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1. DISCONTINUOUS TRANSITIONS IN THE LEADING EIGENSPACE OF L̃

Discontinuous changes in the leading eigenspace of L̃(α) are a major concern when deter-
mining an optimal α value since they have a large effect on the clustering results. They can be 15

studied algebraically by expressing L̃(α) in terms of the eigenvectors of LτLτ and XXT . This
approach is motivated by Brand (2006).

Let LτLτ = V ΛV T and P be the orthogonal basis of the column space of (I − V V T )XXT ,
the component of XXT orthogonal to V . Let XXT = Ṽ Λ̃Ṽ T and X̃i = λ̃1/2

i Ṽi, so XXT =
X̃X̃T . Then, L̃ can be written as follows. 20

L̃ = LτLτ + αXXT

= LτLτ + αX̃X̃T

=
[
V X̃

] [Λ 0
0 αI

] [
V X̃

]T

=
[
V P

] [I V T X̃
0 P T (I − V V T )X̃

] [
Λ 0
0 αI

] [
I 0

X̃TV X̃T (I − V V T )P

] [
V P

]T

=
[
V P

] [ Λ+ αV T X̃X̃TV αV T X̃X̃T (I − V V T )P
αP T (I − V V T )X̃X̃TV αP T (I − V V T )X̃X̃T (I − V V T )P

] [
V P

]T
25

=
[
V P

]
S
[
V P

]T

=
( [

V P
]
V ′

)
Λ′
(
V ′T [

V P
]T )

.

Note that

(Λ+ αV T X̃X̃TV )ij = λiδij + α
∑

k

(V T
i X̃k)(X̃

T
k Vj)
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and30

P T (I − V V T )X̃X̃TV = {P T (I − V V T )X̃}[(X̃T
i Vj)ij ].

Hence, for any j such that X̃T
i Vj = 0, for all i, the jth row and column of S will be zero except

for the diagonal element. This means that Uj will not be rotated by V ′ and will be an eigenvector
of L̃ for all values of α. The eigenvalue λj will not change either, but its position relative to the
other eigenvalues will change with α. The change in the relative position of λj will result in a35

discontinuous transition in the leading eigenspace of L̃ if j ≥ K.
For any i such that X̃T

i Vj = 0 for all j, Ṽi is a column in P by construction. Row i in the
lower left block of S is

Ṽ T
i (I − V V T )X̃ [(X̃T

i Vj)ij ] = [0, ..., λ̃1/2
i , 0, ...][(X̃T

i Vj)ij ]

− [0, ..., 1, 0, ...]diag
(
λ̃1/2
1 , ..., λ̃1/2

R

)
[(X̃T

i Vj)ij ]40

= [0, ..., 0],

and, since S is symmetric, this is also column i in the upper right block of S. The lower right
block of S has row i, and by symmetry column i, given by

Ṽ T
i (I − V V T )X̃X̃T (I − V V T )P = ṽTi (X̃X̃T − X̃X̃TV V T )P

= λ̃iṼ
T
i P45

= [0, ..., λ̃i, 0, ...].

Thus, for any i such that X̃T
i Vj = 0, for all j the ith row and column of S will be zero except for

the diagonal element. This means that Ṽi and λ̃i will be an eigenvector and eigenvalue of L̃ for
all values of α, but will occupy different relative positions in the eigendecomposition based on
the value of α. The change in the relative position of λ̃i will result in a discontinuous transition50

in the leading eigenspace of L̃ if i ≥ K.
Knowing the interval on which such discontinuous transitions are possible can reduce the

computational burden of choosing an optimal α. The values of α for which transitions occur
can be identified as points at which the eigengap equals zero, λK(L̃)− λK+1(L̃) = 0. First,
consider the lowest possible value of α for which such a transition can occur, α = argminα{α :55

λK(L̃)− λK+1(L̃) = 0}. Note that λK(L̃) ≥ λK(LτLτ ), where the equality holds when VK

is orthogonal to X and α is sufficiently small, and λK+1(L̃) ≤ λK+1(LτLτ ) + αλ1(XXT ),
where the equality holds when VK+1 is identical to Ṽ1. Hence, the earliest possible transition
occurs when

λK(LτLτ )− {λK+1(LτLτ ) + αminλ1(XXT )} = 0,60

αmin =
λK(LτLτ )− λK+1(LτLτ )

λ1(XXT )
.

