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1. PROOFS

1·1. Notation and definitions
Given I ⊂ [n],J ⊂ [p], X(I,J ) denotes a submatrix of X by extracting the rows and

columns indexed by I and J , respectively. We use c, L to denote constants. They are not neces-
sarily the same at each occurrence. Denote by CS(A) the column space of A. Given PA, denote 15

by P⊥A the projection onto its orthogonal complement. In addition to the definitions of thresh-
olding function Θ and the multivariate thresholding function ~Θ, we will use a matrix threshold
function.

DEFINITION 1 (MATRIX THRESHOLD FUNCTION). Given any threshold function Θ(·;λ), its
matrix version Θσ is defined for B ∈ Rn×m as follows 20

Θσ(B;λ) = Udiag{Θ(σBi ;λ)} V T, (1)

where U , V , and σBi are obtained from the SVD of B: B = Udiag(σBi )V T.

Finally, we describe a quantile thresholding Θ#(·; %, η) which is convenient in analyzing
the constraint-type problems. It can be seen as a vector variant of the hard-ridge thresholding
ΘHR(t;λ, η) = t/(1 + η)1|t|>λ (She, 2009). Given 1 ≤ % ≤ n and η ≥ 0, Θ#(a; %, λ) : Rn →
Rn is defined for any a ∈ Rn such that the % largest components of a, in absolute value, are 25

shrunk by a factor of (1 + λ) and the remaining components are all set to be zero. In the case of
ties, a random tie breaking rule is used. We abbreviate Θ#(a; %, 0) to Θ#(a; %).

1·2. Proof of Theorem 1
We show the proof detail for the penalized estimators. First, the loss term in the objective can

be decomposed into 30

tr{(Y −XB)Γ(Y −XB)T} = ‖Y Γ1/2 −XBΓ1/2‖2F
= ‖PXY Γ1/2 −XBΓ1/2‖2F + ‖P⊥XY Γ1/2‖2F.
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Let Z = PXY Γ1/2. Clearly, PZ ⊂ PX . Consider the following optimization problem

min
A

1

2
‖Z −A‖2F +

p∧m∑
s=1

P (σAs ;λ). (2)

From the proof of Proposition 2.1 in She (2013), the following results can be obtained: (i) any35

optimal solution Â to (2) must satisfy Â ∈ PZ ; (ii) Ao = Θσ(Z;λ) gives a particular minimizer
of (2), and ‖Â−Ao‖∗ ≤ C(λ) holds for any Â, where ‖ · ‖∗ represents the nuclear norm and
C(λ) is a function dependent on the regularization parameter only. From (i), XB̂Γ1/2 is always
a solution to (2). It suffices to study the breakdown point of Ao.

Because X 6= 0, there must exist i ∈ [n] such that the ith column of PX is not 0. Let Ỹ =
Y +Meie

T
1 . where ei is the unit vector with the ith entry being 1. Due to the construction of Ỹ

and the positive-definiteness of Γ,

‖PX Ỹ Γ1/2‖2F = M2‖PXeieT1 Γ1/2‖2F + 2M〈PXY, eieT1 Γ〉+ ‖PXY Γ1/2‖2F → +∞

as M →∞. That is, given λ, Θσ(PX Ỹ Γ1/2;λ) thresholds the singular values of PX Ỹ Γ1/2 the40

sum of which can be made arbitrarily large as M increases. It follows from the definition of Θ
that supM ‖Θσ(PX Ỹ Γ1/2;λ)‖F =∞.

The proof for the reduced-rank regression estimator follows similar lines and is omitted.

1·3. Proof of Theorem 2
Part (i): The proof of this part is based on the following two lemmas.45

LEMMA 1. Given an arbitrary thresholding rule Θ satisfying Definition 1 in the paper, let P
be any function associated with Θ through

P (t;λ)− P (0;λ) = PΘ(t;λ) + q(t;λ), PΘ(t;λ) =

∫ |t|
0

[sup{s : Θ(s;λ) ≤ u} − u] du,

for some nonnegative q(θ;λ) satisfying q{Θ(t;λ)} = 0 for all t. Then, β̂ = ~Θ(y;λ) gives a
globally optimal solution to50

min
β∈Rn

1

2
‖y − β‖22 + P (‖β‖2;λ).

This result is implied by Lemma 1 of She (2012). It is worth mentioning that ~Θ(y;λ) is not
necessarily unique when Θ has discontinuities. Next we prove an identity.

LEMMA 2. Given any thresholding rule Θ(t;λ), define PΘ(t;λ) =
∫ |t|

0 {Θ
−1(u;λ)− u} du

where Θ−1(u;λ) = sup{t : Θ(t;λ) ≤ u}. Then the following identity holds for any r ∈ R55

1

2
{r −Θ(r;λ)}2 + PΘ{Θ(r;λ);λ} =

∫ |r|
0

ψ(t;λ) dt, (3)

where ψ(t;λ) = t−Θ(t;λ).

Proof. Without loss of generality, assume r ≥ 0. By definition,
∫ r

0 ψ(t;λ) dt = r2/2−∫ r
0 Θ(t;λ) dt and PΘ{Θ(r;λ);λ} =

∫ Θ(r;λ)
0 Θ−1(t;λ) dt− r2/2. It suffices to show that∫ Θ(r;λ)

0
Θ−1(t;λ) dt+

∫ r

0
Θ(t;λ) dt = rΘ(r;λ).
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In fact, changing the order of integration, and using the monotone property of Θ, we get∫ r

0
Θ(t;λ) dt− rΘ(r;λ) =

∫ r

0
dt

∫ Θ(t;λ)

0
ds−

∫ Θ(r;λ)

0
r dt

=

∫ Θ(r;λ)

0
ds

∫ r

Θ−1(s;λ)
dt−

∫ Θ(r;λ)

0
r dt 60

= −
∫ Θ(r;λ)

0
Θ−1(t;λ) dt.

The conclusion thus follows. �

We have the pieces in place to prove part (i) of the theorem. Without loss of generality, as-
sume Γ = I . Let f(B,C) = tr{(Y −XB − C)(Y −XB − C)T}/2 +

∑n
i=1 P (‖Γ1/2ci‖2;λ),

and g(B) =
∑n

i=1 ρ(‖(yi −BTxi)‖2;λ). By Lemma 1, fixing B, Ĉ = (c1 . . . cn)T with ĉi = 65

~Θ(yi −BTxi;λ) gives an optimal solution to minC f(B,C). For this Ĉ, f(B, Ĉ) = g(B) holds
by Lemma 2.

Part (ii): The proof follows similar lines of that of Part (i), based on the quantile thresholding
and Lemma C.1 in She et al. (2013). The details are omitted.

