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A. ADDITIONAL RESULTS 15

A·1. Overview
The theory in the main paper employs techniques that can be easily generalized to other problems such

as structural testings. In this section, we discuss three additional results that are of interest. In particular,
Section A·2 studies the approximation of the exact distributions of the test statistics proposed in the main
paper, and we consider the problems of testing m-dependence and homogeneity in Sections A·3 and A·4. 20

A·2. Approximation to the exact distributions
Theorems 1 and 2 in the main paper show that the proposed test statistics Ln and L̃n converge weakly

to a Gumbel distribution. The next theorem characterizes the convergence rates for Ln and L̃n.

THEOREM A1. For all rank-type U -statistics, under the conditions in Theorem 2 and that log d =
o(n1/3), we have 25∣∣∣pr
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For all simple linear rank statistics, if conditions in Theorem 1 hold and log d = O(n1/3−ε) for some
constant ε ∈ (0, 1/3), we have∣∣∣pr
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Theorem A1 shows two points. (i) When log d � nκ for some κ < 1/3, the proposed tests based on
simple linear rank statistics and rank-typeU -statistics achieve polynomial rates of convergence. Compared
to tests based on the rank-type U -statistics, the tests based on simple linear rank statistics lose an extra

C© 2016 Biometrika Trust



2 F. HAN, S. CHEN AND H. LIU

O{(log d)1/2n−1/6} term in the rate of convergence, due to approximating the population ranks using the
empirical ranks. Check the proof of moderate deviation in Lemma C5 for more details. (ii) When d � nC35

for some C ∈ (0,∞), Theorem A1 only guarantees an O{(log n)−3/2} rate of convergence.
We will show that the convergence rate can be accelerated by approximating the exact distributions of

the test statistics. Under H0 in the main paper, {Vjk, j < k} and {Ujk, j < k} are independent and only
depend on the relative ranks {Rjkni , i = 1, . . . , n, j < k}, which are uniformly distributed under permu-
tations on {1, . . . , n}. Therefore, we can conduct simulations to approximate the exact distributions of40

{Vjk, j < k} and {Ujk, j < k}, respectively.
Specifically, for i = 1, . . . ,M , we generate X(i)

·,· ∈ Rn×d as an n× d matrix with all entries indepen-
dently drawn from a standard normal distribution, which yield simple linear rank statistics {V (i)

jk , j < k}
and the rank-type U -statistics {U (i)

jk , j < k}. Next, we calculate the values of n(L
(i)
n )2/σ2

V − 4 log d+

log log d and n(L̃
(i)
n )2/σ2

U − 4 log d+ log log d. Here L(i)
n and L̃(i)

n are the extreme-value statistics based45

on {V (i)
jk , j < k} and {U (i)

jk , j < k}, respectively. Let F̂Vn,d;M (·) and F̂Un,d;M (·) be the empirical distribu-
tions, and let FVn,d(·) and FUn,d(·) be their population counterparts.

The Dvoretzky-Kiefer-Wolfowitz inequality (Dvoretzky et al., 1956; Massart, 1990) guarantees, for
each pair of (n, d),

pr
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(A1)

We replace qα in (8) using q̂Vα;n,d and q̂Uα;n,d, which are the 1− α quantiles of F̂Vn,d;M (·) and F̂Un,d;M (·)50

q̂Vα;n,d ≡ inf{x : F̂Vn,d;M (x) ≥ 1− α}, q̂Uα;n,d ≡ inf{x : F̂Un,d;M (x) ≥ 1− α}.

We refer to the tests using the simulation-based thresholds q̂Vα;n,d and q̂Uα;n,d as the exact tests.
Using (A1), we have the next theorem that guarantees the asymptotic control of sizes.

THEOREM A2. Under H0, simple linear rank statistics satisfy that, for each pair of (n, d), with prob-
ability no smaller than 1− 2/M2, we have

sup
α∈[0,1]
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The same inequality also applies to the rank-type U -statistics. Moreover, as n and d grow, q̂Vα;n,d and55

q̂Uα;n,d are both consistent estimators of qα in (9) as M = Mn grows with n.

Theorem A2 shows that, with high probability, we can have arbitrarily fast convergence rates to the
above intermediate approximation by setting the number of simulations M large enough. Typically, it is
much faster than the rateO{(log n)5/2/n1/2} derived in Liu et al. (2008). On the other hand, to attain this
arbitrarily fast rate of convergence, we need to conduct M simulations for estimating the threshold value.60

This increases the computational burden compared to the tests in (8). For the test ofm-dependence, which
we shall introduce in Section A·3, it is impossible to simulate the null exact distribution and we stick to
the test in (A2).