For the highest value of α for which such a transition is possible, consider α−1L̃. Following the
above argument for α−1 with XXT and LτLτ interchanged, a symmetric result is obtained with
the additional dependence on the number of covariates, R. This result yields,

αmax =
λ1(LτLτ )

λR(XXT )1(R≤K) + {λK(XXT )− λK+1(XXT )}1(R>K)
.65

Therefore, discontinuous transitions in the leading eigenspace of L̃(α) can only occur in the
interval [αmin,αmax].
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2. EMPIRICAL RESULTS FOR CHOOSING α

Figure 1 presents some empirical details to demonstrate how the within cluster sum of squares
and the mis-clustering rate vary with the tuning parameter α. The simulations shown in the figure 70

use the same model structure described in §4 of the paper. The results show the minimum of the
within cluster sum of squares falls within the prescribed range of α, [αmin,αmax]. Furthermore,
the minimum of the within cluster sum of squares tends to align with the minimum of the mis-
clustering rate. Similar results were observed for other parameter settings.
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(a) Clustering results for q = 0.015
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(b) Clustering results for q = 0.02
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(c) Clustering results for q = 0.025
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Fig. 1. The results of assortative covariate-assisted spectral clustering for a range of α values. The solid line in bottom graphs
indicates the α value chosen by the optimization procedure and the dased lines indicate the interval [αmin,αmax]. The fixed

parameters are N = 1500, p = 0.03, m1 = 0.8, and m2 = 0.2.

3. PROOF OF LEMMA 1 75

This proof follows the approach used in Rohe et al. (2011) to establish the equivalence be-
tween block membership and a subset of the population eigenvectors. Note that L̃ = (D +
τI)−1/2ZBZT (D + τI)−1ZBZT (D + τI)−1/2 + αE(XXT ). Define cl =

∑
i var(Xil|Zi =

l), a diagonal matrix C̃ such that C̃ll = cl, and a diagonal matrix C such that CZ = ZC̃.
If we let DB = diag(BZT1n + τ), then L̃ = Z{D−1/2

B BZT (D + τI)−1ZBD−1/2
B + 80

αMMT }ZT + αC . Recall that B is symmetric and full rank by assumption. Let B̃ =

D−1/2
B BZT (D + τI)−1ZBD−1/2

B + αMMT , which is positive definite for all α ≥ 0. Assume
α is chosen such that B̃ is full rank, which is true for all α with the possible exception of a set
of values of measure zero. Let P̃ = ZTZ and note that det(B̃P̃ ) = det(B̃) det(P̃ ) > 0. Hence,
B̃P̃ + αC̃ is symmetric and has real eigenvalues. By spectral decomposition, let 85

B̃P̃ + αC̃ = µΛµT .
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Then,

L̃Zµ = (ZB̃ZT + αC)Zµ

= (ZB̃ZTZ + αCZ)µ

= (Z(B̃P̃ ) + αZC̃)µ90

= ZµΛ.

Therefore, Zµ is the matrix of K eigenvectors of L̃, but not necessarily the top K . Also,
det(µ) > 0 so µ−1 exists and Ziµ = Zjµ ⇐⇒ Zi = Zj . This establishes the equivalence be-
tween block membership and a subset of the population eigenvectors. A condition will now be
derived for which this equivalence holds for the top K population eigenvectors. Let x be a nor-95

malized eigenvector orthogonal to the span of Zµ. Because µ has orthogonal columns, it is full
rank. As such, xTZ = 0.