1·4. Proofs of Theorem 3 & Theorem 6 70

Recall that P1(t;λ) = λ|t|, P0(t;λ) = (λ2/2)1t6=0, PH(t;λ) = (−t2/2 + λ|t|)1|t|<λ +

(λ2/2)1|t|≥λ· For convenience, P2,1(C;λ) is used to denote λ‖C‖2,1, and P2,0 and P2,H are
used similarly.

By definition, (B̂, Ĉ) satisfies the following inequality for any (B,C) with r(B) ≤ r,

1

2
M(B̂ −B∗, Ĉ − C∗) ≤ 1

2
M(B −B∗, C − C∗) + P (C;λ)− P (Ĉ;λ) + 〈E , X∆B + ∆C〉.

(4)

75

Here, ∆B = B̂ −B, ∆C = Ĉ − C and so r(∆B) ≤ 2r.

LEMMA 3. For any given 1 ≤ J ≤ n, 1 ≤ r ≤ m ∧ p, define Γr,J = {(B,C) ∈ Rp×m ×
Rn×m : r(B) ≤ r, J(C) = J}. Then there exist universal constants A0, C, c > 0 such that for
any a ≥ 2b > 0, the following event

sup
(B,C)∈Γr,J

{
2〈E , XB + C〉 − 1

a
‖XB + C‖2F −

1

b
P2,H(C;λ)− aA0σ

2r(m+ q)
}
≥ aσ2t

(5)

80

occurs with probability at most c′ exp(−ct), where λ = Aλo, λo = σ(m+ log n)1/2, A =
(abA1)1/2, A1 ≥ A0, and t ≥ 0.

Let lH(B,C, r) = 2〈E , XB + C〉 − ‖XB + C‖2F/a− P2,H(C;λ)/b− aA0σ
2r(m+ q).

Define

R = sup
1≤J≤n,1≤r≤m∧p

sup
(B,C)∈Γr,J

lH(B,C, r).
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From Lemma 3, it is easy to see ER ≤ acσ2. Substituting the bound below into (4),

2〈E , X∆B + ∆C〉 ≤1

a
‖X∆B + ∆C‖2F +

1

b
P2,H(∆C ;λ) + 2aA0σ

2r(m+ q) +R

≤2

a
M(B −B∗, C − C∗) +

2

a
M(B̂ −B∗, Ĉ − C∗)85

+ 2aA0σ
2r(m+ q) +R+

1

b
P2,H(∆C ;λ),

we have

(1− 2

a
)M(B̂ −B∗, Ĉ − C∗) ≤(1 +

2

a
)M(B −B∗, C − C∗) + 2aA0σ

2r(m+ q) +R

+ 2P (C;λ)− 2P (Ĉ;λ) +
1

b
P2,H(∆C ;λ).

It remains to deal with 2P (C;λ)− 2P (Ĉ;λ) + P2,H(∆C ;λ)/b which is denoted by I below.90

(i) Due to the sub-additivity of the function PH that is concave on [0,∞),

I ≤ 2P (C;λ)− 2P2,H(Ĉ;λ) +
1

b
P2,H(∆C ;λ)

≤ 2P (C;λ) +
1

b
P2,H(C;λ) +

1

b
P2,H(Ĉ;λ)− 2P2,H(Ĉ;λ)

≤ (2 +
1

b
)P (C;λ),

if b ≥ 1/2. Theorem 3 can be obtained by choosing a = 4, b = 1/2, and λ = Aλo with A ≥95

(2A0)1/2.
(ii) When P is the group `1 penalty as in Theorem 6, by the sub-additivity of P , we have

I ≤ 2P2,1(C;λ)− 2P2,1(Ĉ;λ) +
1

b
P2,1(∆C ;λ)

≤ 2Aλo{(1 + θ)‖∆C
J ‖2,1 − (1− θ)‖∆C

J c‖2,1}
≤ 2A(1− θ)λo{(1 + ϑ)‖∆C

J ‖2,1 − ‖∆C
J c‖2,1},100

where J (C) and J(C) are abbreviated to J , J , respectively, and we set b = 1/(2θ),
θ = ϑ/(2 + ϑ). From the regularity condition, (1 + ϑ)‖∆C

J ‖2,1 − ‖∆C
J c‖2,1 ≤ KJ1/2‖(I −

PX∆B )∆C‖F ≤ KJ1/2‖X∆B + ∆C‖F, and so

I ≤ 2A(1− θ)λoKJ1/2‖X∆B + ∆C‖F

≤ 2

a
M(B −B∗, C − C∗) +

2

a
M(B̂ −B∗, Ĉ − C∗) + aA2(1− θ)2K2(λo)2J .105

Taking a = 4 + 1/θ, b = 1/(2θ), and A ≥ (abA0)1/2 gives the conclusion in Theorem 6.

Proof of Lemma 3
Proof. Define

lH(B,C, r) = 2〈E , XB + C〉 − 1

a
‖XB + C‖2F −

1

b
P2,H(C;λ)− aA0σ

2r(m+ q).

Similarly, define l0(B,C, r) with P2,0 in place of P2,H in the above. Let AH = {sup(B,C)∈Γr,J

lH(B,C, r) ≥ atσ2}, and A0 = {sup(B,C)∈Γr,J
l0(B,C, r) ≥ atσ2}.



Robust reduced-rank regression 5

Since AH ⊂ {sup(B,C):r(B)≤r lH(B,C, r) ≥ atσ2}, the occurrence of AH implies that 110

lH(Bo, Co, r) ≥ atσ2, (6)

for any (Bo, Co) that solves

min
B:r(B)≤r,C

1

a
‖XB + C‖2F − 2〈E , XB + C〉+

1

b
P2,H(C;λ). (7)

LEMMA 4. Given any θ ≥ 1, there exists a globally optimal solution Co to minC ‖Y −
C‖2F/2 + θP2,H(C;λ) such that for any i : 1 ≤ i ≤ n, either coi = 0 or ‖coi ‖2 ≥ λθ1/2 ≥ λ. 115

See She (2012) for its proof. From Lemma 4 and a ≥ 2b, (6) further indicates that there exists
an optimal solution (Bo, Co) such that l0(Bo, Co, r) ≥ atσ2. HenceAH ⊂ A0 and it suffices to
show pr(A0) ≤ C exp(−ct).

Let J = J (C) for short. Denote by IJ the submatrix of In×n formed by the columns indexed
by J . We write the stochastic term into 120

2〈E , XB + C〉 = 2〈E ,P⊥IJXB〉+ 2〈E ,PIJ (XB + C)〉
≡ 2〈E , A1〉+ 2〈E , A2〉, (8)

and ‖A1‖2F + ‖A2‖2F = ‖XB + C‖2F.