A·3. Test of m-dependence
A random vector X = (X1, . . . , Xd)

T ∈ Rd follows a Gaussian copula distribution if and only if65

{F1(X1), F2(X2), . . . , Fd(Xd)}T distributes the same as {Φ(Z1), . . . ,Φ(Zd)}T, where F1, . . . , Fd are
the marginal distribution functions of X1, . . . , Xd, Φ(·) represents the distribution function of the stan-
dard Gaussian, and Z = (Z1, . . . , Zd)

T ∼ Nd(0,Σ0) with diagonal entries of Σ0 equal 1. The Gaussian
copula family includes the Gaussian, and is a semi-parametric one since the marginal distributions of
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X are unspecified. We refer to Σ0 as the latent correlation matrix of X . As in the main paper, we only 70

consider continuous X for avoiding possible ties.
We aim at testing the null hypothesis A0 : Σ0

jk = 0, for all |j − k| ≥ m. Because X is assumed to
be a Gaussian copula, the dependence structure among {X1, . . . , Xd} is fully encoded in Σ0. Therefore,
testing A0 is equivalent to testing m-dependence among entries of X , i.e., Xj is independent of Xk, for
all |j − k| ≥ m. 75

Cai & Jiang (2011) first consider the problem of testing A0 in high dimensions on Gaussian data.
Later, the result is extended to non-Gaussian data under a moment assumption (Shao & Zhou, 2014). In
this section, we show that the moment assumption can be utterly relaxed by resorting to the rank-based
statistics.

For testingA0, instead of resorting to the Pearson’s correlation coefficients as in Cai & Jiang (2011) and 80

Shao & Zhou (2014), we use Kendall’s tau correlation coefficients {τjk, 1 ≤ j < k ≤ d} introduced in
Example 2 in the main paper. It is well known that Kendall’s tau is irrelevant to the marginal distributions
of X (Nelsen, 1999). Accordingly, within the Gaussian copula family, Kendall’s tau is a more natural
measure of dependence than Pearson’s correlation coefficient. Moreover, it is known from Lemma C8
that, under the Gaussian copula family, we have Σ0

jk = sin(τ0
jkπ/2), where τ0

jk ≡ E(τjk). Therefore, 85

within the Gaussian copula family, testing A0 is equivalent to testing τ0
jk = 0 for all |j − k| ≥ m. We

hence propose the following test statistic

T τα,m ≡ I
{9n

4
(Lτn,m)2 − 4 log d+ log log d ≥ qα

}
, (A2)

where qα is introduced in (9) in the main paper and the extreme-value statistic Lτn,m ≡ max|j−k|≥m |τjk|.
Lτn,m is an extreme-value statistic similar to Lτn in the main paper. We expect Lτn,m to have similar null 90

limiting distribution as Lτn given proper conditions on m. We reject A0 if and only if T τα,m = 1.
The following theorem justifies the test T τα,m for a fixed nominal significance level α.

THEOREM A3. Suppose that log d = o(n1/3) as n grows, m = o(dc) for any c > 0, and for some
constant δ ∈ (0, 1),

card
[{

1 ≤ j ≤ d : |Σ0
jk| > 1− δ for some 1 ≤ k ≤ d and j 6= k

}]
= o(d).

Provided that X is continuous and distributes as a Gaussian copula, under A0, we have, for any y ∈ R,∣∣∣∣pr
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− exp
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Accordingly, the test T τα,m can asymptotically control the size as n and d grow, i.e.,

pr(T τα,m = 1 | A0) = α+ o(1).

Remark A1. The proof of the theorem shows that the assumption, m = o(dc) for any c > 0, can be 95

easily relaxed. Specifically, we only require m = o(dε(δ)) for a small enough constant ε(δ) depending on
δ. This can be verified by checking Equation (C19), and Equation (68) in Cai & Jiang (2011).

Similar to the power analysis in Section 4·2 in the main paper, we study the power of the test T τα,m
against a sparse alternative. To this end, consider the following set of matrices

Um(c) ≡
{
M ∈ Rd×d : diag(M) = Id,M = MT, max

|j−k|≥m
|Mjk| ≥ c(log d/n)1/2

}
.

The following theorem shows, for the Gaussian copula family, as long as the latent correlation matrix 100

Σ0 ∈ Um(C) for some large constant C, the power of the proposed test tends to one.