Define c̄ =
∑K cl/K, C̄ = c̄I , and κ = maxl |cl − c̄|, then

xT L̃x = xT (ZB̃ZT + αC)x

= αxTCx100

= αxT (C̄ + (C − C̄))x

= αxT c̄Ix+ αxT (C − C̄)x

= αc̄+ αxT (C − C̄)x

≤ αc̄+ α||C − C̄||
= α(c̄+ κ).105

The kth eigenvalue of B̃P̃ + αC̃ is given by

λK(B̃P̃ + αC̃) = min
||x||=1

xT (B̃P̃ + αC̃)x

= minxT [(B̃P̃ + αc̄I) + (αC̃ − αc̄I)]x

≥ minxT (B̃P̃ + αc̄I)x+ αminxT (C̃ − c̄I)x

= minxT B̃P̃ x+ αc̄− αmax xT (c̄I − C̃)x110

≥ λK(B̃P̃ ) + αc̄− αmax
u

|cu − c̄|

= λK(B̃P̃ ) + α(c̄ − κ).

Hence, a positive eigengap exists between the eigenvectors in Zµ and x if

0 < λK(B̃P̃ + αC̃)−max
x

xT (ZB̃ZT + αC)x

< λK(B̃P̃ ) + α(c̄− κ)− α(c̄+ κ)115

= λK(B̃P̃ )− 2ακ.

Assume (i) λK(B̃P̃ ) > 2ακ, then the top K eigenvectors of L̃ are given by Zµ, where Ziµ =
Zjµ ⇐⇒ Zi = Zj . Hence, there is an equivalence between block membership and the top K
population eigenvectors.
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4. PROOF OF THEOREM 1 120

4·1. Triangle inequality bound
The spectral norm of the difference between the sample and population covariate-assisted

Laplacians is bounded by first applying the triangle inequality and bounding the resulting terms
individually.

∥L̃− L̃∥ ≤ ∥αXXT − E(αXXT )∥ (1) 125

+ ∥D−1/2
τ AD−1

τ AD−1/2
τ −D−1/2

τ AD−1
τ AD−1/2

τ ∥ (2)

+ ∥D−1/2
τ AD−1

τ AD−1/2
τ −D−1/2

τ AD−1
τ AD−1/2

τ ∥. (3)

4·2. Bound for Equation (1)
For equation (1), use the matrix Bernstein inequality (Tropp, 2012). Note that αXXT =∑
k αXkXT

k , where Xk is the kth column of X. Now bound the spectral norm of αXkXT
k − 130

E(αXkXT
k ).

∥αXkX
T
k −E(αXkX

T
k )∥ = α∥XkX

T
k − XkX T

k − diag(X (2)
k − X 2

k )∥

≤ α(∥XkX
T
k ∥+ ∥XkX T

k ∥+max |X (2)
k − X 2

k |)
≤ α(NJ2 +NJ2 + J2)

≤ 3αNJ2
135

≡ S.

Next, find a bound on the spectral norm of the variance of αXXT . Let X (i)
k be the ith moment

of Xk. Note that vector products are element-wise where dictated by vector dimensions.

E(XkX
T
k ) =XkX T

k − diag(X 2
k −X (2)

k ).

E(XkX
T
k )E(XkX

T
k ) ={XkX T

k − diag(X 2
k − X (2)

k )}{XkX T
k − diag(X 2

k −X (2)
k )} 140

=XkX T
k XkX T

k − XkX T
k diag(X 2

k − X (2)
k )

− diag(X 2
k − X (2)

k )XkX T
k + diag{(X 2

k − X (2)
k )2}

=
(∑

i

X 2
ik

)
XkX T

k − Xk{Xk(X 2
k − X (2)

k )}T

− {Xk(X 2
k − X (2)

k )}X T
k + diag{(X 2

k − X (2)
k )2}.