LEMMA 5. Given X ∈ Rn×p, 1 ≤ J ≤ n, 1 ≤ r ≤ m ∧ p, define Γ1
r,J = {A ∈ Rn×m :

‖A‖F ≤ 1, r(A) ≤ r, CS(A) ⊂ CS{X(J c, :)} for some J : |J | = J}. Let

P 1
o (J, r) = σ2

[
{q ∧ (n− J)}r + (m− r)r + log

(
n

J

)]
.

Then for any t ≥ 0,

pr
[

sup
A∈Γ1

r,J

〈E , A〉 ≥ tσ + {LP 1
o (J, r)}1/2

]
≤ c′ exp(−ct2), (9) 125

where L, c, c′ > 0 are universal constants.

The proof follows similar lines of the proof of Lemma 4 in She (2017) and is omitted. Now,
we can bound the the first term on the right hand side of (8) as follows

2〈E , A1〉 −
1

a
‖A1‖2F − 2aLP 1

o (J, r)

≤2〈E , A1/‖A1‖F〉‖A1‖F − 2‖A1‖F{LP 1
o (J, r)}1/2 − 1

2a
‖A1‖2F 130

≤2a
[
〈E , A1/‖A1‖F〉 − {LP 1

o (J, r)}1/2
]2

+
+

1

2a
‖A1‖2F −

1

2a
‖A1‖2F

=2a
[
〈E , A1/‖A1‖F〉 − {LP 1

o (J, r)}1/2
]2

+
.

By Lemma 5, for L large enough,

pr{2〈E , A1〉 −
1

a
‖A1‖2F − 2aLP 1

o (J, r) >
1

2
atσ2} ≤ c′ exp(−ct).
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Similarly, for the second term on the right hand side of (8),

pr{2〈E , A2〉 −
1

a
‖A2‖2F − 2aLP 2

o (J, r) >
1

2
atσ2} ≤ c′ exp(−ct),

where

P 2
o (J, r) = σ2

{
Jm+ log

(
n

J

)}
,

and L is a large constant. Applying the union bound gives

pr[2〈E , XB + C〉 − 1

a
‖XB + C‖2F − 2aLσ2{(q +m− r)r + Jm+ J log(en/J)} > atσ2]

≤ c′ exp(−ct)· (10)135

The conclusion follows. �

1·5. Proof of Theorem 4
Similar to Section 1·4, we have

1

2
M(B̂ −B∗, Ĉ − C∗) ≤ 1

2
M(B −B∗, Ĉ − C∗) + 〈E , X∆B + ∆C〉,

where ∆B = B̂ −B, ∆C = Ĉ − C. Let r̃ = r(∆B) and J̃ = J(∆C). Then from (10) in the
proof of Lemma 3,

2〈E , X∆B + ∆C〉 ≤ 1

a
‖X∆B + ∆C‖2F − 2aLσ2{(q +m)r̃ + J̃m+ J̃ log(en/J̃)} +R,

where ER ≤ acσ2. The oracle inequality can be shown following the lines of Section 1·4, notic-140

ing that r̃ ≤ 2r, J̃ ≤ 2% and J̃ log(2en/J̃) ≤ 2% log(en/%).

1·6. Proof of Theorem 5
The proof is based on the general reduction scheme in Chapter 2 of Tsybakov (2009). We

consider two cases.
Case (i) (q +m)r ≥ Jm+ J log(en/J). Suppose the SVD of X is X = UDV T with D145

of size q × q. Given an arbitrary estimator (B̂, Ĉ), let Â = V TB̂ and S̃(r, J) = {(A,C) ∈
Rq×m × Rn×m : r(A) ≤ r, J(C) ≤ J}. Then

sup
(B∗,C∗)∈S(r,J)

pr{‖XB∗ −XB̂ + C∗ − Ĉ‖2F ≥ cPo(J, r)}

≥ sup
(A∗,C∗)∈S̃(r,J)

pr{‖UDA∗ − UDÂ+ C∗ − Ĉ‖2F ≥ cPo(J, r)},

because for any A : r(A) ≤ r, B = V A satisfies r(B) ≤ r. The new design matrix UD has q150

columns, and it is easy to see that for any A ∈ Rq×m,

κ‖A‖2F ≤ ‖UDA‖2F ≤ κ‖A‖2F, (11)

where κ = σ2
min(X) and κ = σ2

max(X) as defined in the theorem. Therefore, without any loss of
generality we assume X ∈ Rn×q and and B ∈ Rq×m in the rest of the proof.

Consider a signal subclass155

B1(r) = {B = (bjk), C = 0 : bjk ∈ {0, γR} if (j, k) ∈ [q]× [r/2] ∪ [r/2]× [m]

bjk = 0 otherwise}·
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where R = σ/(κ1/2), and γ > 0 is a small constant to be chosen later. Clearly, |B1(r)| =
2(q+m−r/2)r/2, B1(r) ⊂ S(r, J), and r(B1 −B2) ≤ r, for any B1, B2 ∈ B1(r). Also, since
r ≤ q ∧m, (q +m− r/2)r/2 ≥ c(q +m)r for some constant c. 160

Let ρ(B1, B2) = ‖ vec (B1)− vec (B2)‖0, the Hamming distance between vec (B1) and
vec (B2). By the Varshamov-Gilbert bound, cf. Lemma 2.9 in Tsybakov (2009), there exists
a subset B10(r) ⊂ B1(r) such that

log |B10(r)| ≥ c1r(q +m), ρ(B1, B2) ≥ c2r(q +m), B1, B2 ∈ B10, B1 6= B2

for some universal constants c1, c2 > 0. Then ‖B1 −B2‖2F = γ2R2ρ(B1, B2) ≥ c2γ
2R2(q +

m)r. It follows from (11) that 165

‖XB1 −XB2‖2F ≥ c2κγ
2R2(q +m)r (12)

for any B1, B2 ∈ B10, B1 6= B2, where κ/κ is a positive constant.
For Gaussian models, the Kullback-Leibler divergence ofMN (XB2, σ

2I ⊗ I), denoted by
PB2 , fromMN (XB1), σ2I ⊗ I), denoted by PB1 , is

K(PB1 ,PB2) =
1

2σ2
‖XB1 −XB2‖2F.

Let P0 beMN (0, σ2I ⊗ I). By (11) again, for any B : r(B) ≤ r, we have

K(P0, PB) ≤ 1

2σ2
κγ2R2ρ(0, B) ≤ γ2

σ2
κR2(q +m)r,

where we used ρ(B1, B2) ≤ r(q +m). Therefore, 170

1

|B10|
∑
B∈B10

K(P0, PB) ≤ γ2r(q +m). (13)

Combining (12) and (13) and choosing a sufficiently small value for γ, we can apply Theorem
2.7 of Tsybakov (2009) to get the desired lower bound.