THEOREM A4. Suppose that we observe n independent observations of a d-dimensional random vec-
tor X = (X1, . . . , Xd)

T following a Gaussian copula with the latent correlation matrix Σ0. Then, there
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exists some large constant D3 such that

sup
Σ0∈Um(D3)

pr(T τα,m = 1) = 1− o(1),

as n and d grow. Here the supremum is taken over the Gaussian copula family such that Σ0 ∈ Um(D3).105

We derive Theorem A4 using a similar technique as in the proof of Theorem 3. The proof is thus omitted.
We then turn to study the optimality of T τα,m. In testing A0, for each n, we define Tα,m to be the set

of all measurable size-α tests Tα,m such that pr(Tα,m = 1 | A0) ≤ α. The following theorem gives the
detection lower bound in differentiating the null hypothesis and the sparse alternative.

THEOREM A5. Assume that there exists a positive constant c′0 < 1, log d = o(n) as n grows, and110

m = o(dc) for any c > 0. Let β be a positive constant satisfying that α+ β < 1. For all large enough n
and d, we have

inf
Tα,m∈Tα,m

sup
Σ0∈Um(c′0)

pr(Tα,m = 0) ≥ 1− α− β,

where the supremum is taken over any distribution family such that Σ0 ∈ Um(c′0).

Therefore, we conclude that T τα,m is rate-optimal in testing the null hypothesis A0 against the sparse
alternative in the main paper.115

For any constant c > 0, the matrix set U(c) defined in (13) in the main paper includes Um(c). Accord-
ingly, the lower bound derived in Section 4·3 cannot be trivially exploited to derive the lower bound for
testing the bandedness of Σ0. However, using the fact thatm = o(dc) for any c > 0, we can find the lower
bound for testing A0 via designing a similar set of parameters as in the proof of Theorem 5.

A·4. Test of homogeneity120

Let X1,·, . . . , Xn,· ∈ Rd be n independent but not necessarily identically distributed random vectors
with Xi,· = (Xi,1, . . . , Xi,d)

T for i = 1, . . . , n. We aim at testing B0 : X1,·, . . . , Xn,· are identically dis-
tributed. Testing B0 is of fundamental interest in many statistical fields.

It is generally very complicated to test homogeneity in high dimensions. The works in this field are very
limited and most of the existed ones reduce it to equity tests of two-sample means and covariance matrices.125

Bai & Saranadasa (1996), Srivastava & Du (2008), Chen & Qin (2010), and Cai et al. (2014) consider
comparing the means of two high-dimensional Gaussian vectors with unknown covariance matrices, and
Chen et al. (2010) and Cai et al. (2014) develop tests of equity of two covariance matrices.

We consider a simplified version of B0: the entries in each Xi,· are mutually independent. In this
simplified setting, we reduce the test of B0 to the test that X1,j , X2,j , . . . , Xn,j are identically distributed130

for any j ∈ {1, . . . , d}. For each j, we test the homogeneity using a rank-based test statistic. We then
formulate an extreme-value statistic by combining the d separate rank-based test statistics.

In details, let Hn be an extreme-value statistic summarizing the d separate rank-based test statistics:
Hn ≡ maxj∈{1,...,d} |hj |, where

hj ≡
2

n(n− 1)

∑
i<i′

sign(Xi′,j −Xi,j) (j = 1, . . . , d).

Here hj is an rank-based statistic counting the number of inequalities Xi′,j > Xi,j across all pairs i < i′.135

Mann (1945) is the first to introduce the test statistic hj for testing homogeneity. Mann (1945) character-
izes the sufficient conditions for hj to be consistent and unbiased, and shows that this statistic is powerful
against a trend alternative that will be introduced later. We refer to Kendall & Stuart (1961) for more
discussion on the rationale of using hj for testing homogeneity. For testing B0, we propose the following
statistic based on Hn:140

Thα ≡ I
(9n

4
H2
n − 2 log d+ log log d ≥ q̃α

)
,
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where q̃α ≡ − log π − 2 log log(1− α)−1 is the 1− α quantile of the Gumbel distribution with the dis-
tribution function exp{−π−1/2 exp(−y/2)}.