145

E(XkX
T
k XkX

T
k ) =E

{(∑

i

X2
ik

)
XkX

T
k

}

=

{
XikXjk

∑
l ̸=i,j X

(2)
lk + XikX

(3)
jk + XjkX

(3)
ik i ̸= j

X (2)
ik

∑
l ̸=iX

(2)
lk + X (4)

ik i = j

=
(∑

X (2)
ik

)
XkX T

k − Xk(XkX
(2)
k )T − (XkX

(2)
k )X T

k

+ XkX
(3)T

k + X (3)
k X T

k

+ diag
{
(X (2)

k − X 2
k )
(∑

i

X (2)
ik

)
− X (2)2

k + 2X 2
kX

(2)
k − 2XkX

(3)
k + X (4)

k

}
. 150
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var(XkX
T
k ) =XkX T

k

∑

i

(X (2)
ik −X 2

ik) +Xk{Xk(X 2
k − 2X (2)

k ) +X (3)
k }T + {Xk(X 2

k − 2X (2)
k ) + X (3)

k }X T
k

+ diag

{

(X (2)
k − X 2

k )
(∑

i

X (2)
ik

)
−X (2)2

k + 2X 2
kX

(2)
k − 2XkX

(3)
k + X (4)

k − (X (2)
k − X 2

k )
2

}

.

∣∣∣
∣∣∣
∑

k

var(XkX
T
k )

∣∣∣
∣∣∣ ≤

∑

k

∑

i

∣∣∣X 2
ik

∑

l

(X (2)
lk − X 2

lk)|+ 2|X 4
ik − 2X 2

ikX
(2)
ik + XikX (3)

ik

∣∣∣155

+max
i

∣∣∣(X (2)
ik − X 2

ik)
(∑

l

X (2)
lk

)
− X (2)2

ik + 2X 2
ikX

(2)
ik − 2XikX

(3)
ik + X (4)

ik − (X (2)
ik − X 2

ik)
2
∣∣∣

≤
∑

k

∑

i

X 2
ik

∑

l

(X (2)
lk − X 2

lk) + 2(X 2
ikX

(2)
ik − X 4

ik) + 2|X 2
ikX

(2)
ik − XikX

(3)
ik |

+max
i

{
(X (2)

ik − X 2
ik)

(∑

l

X (2)
lk

)
+ |2XikX

(3)
ik − X (4)

ik − X 4
ik|+ 2(X (2)

ik − X 2
ik)

2
}

≤
∑

k

∑

i

3X 2
ik

∑

l

(X (2)
lk − X 2

lk) + 2|X 2
ikX

(2)
ik −XikX

(3)
ik |

+max
i

{
3(X (2)

ik − X 2
ik)

(∑

l

X (2)
lk

)
+ |2XikX (3)

ik − X (4)
ik − X 4

ik|
}

160

≤ 8
∑

k

{
∑

i

X (2)
ik

∑

l

(X (2)
lk − X 2

lk) + X (4)
ik

}
.

Thus,

∣∣∣
∣∣∣
∑

k

var(αXkX
T
k )

∣∣∣
∣∣∣ ≤ 8α2

∑

k

{
∑

i

X (2)
ik

∑

l

(X (2)
lk −X 2

lk) + X (4)
ik

}

≡ ϖ.

Let b = {3ϖ log(8N/ϵ)}1/2 and assume (iii)ϖ/S2 > 3 log(8N/ϵ), then b < ϖ/S. Note that
assumption (iii) requires that R ≥ Θ(logN). Applying the matrix Bernstein inequality gives,165

P (||αXXT − E(αXXT )|| > b) ≤ 2N exp

(
− b2

2σ2 + 2Sb/3

)

≤ 2N exp

{
−3Sϖ log(8N/ϵ)

2ϖ + 2Sb/3

}

≤ 2N exp

{
−3ϖ log(8N/ϵ)

3ϖ

}

= ϵ/4.

Hence, with with probability 1− ϵ/4,170

∥αXXT − E(αXXT )∥ ≤ b.



Covariate-Assisted Spectral Clustering 7

4·3. Bound for Equation (2)
Equation (2) can be decomposed into three terms using properties of the spectral norm.

∥D−1/2
τ AD−1

τ AD−1/2
τ −D−1/2

τ AD−1
τ AD−1/2

τ ∥
≤ ∥D−1/2

τ AD−1
τ AD−1/2

τ − E(D−1/2
τ AD−1/2

τ )E(D−1/2
τ AD−1/2

τ )∥ 175

≤ ∥D−1/2
τ AD−1/2

τ − E(D−1/2
τ AD−1/2

τ )∥∥D−1/2
τ AD−1/2

τ + E(D−1/2
τ AD−1/2

τ )∥.