Case (ii) (q +m)r < Jm+ J log(en/J). Define a signal subclass

B2(J) ={B,C = (c1, . . . , cn)T : B = 0, ci = 0 or γR(1T, bT)T 175

with 1 = (1 . . . 1)T ∈ Rm−dm/2e, b ∈ {0, 1}dm/2e, J(C) ≤ J}.

where

R =
σ

κ1/2

{
1 +

log(en/J)

m

}1/2

,

and γ > 0 is a small constant. Clearly, B2(J) ⊂ S(r, J). By Stirling’s approximation,

log |B2(J)| ≥ log

(
n

J

)
+ log 2Jm/2 ≥ J log(n/J) + Jm(log 2)/2 ≥ c{J log(en/J) + Jm}

for some universal constant c. Applying Lemma 8.3 in Rigollet & Tsybakov (2011) and the
Varshamov-Gilbert bound, there exists a subset B20(J) ⊂ B2(J) such that

log |B20(J)| ≥ c1{J log(en/J) + Jm} and ρ(B1, B2) ≥ c2Jm, ∀B1, B2 ∈ B20, B1 6= B2

for some universal constants c1, c2 > 0. The afterward treatment follows the same lines as in (i)
and the details are omitted. 180
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1·7. Proof of Theorem 7
The first conclusion follows from the block coordinate descent design and the optimality of

the multivariate thresholding for solving the C-optimization problem (She, 2012).
When the continuity condition holds, ~Θ(Y −XB;λ) is the unique minimizer of

minC F (B,C); see Lemma 1 of She (2012). But in general, the problem of minB F (B,C)185

subject to r(B) ≤ r may not have a unique solution. The accumulation point result is an ap-
plication of Zangwill’s Global Convergence Theorem (Luenberger & Ye, 2008), and the proof
proceeds along similar lines of the proof of Theorem 7 of Bunea et al. (2012). The details are
omitted.

To get the stationarity guarantee when q(·;λ) ≡ 0, we can write the problem as min ‖Y −190

XSV T − C‖2F/2 +
∑n

i=1 PΘ(‖ci‖2;λ) subject to (S, V, C) ∈ Rp×r ×Om×r × Rn×m, where
Om×r = {V ∈ Rm×r : V TV = I}. Then one can view the problem as an unconstrained one
on the manifold Rp×r ×Om×r × Rn×m, and define the Remannian gradient with respect to V ;
see Theorem 6 of Bunea et al. (2012) for more detail.

1·8. Proof of Theorem 8195

First, by a bit of algebra we have the following result.

LEMMA 6. For any (B̂, Ĉ) defined in the theorem, we have

(B̂, Ĉ) ∈ arg min
(B,C)

g(B,C;B−, C−)|B−=B̂,C−=Ĉ s.t. r(B) ≤ r,

where g is constructed by g(B,C;B−, C−) = l(B−, C−) + P2,Θ(C;λ) + 〈XB− + C− −
Y,XB −XB− + C − C−〉+ ‖XB −XB−‖2F/2 + ‖C − C−‖2F/2, with l(B,C) = ‖XB +
C − Y ‖2F/2 and P2,Θ(C;λ) =

∑n
i=1 PΘ(‖ci‖2;λ).

The following result can be obtained from Lemma 2 in She (2012).200

LEMMA 7. Let Q(C) = ‖C − Y ‖2F/2 + P2,Θ(C;λ) and Co = ~Θ(Y ;λ). Assume that ~Θ is
continous at Y . Then for any C, Q(C)−Q(Co) ≥ (1− LΘ)‖C − Co‖2F/2.

LEMMA 8. Let Q(B) = ‖XB − Y ‖2F/2 and Bo = R(X,Y, r) which is of rank r. Then
for any B : r(B) ≤ r/(1 + α) with α ≥ 0, Q(B)−Q(Bo) ≥ {1− (1 + α)−1/2}‖XB −
XBo‖2F/2.205

The lemma follows from Proposition 2.2 of She (2013) and Lemma 9 below.

LEMMA 9. The optimization problem minβ∈Rp l(β) = ‖y − β‖22/2 s.t. ‖β‖0 ≤ q has β̂ =

Θ#(y; q) as a globally optimal solution. Assume that J(β̂) = q, where J(·) = ‖ · ‖0. Then
for any β with J(β) ≤ s = q/θ and θ ≥ 1, we have l(β)− l(β̂) ≥ {1− L(J , Ĵ )}‖β̂ − β‖22/2
where L(J , Ĵ ) = (|J \ Ĵ |/|Ĵ \ J |)1/2 ≤ (s/q)1/2 = θ−1/2, J = J (β) and Ĵ = J (β̂).210

With Lemmas 6, 7, and 8 available, the conclusion results from Theorem 2 of She (2016).

Proof of Lemma 9
Proof. Let J1 = J ∩ Ĵ , J2 = Ĵ \ J and J3 = J \ Ĵ . Then β = βJ1 + βJ3 and β̂ =

βJ1 + βJ2 . By writing βJ1 = yJ1 + δJ1 and βJ3 = yJ3 + δJ3 , we have

l(β)− l(β̂) =
1

2
‖δJ1‖22 +

1

2
‖yJ2‖22 +

1

2
‖δJ3‖22 −

1

2
‖yJ3‖22215

1

2
‖β̂ − β‖22 =

1

2
‖δJ1‖22 +

1

2
‖yJ2‖22 +

1

2
‖yJ3 + δJ3‖22.
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The key lies in the comparison between ‖yJ2‖22 + ‖δJ3‖22 − ‖yJ3‖22 and ‖yJ2‖22 + ‖yJ3 +
δJ3‖22. Let K ≤ 1 satisfy

1

2
‖yJ2‖22 +

1

2
‖δJ3‖22 −

1

2
‖yJ3‖22 ≥

K

2
‖yJ2‖22 +

K

2
‖yJ3 + δJ3‖22,

which is equivalent to

(1−K)‖yJ2‖22 + ‖δJ3‖22 ≥ K‖yJ3 + δJ3‖22 + ‖yJ3‖22. (14)

By construction, |yi| ≥ |yj | for any i ∈ J2 and j ∈ J3. Thus ‖yJ2‖22/J2 ≥ ‖yJ3‖22/J3, from
which it follows that (14) is implied by 220

(1−K)
J2

J3
‖yJ3‖22 + ‖δJ3‖22 ≥ (1 +K)‖yJ3‖22 +K‖δJ3‖22 + 2K〈yJ3 , δJ3〉,

or
(1−K)(J2/J3)− (1 +K)

K
‖yJ3‖22 +

1−K
K
‖δJ3‖22 ≥ 2〈yJ3 , δJ3〉.