Next, we justify that the test Thα controls the size properly. Under B0, we have X1,j , . . . , Xn,j are
identically distributed and hence the distribution of sign(Xi′,j −Xi,j) should be centered around zero,
and the ranks of X1,j , . . . , Xn,j are uniformly sampled from the set of all permutations of {1, . . . , n}.
Accordingly, hj is identically distributed to Kendall’s tau statistic under H0 in the main paper. Therefore,
using Example 2, we derive EB0

(hj) = 0 and

varB0
(hj) =

2(2n+ 5)

9n(n− 1)
=

4

9n
{1 + o(1)},

and the limiting distribution ofHn shall resemble that of Kendall’s tau. Specifically, the following theorem
provides the null limiting distribution of Hn.

THEOREM A6. Suppose that log d = o(n1/3) as n grows. Under B0, we have, for any y ∈ R, 145∣∣∣pr
(9n

4
H2
n − 2 log d+ log log d

)
− exp

{
−π−1/2 exp

(
−y

2

)}∣∣∣ = oy(1).

Accordingly, the test Thα can asymptotically control the size as n and d grow, i.e.,

pr(Thα = 1 | B0) = α+ o(1).

It is worth noting that, similar to Corollary 1 in the main paper, Theorem A6 holds without any distribu-
tional assumption on X1,·, . . . , Xn,·.

We then study the power of the proposed test. We consider a particular trend alternative; that is, for at
least one entry j ∈ {1, . . . , d}, the mean ofXi,j is a linear function of i for a certain entry j ∈ {1, . . . , d}, 150

i.e., B1: there exists some j ∈ {1, . . . , d} such that E(Xi,j) = β0 + β1i/n with var(Xi,j) = σ2, for i =
1, . . . , n and β0, β1, σ

2 ∈ R. Under B1, the variance σ2 is identical across samples while the means are
monotonically increasing or decreasing with respect to the label i. Such an alternative is of interest in
areas including quality control, finance, and longitudinal data analysis. For instance, in quality control we
are interested in inspecting whether machines keep performing well. One alternative of interest is: at least 155

one machine’s performance keeps descending.
Under B1, consider the following set of real numbers (a1, a2):

B(c) ≡
{

(a1, a2) : |a1|/a2 ≥ c(log d/n)1/2, a2 > 0
}
.

The following theorem shows that, uniformly over the alternative hypothesis set B(C), for some large
enough constant C > 0, the power of the proposed test tends to unity as n grows.

THEOREM A7. Suppose that there exists at least one entry j ∈ {1, . . . , d} satisfying B1 with 160

parameters of interest (β1, σ). Moreover, for i = 1, . . . , n, the density function pij(·) of {Xi,j −
E(Xi,j)}/{var(Xi,j)}1/2 is identical to some density function p(·), which satisfies that

p(x) ≥ D4 > 0 for all x ∈ [−M,M ], (A3)

for some constantM > 0. Then there exists some large scalarD5 only depending onD4 andM such that

sup
(β1,σ)∈B(D5)

pr(Thα = 0) = o(1).

In the following we show that the detection boundary |β1|/σ ≥ C(log d/n)1/2 is rate-optimal. We 165

define T hα to be the set of all measurable size-α tests Thα satisfying

pr(Thα = 1 | B0) ≤ α.

The following theorem shows that the proposed test is rate-optimal against the trend alternative B1.
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THEOREM A8. Assume that there exists a constant c′′0 < 31/2, log d/n = o(1) as n grows. Let β be a
positive constant satisfying that α+ β < 1. For all large enough n, d, we have

inf
Thα∈T hα

sup
(β1,σ)∈B(c′′0 )

pr(Thα = 0) ≥ 1− α− β,

where T hα represents the family of measurable size-α tests under B0, and the supremum is taken over any170

distribution family of X1,·, . . . , Xn,· satisfying B1.

It is straightforward that, when X1,·, . . . , Xn,· are normally distributed, Equation (A3) in Theorem A7
is satisfied. Accordingly, combining Theorems A6, A7, and A8 concludes that Thα is rate-optimal in testing
the null hypothesis B0 against the trend alternative B1.

B. ADDITIONAL NUMERICAL EXPERIMENTS175

B·1. Overview
In this section, we conduct additional numerical experiments to further explore the properties of our

proposals. In Section B·2, we provide details of the data generating mechanism in Section 5·2 in the main
paper. In Section B·3, we compare our tests to recent proposals by Mao (2016) and Leung & Drton (2017).
In Section B·4, we investigate the performance of the approximation proposal in Section A·2. And finally,180

we apply our proposals on a real data set in Section B·5.