The first term above can be bounded following the proof in the Supplement of Qin & Rohe
(2013). Under the assumption that (ii) d+ τ > 3 log(8N/ϵ), where d = minDii, let a =
[{3 log(8N/ϵ)}/(d + τ)]1/2, so a < 1. Then, with probability at least 1− ϵ/4,

∥D−1/2
τ AD−1/2

τ −E(D−1/2
τ AD−1/2

τ )∥ ≤ a. 180

Using the fact that ∥Lτ∥ ≤ 1, ∥Lτ∥ ≤ 1, and ∥D−1/2
τ D−1/2

τ ∥ ≤ a+ 1, with probability 1−
ϵ/4, as shown in the Supplement of Qin & Rohe (2013), the second term can be bounded with
probability 1− ϵ/4 as follows.

∥D−1/2
τ AD−1/2

τ + E(D−1/2
τ AD−1/2

τ )∥
≤ ∥D−1/2

τ D−1/2
τ LτD

−1/2
τ D−1/2

τ ∥+ ∥Lτ∥ 185

≤ ∥D−1/2
τ D−1/2

τ ∥∥Lτ∥∥D−1/2
τ D−1/2

τ ∥+ 1

≤ (a+ 1)2 + 1.

Hence, with with probability 1− ϵ/4,

∥D−1/2
τ AD−1

τ AD−1/2
τ − E(D−1/2

τ AD−1
τ AD−1/2

τ )∥ ≤ a(a+ 1)2 + a.

4·4. Bound for Equation (3) 190

Note that ∥D−1/2
τ D−1/2

τ − I∥ ≤ a, with probability 1− ϵ/4, as shown in the Supplement of
Qin & Rohe (2013), and ∥D−1/2

τ D−1
τ D−1/2

τ − I∥ ≤ a, which can be derived by the same ap-
proach. Using these results, equation (3) can be bounded with probability 1− ϵ/2 as follows.

∥D−1/2
τ AD−1

τ AD−1/2
τ −D−1/2

τ AD−1
τ AD−1/2

τ ∥
= ∥LτLτ −D−1/2

τ D1/2
τ LτD

1/2
τ D−1

τ D1/2
τ LτD

1/2
τ D−1/2

τ ∥ 195

= ∥LτLτ − LτD
1/2
τ D−1

τ D1/2
τ LτD

1/2
τ D−1/2

τ + (I −D−1/2
τ D1/2

τ )LτD
1/2
τ D−1

τ D1/2
τ LτD

1/2
τ D−1/2

τ ∥
≤ ∥Lτ (Lτ −D1/2

τ D−1
τ D1/2

τ LτD
1/2
τ D−1/2

τ )∥+ a(a+ 1)2

≤ ∥D1/2
τ D−1

τ D1/2
τ Lτ (D

1/2
τ D−1/2

τ − I)− (D1/2
τ D−1

τ D1/2
τ − I)Lτ∥+ a(a+ 1)2

≤ a(a+ 1) + a+ a(a+ 1)2.

Consequently, joining the results for the five terms, gives the desired bound. With probability 200

at least 1− ϵ,

∥L̃− L̃∥ ≤ 2a3 + 5a2 + 5a+ b

≤ 12a+ b

= {ϖ1/2 + 12(d+ τ)−1/2}{3 log(8N/ϵ)}1/2 .

Let δ ≡ ϖ1/2 + 12(d + τ)−1/2, then the bound becomes 205

∥L̃− L̃∥ ≤ δ{3 log(8N/ϵ)}1/2.
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5. PROOF OF THEOREM 2
Using Lemma 9 from McSherry (2001), let PL̃ be the projection onto the span of the first K

left singular eigenvectors of L̃. Then, PL̃ is the optimal rank K approximation to L̃ and

∥PL̃ − L̃∥2F ≤ 8K∥L̃− L̃∥2.210

Next, apply the Davis–Kahan Theorem to L̃ (Davis & Kahan, 1970). Let W ⊂ R be an interval
and define the distance between W and the spectrum of L̃ outside of W as

Λ = min{|λ− r|;λ eigenvalue of L̃,λ /∈ W, r ∈ W}.