Therefore, the largest possible K satisfies

(1−K)(J2/J3)− (1 +K)

K
× 1−K

K
= 1

or (1−K)2 = J3/J2. This gives

L = 1−K = (J3/J2)1/2 ≤ {(J3 + J1)/(J2 + J1)}1/2 = (J/Ĵ)1/2 ≤ θ−1/2.

The proof is complete. �

1·9. Proof of Theorem 9 225

Let h(B,C;A) = 1/{mn−AP (B,C)}. It follows from 1/(1− δ) ≥ exp(δ) for any 0 ≤
δ < 1 and exp(δ) ≥ 1/(1− δ/2) for any 0 ≥ δ < 2 that

mn‖Y −XB̂ − Ĉ‖2F h(B̂, Ĉ;A/2) ≤‖Y −XB̂ − Ĉ‖2F exp{δ(B̂, Ĉ)}
≤‖Y −XB∗ − C∗‖2F exp{δ(B∗, C∗)}
≤‖Y −XB∗ − C∗‖2F h(B∗, C∗;A)mn. 230

Since h(B̂, Ĉ;A/2) > 0, we have

‖Y −XB̂ − Ĉ‖2F ≤ ‖Y −XB∗ − C∗‖2F h(B∗, C∗;A)/h(B̂, Ĉ;A/2).

With a bit of algebra, we get

M(B̂ −B∗, Ĉ − C∗) ≤‖E‖2F{h(B∗, C∗;A)/h(B̂, Ĉ; 0·5A)− 1}
+ 2〈E , XB̂ −XB∗ + Ĉ − C∗〉

≤ A‖E‖2F
mnσ2 −Aσ2P (B∗, C∗)

σ2P (B∗, C∗)− 0·5A‖E‖2F
mnσ2

σ2P (B̂, Ĉ)

+ 2〈E , XB̂ −XB∗ + Ĉ − C∗〉. 235

We give a finer treatment of the last stochastic term than that in the proof of Lemma 3,
to show that 〈E , XB̂ −XB∗ + Ĉ − C∗〉 can be bounded by P (B∗, C∗) + P (B̂, Ĉ) up to a
multiplicative constant with high probability. Let ∆B = B̂ −B∗, ∆C = Ĉ − C∗, Ĵ = J (Ĉ),
J ∗ = J (C∗), r̂ = r(B̂), r∗ = r(C∗). In the following, given any index set J ⊂ [n], we denote
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by IJ the submatrix of In×n formed by the columns indexed by J , and abbreviate PIJ to PJ .240

Let P1 = PJ ∗ , P2 = P(J ∗)c∩Ĵ , P3 = P(J ∗∪Ĵ )c , and Prs be the orthogonal projection onto the
row space of XB∗ which is of rank ≤ r∗. Then

X∆B −∆C

=P1(X∆B −∆C) + P2(X∆B −∆C) + P3(X∆B −∆C)Prs + P3(X∆B −∆C)P⊥rs
≡∆1 + ∆2 + ∆3 + ∆4,245

and
∑4

i=1 ‖∆i‖2F = ‖X∆B −∆C‖2F. Then CS(∆1) ⊂ PJ ∗ , CS(∆2) ⊂ PĴ , r(∆3) ≤ r∗, and
r(∆4) = r(P3X∆BP⊥rs) = r(P3XB̂P⊥rs) ≤ r̂. The stochastic term can then be handled in a
way similar to that in Lemma 3. For example, we can use the following result to handle 〈E ,∆4〉.

LEMMA 10. Given X ∈ Rn×p, 1 ≤ J1, J2 ≤ n, 1 ≤ r ≤ m ∧ p, define Γr,J1,J2 = {A ∈
Rn×m : ‖A‖F ≤ 1, r(A) ≤ r, CS(A) ⊂ CS[X{(J1 ∪ J2)c, :}] for some J1,J2 : |J1| =
J1, |J2| = J2}. Let

Po(J1, J2, r) = σ2

{
qr + (m− r)r + log

(
n

J1

)
+ log

(
n

J2

)}
.

Then for any t ≥ 0,

pr
[

sup
A∈Γr,J1,J2

〈E , A〉 ≥ tσ + {LPo(J1, J2, r)}1/2
]
≤ c′ exp(−ct2), (15)250

where L, c, c′ > 0 are universal constants.

Following the lines of the proof of Theorem 2 in She (2017), we can show that for any con-
stants a, b, a′ > 0 satisfying 4b > a, the following event

2〈E , X∆B −∆C〉 ≤ 2(1/a+ 1/a′)M(B̂ −B∗, Ĉ − C∗) + 8bLσ2{P (B̂, Ĉ) + P (B∗, C∗)}

occurs with probability at least 1− c′1n−c1 for some c1, c
′
1 > 0, where L is a sufficiently large

constant.
Let γ and γ′ be constants satisfying 0 < γ < 1, γ′ > 0. On A = {(1− γ)mnσ2 ≤ ‖E‖2F ≤

(1 + γ′)mnσ2} , we have255

A‖E‖2F
mnσ2 −Aσ2P (B∗, C∗)

σ2P (B∗, C∗)− 0·5A‖E‖2F
mnσ2

σ2P (B̂, Ĉ)

≤ (1 + γ′)AA0

A0 −A
σ2P (B∗, C∗)− 0·5(1− γ)Aσ2P (B̂, Ĉ).

From Laurent & Massart (2000), the complement of A occurs with probability at most
c′2 exp(−c2mn), where c2, c

′
2 are dependent on constants γ, γ′. With A0 large enough, we can

choose a, a′, b, A such that (1/a+ 1/a′) < 1/2, 4b > a, and 16bL ≤ (1− γ)A. The conclusion260

results.

1·10. Theorem 10
THEOREM 10. Let (B̂, Ĉ) = arg min(B,C) ‖Y −XB − C‖2F/2 + λ‖C‖2,1 subject to

r(B) ≤ r, λ = Aσ(m+ log n)1/2 where r ≥ r∗ ≥ 1 and A is a large enough constant. Assume
thatX satisfies (1 + ϑ)λ‖C ′J ∗‖2,1 + n‖B′‖2F ≤ λ‖C ′J ∗c‖2,1 + σζ{(m+ q)r}1/2‖XB′ + C ′‖F265
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for all B′ and C ′ with r(B′) ≤ 2r, where ϑ > 0 is a constant and ζ ≥ 0. Then, we have

E(‖B̂ −B∗‖2F) . σ2(1 + ζ2)
(m+ q)r

n
.

Proof. A careful examination of the proof of Theorem 3 shows that for any a ≥ 2b > 0,

(1− 1

a
)M(B̂ −B∗, Ĉ − C∗) ≤ 2aA0σ

2r(m+ q) +R+ 2P (C∗;λ)− 2P (Ĉ;λ)

+
1

b
P2,H(Ĉ − C∗;λ), 270

where λ = Aλo, λo = σ(m+ log n)1/2,A = (abA1)1/2,A1 ≥ A0 withA0 a universal constant,
and ER ≤ acσ2.