B·2. Data generating mechanism
We now explain in detail the null distributions and alternative distributions used in Section 5·2 in the

main paper.
For the Gaussian distribution, we generate data from X ∼ Nd(0, Id) under the null, and X ∼185

Nd(0, R
∗) under the sparse alternative. Here R∗ is generated as follows: consider a random matrix

∆ ∈ Rd×d with eight nonzero entries. We select the locations of four nonzero entries randomly from the
upper triangle of ∆, each with a magnitude randomly drawn from the uniform distribution in [0, 1]. The
other four nonzero entries in the lower triangle are determined by symmetry. Finally, to ensure positivity,
R∗ ≡ Id + ∆ + δId, where δ = {−λmin(Id + ∆) + 0 · 05}I{λmin(Id + ∆) ≤ 0}.190

For the light-tailed Gaussian copula, we draw data as Xj = Z
1/3
j for j = 1, . . . , d in both the null

and alternative distributions. Under the null, Z = (Z1, . . . , Zd)
T ∼ Nd(0, Id), and under the alternative,

Z = (Z1, . . . , Zd)
T ∼ Nd(0, R∗).

For the heavy-tailed Gaussian copula, we draw data as Xj = Z3
j for j = 1, . . . , d. Under the null,

Z = (Z1, . . . , Zd)
T ∼ Nd(0, Id), and under the alternative, Z = (Z1, . . . , Zd)

T ∼ Nd(0, R∗).195

For the multivariate t distribution, we generate X1, . . . , Xd independently from a univariate t distribu-
tion with degree of freedom three under the null distribution, and we generate data from a multivariate t
distribution with the covariance matrix R∗ and degree of freedom three under the alternative distribution.

For the multivariate exponential distribution, we draw Xj , j = 1, . . . , d from independent exponential
distributions of rate 0 · 25 under the null distribution, and from a multivariate distribution, where, for each200

j = 1, . . . , d,Xj conditioned onX−j follows an exponential distribution of rate 0 · 25 +R∗j,−jX−j . Here
R∗j,−j denotes the jth row of R without the diagonal element, and X−j denotes the vector X without the
jth entry.

B·3. Additional comparisons
Mao (2016) and Leung & Drton (2017) study the problem of testing H0 using statistics based on the205

sums of rank correlations. Mao (2016) proposes a test based on Spearman’s rho statistics

S = σ−1
nd


d∑
j=2

j−1∑
k=1

ρ2
jk −

d(d− 1)

2(n− 1)

 , (B1)
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where σ2
nd ≡ {d(d− 1)(25n3 − 57n2 − 40n+ 108)}/{25(n− 1)3n(n+ 1)}. Mao (2016) shows that S

converges in distribution to the standard normal as n and d grow. Leung & Drton (2017) study a similar
statistics

T =
n

d


d∑
j=2

j−1∑
k=1

ρ2
jk −

d(d− 1)

2(n− 1)

 , (B2)

and show that T converges in distribution to the standard normal as n and d grow. The difference is that 210

Mao (2016) uses the exact standard deviation σnd, while Leung & Drton (2017) use d/n as an approxi-
mation. Leung & Drton (2017) also provide a general theory that applies to other U -statistics.

In this simulation, we compare three tests based on Spearman’s rho, i.e., the Spearman test in the main
paper, the test based on S of Mao (2016), and the test based on T of Leung & Drton (2017).

We apply the three tests on the ten data generating mechanisms described in Section B·2. In additional, 215

we adopt a simulation scheme where data are drawn from independent Cauchy distribution with mean
zero and scale one as in Mao (2016) to examine the sizes of the three tests under infinite variance.

Results averaged over 5, 000 simulated data sets are shown in Table 1. The two tests of Mao (2016) and
Leung & Drton (2017) have comparable performances across all settings, which agrees with the findings
in Mao (2016). We note that the Spearman test achieves higher power against the sparse alternative than 220

the other two tests. This is because our proposed test is based on the maxima while the other two tests
are based on averages, and thus our proposed test is more sensitive to the sparse alternatives. We also
note that our proposed test can sometimes be conservative, which is a result of the slow convergence
rate of the Gumbel distribution. As we will see in Section B·4, this can be addressed by resorting to the
simulation-based rejection threshold. 225

B·4. Testing with exact distributions
In what follows, we provide the empirical sizes and powers of exact tests. We adopt the Gaussian

distribution in Section 5·2 in the main paper. We compare the performances of the Spearman test and
the Kendall test using theoretical thresholds to the performance of the Spearman and Kendall tests using
simulation-based thresholds. We refer to the Spearman test and the Kendall test using simulation-based 230

thresholds as the Spearman exact test and Kendall exact test, respectively.
Results over 5, 000 simulated data sets are given in Table 2. We observe that the sizes of the two exact

tests are well controlled, and their powers are higher than the corresponding tests that use the theoretical
threshold qα. This reflects the extra gain in power by resorting to the exact tests.

