Supplementary material for Principal Component Analysis and the Locus of the Fréchet Mean in the Space of Phylogenetic Trees

This supplement gives a proof of the following lemma from the main body of the paper.

Lemma 2. The matrix with elements $\partial F_{j} / \partial x_{k}$ is positive definite for all x in mutual support region S.

Proof. Using equation (6) we have

$$
\frac{\partial F_{j}}{\partial x_{k}}=2 \delta_{j k}+2 \sum_{i=0}^{k} p_{i} Q_{j k}^{(i)}
$$

where the matrix $Q^{(i)}$ has elements

$$
Q_{j k}^{(i)}=\frac{\partial}{\partial_{k}}\left(x_{j} \frac{\left\|B_{x v_{i}}^{\left(r_{i j}\right)}\right\|}{\left\|A_{x v_{i}}^{\left(r_{i j}\right)}\right\|}\left(1-\mathcal{C}_{i j}\right)-\left|e_{j}\right|_{v_{i}} \mathcal{C}_{i j}\right) .
$$

We start by assuming $\mathcal{C}_{i j}=0$ for all i, j (so that $e_{i} \notin \mathcal{C}\left(x, v_{i}\right)$ for all i, j), and drop this assumption later. Then

$$
\begin{aligned}
Q_{j k}^{(i)} & =\delta_{j k} \frac{\left\|B_{x v_{i}}^{\left(r_{i j}\right)}\right\|}{\left\|A_{\left.x v_{i}\right)}^{\left(r_{i j}\right)}\right\|}-x_{j} \frac{\left\|B_{x v_{i}}^{\left(r_{i j}\right)}\right\|}{\left\|A_{x v_{i}}^{\left(r_{i j}\right)}\right\|^{2}} \frac{\partial}{\partial x_{j}}\left\|A_{x v_{i}}^{\left(r_{i j}\right)}\right\| \\
& =\delta_{j k} \frac{\left\|B_{x v_{i}}^{\left(r_{i j}\right)}\right\|}{\left\|A_{x v_{i}}^{\left(r_{i j}\right)}\right\|}-x_{j} x_{k} I_{j k}^{(i)} \frac{\left\|B_{x v_{i}}^{\left(r_{i j}\right)}\right\|}{\left\|A_{x v_{i}}^{\left(r_{i j}\right)}\right\|^{3}}
\end{aligned}
$$

where $I^{(i)}$ is a $(2 N-2) \times(2 N-2)$ dimensional matrix with $I_{j k}^{(i)}=1$ whenever e_{k} is contained in $A_{x v_{i}}^{\left(r_{i j}\right)}$ and zero otherwise. Equivalently $I^{(i)}$ indicates whether splits e_{j} and e_{k} are simultaneously contracted to zero on $\Gamma\left(x, v_{i}\right)$. We will show that the matrices $Q^{(i)}$ are positive semi-definite. For any vector $\xi \in \mathbb{R}^{2 N-2}$ we have

$$
\begin{equation*}
\sum_{j, k} Q_{j k}^{(i)} \xi_{j} \xi_{k}=\sum_{j} \frac{b_{j}}{a_{j}} \xi_{j}^{2}-\sum_{j, k} \xi_{j} \xi_{k} x_{j} x_{k} \frac{b_{j}}{a_{j}^{3}} I_{j k}^{(i)} \tag{S1}
\end{equation*}
$$

where $a_{j}=\left\|A_{x v_{i}}^{\left(r_{i j}\right)}\right\|$ and $b_{j}=\left\|B_{x v_{i}}^{\left(r_{i j}\right)}\right\|$. Now fix a single set of splits $A_{x v_{i}}^{(l)}$ and let J_{l} denote the indices of splits in this set. If we restrict the right-hand side
of the last equation to indices $j \in J_{l}$ we obtain

$$
\sum_{j \in J_{l}} \frac{b_{j}}{a_{j}} \xi_{j}^{2}-\sum_{j, k \in J_{l}} \xi_{j} \xi_{k} x_{j} x_{k} \frac{b_{j}}{a_{j}^{3}}
$$

The terms a_{j} adopt the same value for all $j \in J_{l}$, and similarly for b_{j}, so they are independent of the summation index in the last expression. Also for $j \in J_{l}$

$$
a_{j}^{2}=\left\|A_{x v_{i}}^{(l)}\right\|_{x}=\sum_{m \in J_{l}} x_{m}^{2} .
$$

Then

$$
\sum_{j, k \in J_{l}} Q_{j, k}^{(i)} \xi_{j} \xi_{k}=\sum_{j \in J_{l}} \frac{b_{j}}{a_{j}} \xi_{j}^{2}-\frac{\sum_{j, k \in J_{l}} \xi_{j} \xi_{k} x_{j} x_{k}}{\sum_{m \in J_{l}} x_{m}^{2}} \frac{b_{j}}{a_{j}} .
$$

The Cauchy-Schwartz inequality shows the right-hand side is ≥ 0 since a_{j}, b_{j} are constant over this range of j. It follows that the right-hand side of equation (S1) is ≥ 0, so each matrix $Q^{(i)}$ is positive semi-definite. If we drop the assumption that $\mathcal{C}_{i j}=0$ for all i, j, this introduces rows and columns of zeros into each matrix $Q^{(i)}$. However, the matrices $Q^{(i)}$ must therefore remain positive semidefinite, and this establishes the claim in the statement of the proof.

It is relatively straightforward to prove the weaker result that the matrices with elements $\partial F_{j} / \partial x_{k}$ are positive semi-definite. The functions $f_{i}: \mathcal{T}_{N} \rightarrow \mathcal{R}$ defined by $f_{i}(x)=d\left(x, v_{i}\right)$ are convex (Bridson \& Haefliger, 2011, Proposition 2.2). It follows that the objective function Ω is convex, since it is a convex combination of convex functions. Then, within the interior of any orthant, the matrix of second derivatives of Ω with respect to the edge lengths must be positive semi-definite. However, invertibility of the matrices is required in order to establish Theorem 1 in the paper, and this requires the stronger result stated in Lemma 2.

References

Bridson, M. R. \& Haefliger, A. (2011). Metric Spaces of Non-Positive Curvature. Springer, Berlin.