Set b = 1/(2θ), θ = ϑ/(2 + ϑ). Then

(1− 1

a
)M(B̂ −B∗, Ĉ − C∗) ≤ 2(1− θ)λ{(1 + ϑ)‖(Ĉ − C∗)J ∗‖2,1 − ‖(Ĉ − C∗)J ∗c‖2,1}

+ 2aA0σ
2r(m+ q) +R 275

≤ 2(1− θ)
[
σζ{(m+ q)r}1/2{M(B̂ −B∗, Ĉ − C∗)}1/2

− n‖B̂ −B∗‖2F
]

+ 2aA0σ
2r(m+ q) +R.

The conclusion follows by applying Hölder’s inequality and setting, say, a = 2 + 1/θ, b = 1/2θ
and A ≥ (abA0)1/2. �

2. SIMULATIONS 280

2·1. Simulation setups
We consider three model setups. In Models I and II, we set n = 100, p = 12, m = 8, and

r∗ = 3. The design matrix X is generated by sampling its n rows from N(0,∆0), where ∆0

is with diagonal elements 1 and off-diagonal elements 0.5. This brings in wide-range predictor
correlation. The rows of the error matrix E are generated as independently and identically dis- 285

tributed samples from N(0, σ2Σ0). Models I and II differ in their error structures. In Model I,
we set Σ0 = I , whereas in Model II, Σ0 has the same compound symmetry structure as ∆0. In
each simulation, σ2 is computed to control the signal to noise ratio, defined as the ratio between
the r∗th singular value of XB∗ and ‖E‖F.

Model III is a high-dimensional setup with n = 100, p = 500,m = 50, r∗ = 3 and q = 10. As 290

such, there are 25,000 unknown parameters in the coefficient matrix, posing a challenging high-
dimensional problem. The design is generated as X = X1X2∆

1/2
0 , where X1 ∈ Rn×q, X2 ∈

Rq×p, and all entries of X1 and X2 are independently and identically distributed samples from
N(0, 1). The error structure is the same as in Model II.

In each of the three models, B∗ is randomly generated as B∗ = B1B
T
2 in each simulation, 295

where B1 ∈ Rp×r∗ , B2 ∈ Rm×r∗ and all entries in B1 and B2 are independently and identically
distributed samples fromN(0, 1). Outliers are then added by setting the first n×O% rows ofC∗

to be nonzero, where O% ∈ {5%, 10%, 15%}. Concretely, the jth entry in any outlier row of C∗

is α times the standard deviation of the jth column of XB∗, where 1 ≤ j ≤ m and α = 2, 4. To
make the problem even more challenging, we modify all entries of the first two rows of the design 300

to 10. This yields some outliers with high leverage values. Finally, the response Y is generated
as Y = XB∗ + C∗ + E . Overall, the signal is contaminated by both random errors and gross
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outliers. Under each setting, the entire data generation process described above is replicated 200
times.

2·2. Methods and evaluation metrics305

We compare the proposed robust reduced-rank regression with several robust regression ap-
proaches and rank reduction methods. There exist many robust multivariate regression methods
in the traditional large-n setting. We mainly consider the MM-estimator by Tatsuoka & Tyler
(2000), using its implementation provided by the R package FRB and the default settings therein.
Other robust estimators including the S-estimator (Aelst & Willems, 2005) and the GS-estimator310

(Roelant et al., 2009) were also examined; we omit their results here, as they were similar to or
slightly worse than those of the MM-estimator. None of these classical methods is applicable in
high dimensions, and so they were only used on the datasets generated according to Models I
and II.

For reduced-rank methods, we consider the plain reduced-rank regression (Bunea et al., 2011)315

and the reduced-rank ridge regression (Mukherjee & Zhu, 2011; She, 2013), both tuned by
10-fold cross validation. The latter method combines rank reduction and shrinkage estimation,
which can potentially improve the predictive performance of the former when the predictors
exhibit strong correlation.

We also consider a three-step fitting-detection-refitting procedure. Specifically, the first step is320

to fit a plain reduced-rank regression using all data; in the second step, the value of the residual
sum of squares is computed for each of the n observation rows, and exactly n×O% observations
with the largest residual sum of squares are labeled as outliers and discarded; at the third step,
the plain reduced-rank regression is refitted with the rest of the observations. This method can be
regarded as a naive oracle procedure, as it relies on the knowledge of the true number of outliers.325

As for the proposed robust reduced-rank regression, we used the `0 penalized form and the
predictive information criterion for tuning. Our method allows the incorporation of the error
structure through setting the weighting matrix Γ; see Equation (8) of the paper. To investigate
the impact of weighting, we considered both Γ = I and Γ = Σ̂−1 in the setting of Model II,
where Σ̂ is a robust estimate of Σ = σ2Σ0 from MM-estimation. Since it is in general difficult330

to estimate Σ in high dimensional settings, for the data generated in Model III we just set Γ = I .
For each rank value r = 1, . . . ,min(n, q), we compute the solutions over a grid of 100 λ values
equally spaced on the log scale, corresponding to a proper interval of the proportion of outliers
given by [vL, vU ]. We take vL = 0 and vU ≈ 0·4, as in practice the proportion of outliers is
usually under 40%. All the methods are implemented in a user-friendly R package.335

To characterize estimation accuracy robustly, we report the 10% trimmed mean of the mean
squared error from all runs,

Err(B̂) = ‖XB∗ −XB̂‖2F/(mn).

In Model II, we additionally report the 10% trimmed mean of the weighted mean squared errors
from all runs, defined as

Err(B̂; Σ) = tr{(XB∗ −XB̂)Σ−1(XB∗ −XB̂)T}/(mn),

where Σ = σ2Σ0 is the true error covariance matrix. Similarly, the prediction error is defined as

Err(B̂, Ĉ) = ‖XB∗ + C∗ −XB̂ − Ĉ‖2F/(mn).