B·5. Real data analysis 235

We study the empirical performance of competing tests on a real stock market data. We collect the
daily closing prices of 452 stocks in the Standard and Poor 500 index from January 1, 2003 to January
1, 2008, available on finance.yahoo.com. We study the nearly independent monthly log return data
(Xue et al., 2012). All together, the corresponding data matrix has n = 59 rows and d = 452 columns.

In order to evaluate the control of size for the seven tests, we simulate data sets with independent 240

columns based on the real monthly log return data matrix. We generate each simulated data set by ran-
domly permuting the entries within each column of the data matrix. This permutation preserves the em-
pirical marginal distribution for each of the 452 column variables, i.e. the stock prices, but, within each
row, the 452 column variables are mutually independent.

We apply the six competing tests to 1, 000 permuted data sets, and report the resulting p-values in 245

Figure 1.
Since the entries within each column have been permuted, the corresponding 452 entries are completely

independent and the histograms shall be close to that of the uniform distribution in [0, 1]. We find that the
histograms of our proposed tests are relatively flat and the proposed tests can effectively control the size.
In comparison, the histograms of p-values from Zhou (2007) and Mao (2014) are strongly skewed to the 250

left, indicating that the tests tend to falsely reject the null hypothesis. The reason is that Zhou (2007) and
Mao (2014) are very sensitive to extreme events as observed in Section 5·2 as well as in Shao & Zhou



8 F. HAN, S. CHEN AND H. LIU

The Spearman test The Kendall test
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Fig. 1: Histograms of the p-values of six competing methods on 1, 000 permuted monthly log
return data. The empirical probabilities of the p-values less than 0 · 050 are 0 · 003, 0 · 021,
1 · 000, 1 · 000, 0 · 041, and 0 · 051 for the Spearman test, the Kendall test, the tests of Zhou
(2007), Mao (2014), Reddi & Póczos (2013), and Póczos et al. (2012), respectively.
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Table 1: Empirical sizes and powers of the Spearman test, the test of Mao (2016), and the test of
Leung & Drton (2017) in percentages

n d Spearman Leung & Drton (2017) Mao (2016) Spearman Leung & Drton (2017) Mao (2016)
Guassian null distribution Gaussian alternative distribution

60 50 2·8 5·1 5·4 91·9 30·9 31·8
200 1·8 5·1 5·2 84·3 7·4 7·5
800 1·2 4·9 5·0 76·3 5·6 5·7

100 50 3·8 4·6 4·9 97·1 59·9 60·3
200 2·5 4·6 4·7 93·7 11·6 11·8
800 1·8 5·2 5·3 92·3 5·4 5·4

Light-tailed null distribution Light-tailed alternative distribution
60 50 2·5 4·4 4·6 90·9 31·9 32·6

200 1·7 4·8 5·0 84·5 6·2 6·3
800 1·1 4·8 4·9 76·0 5·3 5·4

100 50 3·5 4·4 4·8 96·7 60·0 60·6
200 2·8 5·2 5·3 94·7 10·4 10·5
800 1·8 4·7 4·8 91·7 5·9 5·9

Heavy-tailed null distribution Heavy-tailed alternative distribution
60 50 2·5 5·1 5·4 91·0 31·5 32·0

200 1·8 5·2 5·3 84·0 7·4 7·5
800 1·1 4·2 4·3 76·0 5·3 5·4

100 50 3·7 4·7 4·8 96·7 60·3 61·0
200 3·0 4·1 4·2 94·5 11·6 11·7
800 2·1 4·7 4·8 90·9 5·2 5·3

Multivariate t null distribution Multivariate t alternative distribution
60 50 2·8 4·4 4·6 95·2 28·7 29·5

200 1·6 4·8 5·0 79·4 7·0 7·1
800 1·2 5·2 5·3 40·0 5·2 5·2

100 50 4·1 4·7 5·1 99·7 61·0 61·6
200 2·6 5·2 5·3 99·5 9·4 9·6
800 1·9 4·6 4·6 98·6 5·1 5·1

Exponential null distribution Exponential alternative distribution
60 50 1·7 4·7 5·0 90·5 94·1 94·4