Choose W = (λK/2,∞), where λK is the Kth eigenvalue of L̃. Then, Λ = λK/2. Let ωK be
the Kth largest eigenvalue of L̃, then under the assumption that δ{3 log(8N/ϵ)}1/2 ≤ λK/2,215

|λK − ωK | ≤ δ{3 log(8N/ϵ)}1/2 ≤ λK/2.

Hence, ωK ∈ W , and U has the same dimension as U . The Davis-Kahan Theorem implies,

∥U − UO∥F ≤
21/2∥PL̃L̃− L̃∥F

Λ

≤
81/2∥PL̃L̃− L̃∥F

λK

≤ 8K1/2∥L̃− L̃∥
λK

220

≤ 8δ{3K log(8N/ϵ)}1/2

λK

with probability at least 1− ϵ.

6. PROOF OF THEOREM 3
This proof follows the arguments given in Qin & Rohe (2013). Let P = maxi(ZTZ)ii and

||Ci − Cj||2 ≥ ||Zi(Z
TZ)−1/2V − Zj(Z

TZ)−1/2V ||2225

≥ 21/2||ZTZ||2

≥
(
2

P

)1/2

.

For all Zj ̸= Zi, a sufficient condition for one observed centroid to be closest to the population
centroid is

||CiOT − Ci||2 <
1

(2P )1/2
⇒ ||CiOT − Ci||2 < ||CiOT − Cj ||2,230

since

||CiOT − Ci||2 <
1

(2P )1/2
⇒ ||CiOT − Cj||2 ≥ ||Ci − Cj||2 − ||CiOT − Ci||2

≥
(
2

P

)1/2

−
(

1

2P

)1/2

≥ 1

(2P )1/2
.
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Let G = {i : ||CiOT − Ci||2 ≥ 1
(2P )1/2

}, so M ⊂ G. Define Q ∈ RN×K where the ith row is Ci.
By the definition of k-means, ||U −Q||2 ≤ ||U − UO||2. Applying the triangle inequality gives 235

||Q− ZµO||2 = ||Q− UO||2 ≤ ||U −Q||2 + ||U − UO||2 ≤ 2||U − UO||2.

So,

||M||
N

≤ ||G||
N

=
1

N

∑

i∈G
1

≤ 2P

N

∑

i∈G
||CiOT − Ci||22

=
2P

N

∑

i∈G
||Ci − ZiµO||22 240

≤ 2P

N
||Q− ZµO||2F

≤ 8P

N
||U − UO||2F .

Thus, using the result from Theorem 2, with probability at least 1− ϵ,

||M||
N

≤ c0KP δ2 log(8N/ϵ)

Nλ2
k

,

where c0 = 3× 26. 245

7. PROOF OF COROLLARY 1
In order to investigate the mis-clustering bound and the accompanying conditions, we make

some simplifying assumptions. Assume Bi,i = p, for all i and Bi,j = q, for all i ̸= j; in addi-
tion, Mi,i = m1, for all i; Mi,j = m2, for all i ̸= j; and R > 1. For computational convenience,
assume that each block has the same number of nodes N/K and R is a multiple of K . Recall, 250

L̃ = Z(D−1/2
B BZTD−1

τ ZBD−1/2
B + αMMT )ZT = ZB̃ZT . Therefore,

B̃ =

[
1

N{p+ (K − 1)q}/K + τ

]2 (N

K

)
[(p − q)2I + {2pq + (K − 1)q}1K1TK ]

+ α{(mp −mq)I +mq1K1TK},

where mp = R{m2
1 + (K − 1)m2

2}/K and mq = R{2m1m2 + (K − 2)m2
2}/K. For matrices

of the form aI + b1K1TK , λK = a. Note that mp −mq = R(m1 −m2)2/K. Thus, 255

λK(B̃) =

[
p− q

N{p+ (K − 1)q}/K + τ

]2(N

K

)
+ αR(m1 −m2)

2/K.