While the robust reduced-rank regression explicitly estimates C∗, this is not the case for the
other approaches. In the plain reduced-rank regression and the reduced-rank ridge regression, Ĉ
is set as a zero matrix, while in the MM estimation and the three-step procedure, the rows in Ĉ
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corresponding to the identified outliers are filled with model residuals in Y −XB̂. The leverage
points, if exists, are removed from X in the above calculations. 340

To evaluate the rank selection performance, we report the average of rank estimates from all
runs. To examine the outlier detection performance, we report the average masking rate, i.e., the
fraction of undetected outliers, the average swamping rate, i.e., the fraction of good points labeled
as outliers, and the frequency of correct joint outlier detection, i.e., the fraction of simulations
with no masking and no swamping. 345

2·3. Simulation results
Tables 1–3 summarize the simulation results of Models I–III, respectively, for α = 2 and sig-

nal to noise ratio 0.75. We omit the results in other settings since they deliver similar messages.
In Models I and II, the MM-estimates achieved better predictive performance than both

reduced-rank regression and reduced-rank ridge regression. This demonstrates that when severe 350

outliers are present, it is pivotal to perform robust estimation. Even in these low-dimensional
settings, the proposed robust reduced-rank regression outperforms all other methods, and per-
fectly detects all outliers jointly. MM-estimation can also achieve pretty low masking rates, but
this comes at the cost of increasing false positives, which translates to efficiency loss. In particu-
lar, when the errors become correlated, our robust reduced-rank regression still showed impres- 355

sive performance in both prediction and outlier detection. Additionally, the inverse covariance
weighting did show some improvements over the identity weighting, but the gain was small.

Both reduced-rank regression and reduced-rank ridge regression tended to overestimated the
rank in the presence of highly leveraged outliers. This complies with the theoretical results,
cf. Remark 7 following Theorem 6. In contrast, robust reduced-rank regression achieved nearly 360

perfect rank selection in all the experiments. The three-step procedure relies on the accuracy
of the estimated model residuals, and often fails in the presence of leverage points. In practice,
making a judgement of the number of outliers is critical. One merit of the proposed method is
that the theoretically justified predictive information criterion can choose suitable parameters
regardless of the size of n, m, or p, leading to an automatic identification of the right amount of 365

outlyingness from a predictive learning perspective.
Similar conclusions can be drawn from the comparison in the high-dimensional model. In-

deed, according to Table 3, the robust reduced-rank regression showed comparable or better
performance than the other methods in almost all categories.

2·4. Size of K 370

We performed numerical experiments to study the size of K in the regularity condition of
Theorem 6, which also plays a role in the final oracle inequality (26). It is easy to see that the
condition is implied by the restricted eigenvalue condition ‖∆C

J ‖2F ≤ {K2/(1 + ϑ)2}‖X∆B +

∆C‖2F, for all (∆B,∆C) in a cone defined by r(∆B) ≤ 2r, ‖∆C
J c‖2,1 ≤ (1 + ϑ)‖∆C

J ‖2,1. Such
a type of regularity conditions is commonly assumed in large-p analysis, and because of the 375

restricted cone, K often does not grow as fast as p, m or n (van de Geer & Bühlmann, 2009;
Bunea et al., 2011). We verified this by computer experiments using the Gaussian designs in the
simulation models. See Table 4 for more detail.

2·5. Convex vs. nonconvex penalties
We also experimented with using the convex group `1 penalty in the robust reduced-rank 380

regression, which, according to Theorem 2, amounts to applying Huber’s loss. Figures 1–3 show
the boxplots of prediction errors for comparing various reduced-rank methods. Clearly, the group
`1 penalization shows significant improvements over the `2-penalized or the ordinary reduced-



14 Y. SHE AND K. CHEN

Table 1: Simulation results of Model I with α = 2 and signal to noise ratio 0.75. The errors are
reported with their standard errors in parentheses

Err(B̂) Err(B̂, Ĉ) Rank Mask Swamp Detection
5%

MM 0·4 (0·2) 4·2 (1·7) 8·0 0% 3·7% 0%
RRR 2·9 (3·7) 6·1 (4·4) 3·6 100% 0% 0%
RRS 1·8 (0·8) 4·7 (1·7) 4·0 100% 0% 0%
RRO 0·3 (0·3) 1·2 (1) 3·1 18·1% 1% 28·5%
R4 0·2 (0·1) 0·3 (0·1) 3·0 0% 0% 100%

10%
MM 0·4 (0·2) 12·3 (6) 8·0 0% 2·6% 1·5%
RRR 5·4 (5) 15·9 (8·5) 3·5 100% 0% 0%
RRS 3·5 (2·4) 14·3 (9·7) 4·1 100% 0% 0%
RRO 0·3 (0·2) 2 (1·3) 3·0 13·3% 1·5% 20·5%
R4 0·2 (0·1) 0·4 (0·2) 3·0 0% 0% 100%

15%
MM 0·5 (0·4) 17·8 (6·6) 8·0 0·1% 1·4% 24%
RRR 4·4 (2·1) 17·9 (5·5) 3·8 100% 0% 0%
RRS 4 (2·5) 18·4 (6·1) 3·9 100% 0% 0%
RRO 0·5 (0·3) 2·3 (1·5) 3·0 8·9% 1·6% 27·5%
R4 0·3 (0·2) 0·8 (0·5) 2·9 0% 0% 100%

MM, the robust MM-regression method; RRR, the reduced-rank regression; RRS, the reduced-rank ridge re-
gression; RRO, the three-step procedure for reduced-rank estimation with outlier detection; R4, the proposed
robust reduced-rank regression with Γ = I; Rank, the average of rank estimates; Mask, the average mask-
ing rate; Swamp, the average swamping rate; Detection, the frequency of correct joint outlier detection.

rank regression when outliers occur, but its performance is still substantially worse and less stable
than that of using the nonconvex group `0 penalization.385

3. STOCK LOG-RETURN DATA

Consider the 52 weekly stock log-return data for nine of the ten largest American corporations
in 2004 available from the R package MRCE (Rothman et al., 2010), with yt ∈ R9 (t = 1, . . . , T )
and T = 52. Chevron was excluded due to its drastic changes (Yuan et al., 2007). The nine time
series are shown in Figure 4. For the purpose of constructing market factors that drive general390

stock movements, a reduced-rank vector autoregressive model can be used, i.e., yt = B∗yt−1 +
et, with B∗ of low rank. By conditioning on the initial state y0 and assuming the normality of
et, the conditional likelihood leads to a least squares criterion, so the estimation of B∗ can be
formulated as a reduced-rank regression problem (Reinsel, 1997; Lütkepohl, 2007). However, as
shown in the figure, several stock returns experienced short-term changes, and the autoregressive395

structure makes any outlier in the time series also a leverage point in the covariates.
Using the weekly log-returns in the first 26 weeks for training and those in the last 26 weeks for

forecast, we analyzed the data with the reduced-rank regression and the proposed robust reduced-
rank regression approach. While both methods resulted in unit-rank models, the robust reduced-
rank regression automatically detected three outliers, i.e., the log-returns of Ford at weeks 5 and400

17 and the log-return of General Motors at week 5.These correspond to two real major market
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Table 2: Simulation results of Model II with α = 2 and signal to noise ratio 0.75. The layout of
the table is similar to that of Table 1