200 0·8 5·0 5·2 83·0 100·0 100·0
800 0·2 4·3 4·4 74·7 100·0 100·0

100 50 2·9 4·7 5·1 96·9 98·3 98·3
200 1·8 5·0 5·1 94·0 100·0 100·0
800 0·7 5·3 5·4 91·4 100·0 100·0

Cauchy null distribution
60 50 1·5 4·7 4·8 - - -

200 0·6 4·7 4·8 - - -
800 0·2 4·8 4·9 - - -

100 50 3·1 5·1 5·4 - - -
200 1·7 5·1 5·1 - - -
800 0·7 4·7 4·7 - - -

Results are averaged over 5, 000 simulated data sets.

(2014). And here the log return data contain extreme events and are heavy-tailed (Rachev, 2003), which
are not eliminated by permutation. Finally, kernel-based tests can control the size, which agrees with our
findings in Section 5·2 in the main paper. 255

C. TECHNICAL PROOFS

C·1. Overview
In this section, we provide the technical proofs of the theoretical results in the main paper and in Sec-

tion A of the Supplementary Material. For ease of reading, we defer the technical lemmas to Section C·8.
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Table 2: Empirical sizes and powers of simulation-based rejection thresholds in percentages

n d Spearman exact Kendall exact Spearman Kendall Spearman exact Kendall exact Spearman Kendall
Guassian null distribution Gaussian alternative distribution

60 50 5·6 5·4 1·8 2·9 89·9 90·7 91·9 92·8
200 4·8 4·0 0·8 2·5 89·0 88·8 84·3 87·2
800 4·1 4·8 0·2 1·5 97·0 97·1 97·1 97·5

100 50 5·9 5·8 2·8 3·7 84·5 84·4 76·3 81·8
200 4·6 5·3 1·5 2·7 95·3 95·2 93·7 94·3
800 5·0 4·8 0·8 2·2 94·4 94·2 92·3 93·2

The Spearman exact and Kendall exact tests use simulation-based rejection thresholds. Results are averaged over
5, 000 simulated data sets.

C·2. Proofs of Theorems 1 and 2260

In the proof, Lemma C2 plays a key role in calculating the convergence rate of the limiting distribution.
We first prove Theorem 1 in the main paper.

Proof. To begin with, we focus on the statistic ψjk ≡ n1/2Vjk/σV . In Lemma C2, let I ≡ {(j, k) :
1 ≤ j < k ≤ d}. For u = (j, k) ∈ I , set Bu = {(l,m) ∈ I : (l,m) 6= (j, k), {l,m} ∩ {j, k} 6= ∅}, ηu =
|ψjk|, and Au = Ajk = {|ψjk| > t}. We can check that b3 = 0 in Lemma C2, and265

|pr(n1/2Ln/σV ≤ t)− e−λn | ≤ b1,n + b2,n, (C1)

where we have

λn =
d(d− 1)

2
pr(A12). (C2)

Using Lemma C4, A12 is independent of A13 and accordingly

b1,n ≤ d3pr(A12)2, b2,n ≤ d3pr(A12A13) = d3pr(A13)2.

Here using Lemma C5, when t = o(n1/6), we have270

pr(A12) = pr(|ψ12| > t) = 2{1− Φ(t)}{1 + o(1)}. (C3)

Accordingly, for i = 1, 2, using the Gaussian tail bound pr{N1(0, 1) > t} ≤ e−t2/2/{(2π)1/2t}, we have

bi,n ≤
2

πt2
d3 exp(−t2)⇒ b1,n + b2,n ≤

4

πt2
d3 exp(−t2){1 + o(1)}. (C4)

We then let

t = (4 log d− log log d+ y)1/2 � (4 log d)1/2, (C5)275

and directly plug the above t into (C1). Because log d = o(n1/3), (C3) holds and it follows that

b1n + b2n ≤
4

π(4 log d− log log d+ y)
d3 exp(−4 log d+ log log d) = o

(1

d

)
. (C6)

On the other hand, using the Gaussian tail bounds in an unpublished technical report by Duembgen (avail-
able on arXiv.org with identifier 1012.2063), we have for any t > 0,

1

t+ 1/t
(2π)−1/2 exp

(
− t

2

2

)
≤ 1− Φ(t) ≤ 1

t
(2π)−1/2 exp

(
− t

2

2

)
. (C7)280

Accordingly, as d grows, we see that t diverges to infinity in (C5). We have, as t grows,

