0) = L0, as ε→ 0.

A sufficient condition for the existence of such a ε̃ is that the optimal grouping c0 is unique and the set
{(c1, . . . , cK0

) | S0(c) ≥ 0} is not contained by aK0 − 1 dimensional hyperplane inRK0 ,whereK0 + 1
is the dimension of the vector c0. Now, since Sn(c)− S(c) = op(1),

pr
[
{c | S0(c) ≥ ε} ⊆ {c | Sn(c) ≥ 0}

]
→ 1, as n→∞,

which implies that

pr {Ln(ĉ) ≤ Ln(ĉε)} → 1 as n→∞.

Furthermore, by the definition of ĉε which minimizes Ln(c) under the constraint S0(c) ≥ ε,

Ln(ĉε) ≤ Ln(cε).
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From the uniform convergence, for any δ > 0,

pr {Ln(cε) > L(cε) + δ/2} → 0 and pr {L(ĉ)− δ/2 > Ln(ĉ)} → 0 as n→∞.

Therefore, for any δ > 0, there exists an ε0 such that L(cε0) ≤ L0 + δ and

pr(L(ĉ) ≤ L0 + 2δ)

≥ pr {L(ĉ) ≤ Ln(ĉ) + δ/2 ≤ Ln(ĉε0) + δ/2 ≤ Ln(cε0) + δ/2 ≤ L(cε0) + δ}
≥ 1− pr {L(ĉ) > Ln(ĉ) + δ/2} − pr {Ln(ĉ) > Ln(ĉε0)} − pr {Ln(cε0) > L(cε0) + δ/2} → 1,

as n→∞. It follows that the finite sample optimal stratification scheme minimizes the limit of the45

total of intra-stratum predicted error. The estimated stratification scheme approaches that of the optimal
stratification scheme as the sample size goes to infinity.
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Fig. 1: Stratum-specific point and 95% confidence intervals for the response rates with the Part II
data (denoted by dots) of study 320 by AIDS Clinical Trials Group with cutoff points ĉ1 = 0.25
and ĉ2 = 0.45.