Err(B̂) Err(B̂; Σ) Err(B̂, Ĉ) Rank Mask Swamp Detection
5%

MM 0·4 (0·3) 0·4 (0·3) 6·9 (2·9) 8·0 0% 3·3% 0%
RRR 2·6 (2·4) 4·6 (4·3) 9·8 (6·2) 4·0 100% 0% 0%
RRS 1·9 (1·4) 3·3 (2·5) 8·5 (4·4) 4·3 100% 0% 0%
RRO 0·4 (0·3) 0·5 (0·3) 2·7 (1·8) 3·0 25·7% 1·4% 17%
R4 0·2 (0·2) 0·2 (0·2) 0·3 (0·2) 3·0 0% 0·2% 84%
R4
w 0·2 (0·1) 0·2 (0·2) 0·3 (0·2) 3·0 0% 0% 100%

10%
MM 0·5 (0·3) 0·5 (0·4) 21·2 (9·7) 8·0 0% 1·9% 12·5%
RRR 3·6 (1·1) 6·5 (2·3) 21·7 (9·1) 4·1 100% 0% 0%
RRS 4 (1·8) 7·4 (3·7) 24·6 (10·6) 4·0 100% 0% 0%
RRO 0·4 (0·2) 0·6 (0·3) 4·3 (2·1) 3·0 16·4% 1·8% 4·5%
R4 0·3 (0·2) 0·4 (0·3) 0·7 (0·6) 3·0 0% 0% 99·5%
R4
w 0·2 (0·1) 0·3 (0·2) 0·6 (0·4) 3·0 0% 0% 100%

15%
MM 0·4 (0·2) 0·4 (0·2) 31·3 (12·4) 8·0 0% 1·1% 46·5%
RRR 4·5 (2·7) 7·9 (5·2) 33·4 (13·4) 4·3 100% 0% 0%
RRS 4·8 (3·4) 8·7 (6·8) 36·5 (16·1) 4·0 100% 0% 0%
RRO 0·4 (0·2) 0·6 (0·2) 3·3 (1·4) 3·0 9·4% 1·7% 10%
R4 0·2 (0·2) 0·3 (0·2) 0·6 (0·3) 3·0 0·3% 0% 95·5%
R4
w 0·2 (0·1) 0·2 (0·1) 0·5 (0·2) 3·0 0% 0% 100%

R4
w, the robust reduced-rank regression with Γ = Σ̂−1, where Σ̂ is a robust estimate of

Σ = σ2Σ0 obtained from MM-estimation. The other notations are the same as in Table 1.

disturbances attributed to the auto industry. Our robust method automatically took the outlying
samples into account and led to a more reliable model. Table 5 displays the factor coefficients
indicating how the stock returns are related to the estimated factors, and the p-values for testing
the associations between the estimated factors and the individual stock return series using the 405

data in the last 26 weeks. The stock factor estimated robustly has positive influence over all nine
companies, and overall, it correlates with the series better according to the reported p-values. The
out-of-sample prediction errors for least squares, reduced-rank regression and robust reduced-
rank regression are 9·97, 8·85 and 6·72, respectively, when measured by mean square error, and
are 5·44, 4·52 and 3·58, respectively, when measured by 40% trimmed mean square error. The 410

robustification of rank reduction resulted in about 20% improvement in prediction.
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Table 3: Simulation results of Model III with α = 2 and signal to noise ratio 0.75. The values of
actual Err(B̂) and Err(B̂, Ĉ) are divided by 100 for better presentation. The layout of the table is
similar to that of Table 1

Err(B̂) Err(B̂, Ĉ) Rank Mask Swamp Detection
5%

RRR 2·5 (0·9) 15·5 (6·3) 4·0 100% 0% 0%
RRS 2·4 (0·9) 15·6 (6·3) 4·0 100% 0% 0%
RRO 1 (0·6) 3·9 (3·9) 3·0 11·3% 0·6% 67·5%
R4 0·9 (0·5) 1·6 (0·9) 3·0 1·6% 0% 96%

10%
RRR 5·4 (2·3) 47·5 (18) 4·0 100% 0% 0%
RRS 5·1 (2·1) 47·8 (18) 4·0 100% 0% 0%
RRO 0·8 (0·4) 5·1 (4·6) 3·0 4·9% 0·5% 68·5%
R4 0·7 (0·3) 2·2 (0·9) 3·0 0% 0% 100%

15%
RRR 8·7 (4·2) 77 (39·9) 4·0 100% 0% 0%
RRS 8 (3·6) 77·4 (40) 4·0 100% 0% 0%
RRO 1·4 (0·8) 11·9 (8·5) 3·0 9·7% 1·7% 24%
R4 0·8 (0·3) 3·1 (1·1) 3·2 3·2% 0% 75·5%

Table 4: Magnitude of K in different cases of model dimensions

n m p O% K
60 60 200 10% 1.2
60 60 200 30% 1.6
60 120 2000 10% 1.6
60 120 2000 30% 2.2
120 60 2000 30% 1.7

n, the sample size; m, the number of responses; p, the number of predictors; O%, the proportion of outliers.

Table 5: Stock return example: the factor coefficients showing how the stock returns load on the
estimated factors, and the p-values for testing the associations between the estimated factors and
the stock returns using the data in the last 26 weeks

Reduced-rank regression Robust reduced-rank regression
coefficient p-value coefficient p-value

Walmart 0·46 0·44 0·36 0·23
Exxon −0·15 0·32 0·14 0·84
General Motors 0·96 0·42 0·90 0·02
Ford 1·20 0·64 0·59 0·18
General Electric 0·24 0·67 0·32 0·06
Conoco Phillips −0·04 0·19 0·36 0·08
Citi Group 0·27 0·93 0·45 0·00
International Business Machines 0·36 0·42 0·57 0·13
American International Group 0·19 0·01 0·58 0·00
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Fig. 1: Boxplots of prediction errors in Model I for comparing reduced-rank methods. RRR,
the reduced-rank regression; RRS, the reduced-rank ridge regression; R4, the proposed robust
reduced-rank regression with the nonconvex group `0 penalty; R4(L1), the robust reduced-rank
regression with the convex group `1 penalty.
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Fig. 2: Boxplots of prediction errors in Model II for comparing reduced-rank methods. The
notations and layout are the same as in Figure 1.
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Fig. 3: Boxplots of prediction errors in Model III for comparing reduced-rank methods. The
values of actual Err(B̂, Ĉ) are divided by 100 to be consistent with Table 3. The notations and
layout are the same as in Figure 1.
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Fig. 4: Stock return example: scaled weekly log-returns of stocks in 2004. The log-returns of
Ford at weeks 5 and 17 and the log-return of General Motors at week 5 are captured as outliers
by fitting robust reduced-rank regression with data in the first 26 weeks; the corresponding points
are indicated by the circles. The dashed line in each panel separates the series to two parts, i.e.,
the first 26 weeks for training and the last 26 weeks for testing. The horizontal line in each panel
is drawn at zero height.
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