Recall that L̃ has the same eigenvalues as (ZTZ)1/2B̃(ZTZ)1/2 =
(N/K)1/2IB̃(N/K)1/2I = (N/K)B̃. Hence, the population eigengap is

λK(L̃) =
{

p− q

p+ (K − 1)q +Kτ/N

}2

+
αNR(m1 −m2)2

K2
.

Hence, the mis-clustering bound for a growing number of covariates is given by 260
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|M|
N

≤ {(d+ τ)−1 + α(d+ τ)−1/2Θ(NR1/2) + α2Θ(N2R)}Θ(logN)

αΘ(N2R2) + αΘ(NR) +Θ(1)
.

Two conditions in Theorem 3 depend on R. Condition (iii) becomes R > Θ(logN) and con-
dition (iv) becomes {αNR1/2 + (d+ τ)−1/2}(logN)1/2 ≤ αNR + c0, which is satisfied for
R ≥ Θ(logN).

Let R = Θ{(logN)a+1}, d+ τ = Θ{(logN)b+1}, and α = Θ{N−1(logN)−1−c}, where265

a, b, c ≥ 0, then the mis-clustering rate becomes

|M|
N

≤ c2
(logN)a−2c + (logN)(a−b)/2−c + (logN)−b

(logN)2(a−c) + (logN)a−c +Θ(1)
.

If c is chosen such that a > c, then (logN)2(a−c) is the dominant term in the denomina-
tor and |M|/N = O{(logN)−a}+O{(logN)−(3a+b)/2−3c}+O{(logN)2(c−a)−b}. The mis-
clustering rate is minimized when c = 0, so the rate becomes |M|/N = O{(logN)−a}.270

If c is chosen such that a ≤ c, |M|/N = O{(logN)a−2c}+O{(logN)(a−b)/2−c}+
O{(logN)−b}. The mis-clustering rate is minimized when c = a+b

2 , so the rate becomes |M|
N =

O{(logN)−b}.
Hence, to minimize the mis-clustering rate when a ≤ b choose c = a+b

2 , which yields a mis-
clustering rate of O{(logN)−b}, and when a > b choose c = 0, which gives a mis-clustering275

rate of O{(logN)−a}. If we consider the special case where a = 0 or R = Θ(logN) and b = 0
or d+ τ = Θ(logN). The theoretical results above suggest α = Θ{(N logN)−1}. This result
agrees with the value suggested by the empirical procedure in §2·3, which yields αmin = αmax =
Θ{(N logN)−1} when R = Θ(logN) based on the population eigenvalues.

8. PROOF OF COROLLARY 2280

Perfect clustering requires that |M| < 1. Based on the bound in Theorem 3, this corresponds
to δ{c0KP log(8N/ϵ)}1/2 < λK . Under the same simplifying assumptions as above, this be-
comes

c′{αNR1/2 + (d+ τ)−1/2}(N logN)1/2 < αNR +Θ(1),

c′′αNR1/2(N logN)1/2 < αNR,285

R ≥ Θ(N logN).

9. PROOF OF THEOREM 4
This proof uses Fano’s inequality to derive the lower bound following an approach similar to

Chaudhuri et al. (2012). Let GS be a partition given by a specific S, the set of all nodes in the
first block, and let F be the family of all such partitions. Fano’s inequality states290

sup
GS∈F

PGS (Ψ ̸= GS) ≥ 1− β + log 2

log r
,

where KL(GS , GS′) ≤ β, r = |F |− 1, and Ψ is the estimated node partition based on the ob-
served edges and node covariates.
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First, by independence the KL-divergence can be written as follows,

KL(GS , GS′) =
∑

e∈E
KL(ρe, ρ

′
e) +

∑

v∈V
KL(γv, γ

′
v). 295

Let ρe and ρ′e be the distribution for edge e and γv and γ′v be the covariate distribution for node
v in GS and GS′ , respectively. Recall B1,1 ≥ B2,2 ≥ B1,2 and let bi ∈ {B1,1, B2,2, B1,2}. For a
single edge when ρe ̸= ρ′e,

KL(ρe, ρ
′
e) ∈ {bi log

bi
bj

+ (1− bi) log
1− bi
1− bj

}

≤ B1,1 log
B1,1

B1,2
+ (1−B1,1) log

1−B1,1

1−B1,2
+B1,2 log

B1,2

B1,1
+ (1−B1,2) log

1−B1,2

1−B1,1
300

= (B1,1 −B1,2) log

{
1 +

B1,1 −B1,2

B1,2(1−B1,1)

}

≤ (B1,1 −B1,2)2

B1,2(1−B1,1)
.

Now find the KL-divergence of the covariates on a single node. For γv ̸= γ′v,

KL(γv, γ
′
v) =

R∑

j

KL(γvj , γ
′
vj ) ≡ Γ.

For the case of Bernoulli random variables where the jth covariate has probability M1,j in block 305

1 and M2,j in block 2, this is

KL(γvj , γ
′
vj ) =

{
M1,j log

M1,j

M2,j
+ (1−M1,j) log

1−M1,j

1−M2,j
, v ∈ block 1

M2,j log
M2,j

M1,j
+ (1−M2,j) log

1−M2,j

1−M1,j
, v′ ∈ block 1

≤ (M1,j −M2,j) log
M1,j(1−M2,j)

M2,j(1−M1,j)
.

Therefore, the KL-divergence is bounded by

KL(GS , GS′) ≤
(
N

2

)
(B1,1 −B1,2)2

B1,2(1−B1,1)
+NΓ ≤ N2

2

(B1,1 −B1,2)2

B1,2(1−B1,1)
+NΓ. 310

The number of partitions can be bounded as follows,

|F | = 1

2

(
N

N/2

)
=

N !

2{(N/2)!}2

≥ (2πN)1/2(N/e)N

[e(N/2)1/2{N/(2e)}N/2 ]2

≥ 2N−2.1

(N/2)1/2
,
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where the first inequality uses (2πN)1/2(N/e)N ≤ N ! ≤ eN1/2(N/e)N . Now the log term is315

bounded by

log(|F |− 1) ≥ log

{
2N−2.1

(N/2)1/2
− 1

}

≥ (N − 3) log 2− 1

2
log(N/2)

≥ log 2

2
N for N ≥ 8.

Thus, by Fano’s inequality, in order to correctly determine the block assignments with probability320

at least 1− ϵ requires

ϵ ≥ 1−
N2(B1,1 −B1,2)2/{2B2

1,2(1−B1,1)2}+NΓ+ log 2

(N log 2)/2
,

B1,1 −B1,2 ≥ B1,2(1−B1,1)[
2

N

{
log 2

2
(1− ϵ)− Γ− log 2

N

}
]1/2.

Fix B1,1 and let ∆ = B1,1 −B1,2, then rewrite this bound as

∆ ≥ B1,1(1−B1,1)
[

2
N

{
log 2
2 (1− ϵ)− Γ− log 2

N

}]−1/2
+ (1−B1,1)

.325

10. COMPARISON OF THE GENERAL LOWER BOUND TO THEOREM 3
First, simplify the general lower bound given in Theorem 4 to make the comparison with

Theorem 3 easier.

∆ ≥ B1,1(1−B1,1)
[

2
N

{
log 2
2 (1− ϵ)−K − log 2

N

}]−1/2
+ (1−B1,1)

≥ B1,1(1−B1,1)

3/2
[

2
N

{
log 2
2 (1− ϵ)−K − log 2

N

}]−1/2
330

≥ B1,1(1−B1,1)

(
2

3

)[
2

N

{
log 2

2
(1− ϵ)−K− log 2

8

}]1/2

≥ c4
N1/2

.

According to Theorem 3 to achieve perfect clustering with probability 1− ϵ, requires
δ{c0KP log(8N/ϵ)}1/2 < λK . As shown in §8, this requires R ≥ Θ(N logN).
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