1/t− 1/(t+ 1/t) = 1/{t(t2 + 1)} � 1/t3.
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It yields that

1− Φ(t) =
1

(2π)1/2t
exp

(
− t

2

2

)
[1 +O{(log d)−3/2}]. (C8)

Combining (C2), (C3), and (C8) implies

λn =d2{1− Φ(t)}{1 + o(1)} =
d2

(8π log d)1/2
exp

(
−4 log d− log log d+ y

2

)
{1 + o(1)} 285

=(8π)−1/2 exp
(
−y

2

)
{1 + o(1)}. (C9)

Plugging the above equation to (C1) yields∣∣∣pr
(nL2

n

σ2
V

− 4 log d+ log log d ≤ y
)
− exp

{
−(8π)−1/2 exp

(
−y

2

)}∣∣∣
≤|pr(n1/2Ln/σV ≤ t)− exp(−λn)|+ | exp(−λn)− exp{−(8π)−1/2 exp(−y/2)}| = oy(1), (C10)

which completes the proof. � 290

The proof of Theorem 2 is very similar to the proof of Theorem 1. One only needs to replace (C22)
with (C23) when applying Lemma C5. The proof is thus omitted.

C·3. Proofs of Theorems 3 and 4
The proofs are based on several concentration inequalities developed in Section C·8. We prove Theorem

3 first. 295

Proof. The test statistic nL2
n/σ

2
V is scale and location invariant. Hence, without loss of generality, we

assume that
∑n
i=1 cni = 0 in this proof. Using (4), we have EH0

(Vjk) = 0 and

V̂jk =
Vjk
σV

=
Vjk{1 + o(1)}

A1
.

Let ∆ be a Lipschitz constant of both g(·) introduced in (1) and f(·) introduced in (2) in the main paper.
Using Lemma C6, it follows that, for sufficiently large n and some scalar c(A1, A2,∆) only depending
on A1, A2, and ∆, for any t > 0, 300

pr
(
|V̂jk − Vjk| > t

)
≤ 2 exp{−nt2/c(A1, A2,∆)}.

We then have

pr
(

max
j<k
|V̂jk − Vjk| > t

)
≤ d2 exp{−nt2/c(A1, A2,∆)},

which implies that, with probability at least 1− d−1,

max
j,k
|V̂jk − Vjk| ≤

{
3c(A1, A2,∆) log d

n

}1/2

.

Therefore, we have, for n large enough, there exists a large enough constant C such that

nL2
n/σ

2
V = nmax

j<k
V̂ 2
jk ≥ n

(
max
j,k
|Vjk| −max

j,k
|V̂jk − Vjk|

)2 ≥ {C − 31/2c(A1, A2,∆)1/2
}2

log d.

Accordingly, by choosing C > 2 + 31/2c(A1, A2,∆)1/2, we have with probability no smaller than 1−
d−1, 305

nL2
n/σ

2
V > (4 + ε) log d,

for some small constant ε. Accordingly, for any given qα, with probability tending to 1,

nL2
n/σ

2
V > 4 log d− log log d− qα.
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This completes the proof. �

We then prove Theorem 4 in the main paper.

Proof. The proof is similar to that of Theorem 3. Because the test statistic nL̃2
n/σ

2
U is scale and location

invariant, without loss of generality, we assume EH0
{h(X1, . . . , Xm)} = 0. Then it is immediately clear310

that EH0(Ujk) = 0. Moreover, by a standard argument of U -statistics (see, e.g., Serfling (2002)), we have

nvarH0
(Ujk)= σ̃2

U{1 + o(1)}
= m2varH0

[EH0
{h(X1,{1,2},. . . ,Xm,{1,2}) | X1,{1,2}}]{1 + o(1)}

= A4{1 + o(1)},

where σ̃2
U is defined in (15) in the main paper. Then using Lemma C7, we have for large n and some scalar315

c(A3, A4,m) only depending on A3, A4 and m, for any t > 0

pr
(
|Ûjk − Ujk| > t

)
≤ 2 exp{−nt2/c(A3, A4,m)}.

The rest is a line-by-line follow of Theorem 3’s proof. �

C·4. Proof of Theorem 5
Proof. Consider the Gaussian setting and a simple alternative set of parameters

F(ρ)={M : M=Id + ρe1e
T

j + ρeje
T

1 , ek=(0, . . . , 0︸ ︷︷ ︸
k−1

, 1, 0, . . . , 0), 1 ≤ k ≤ d, j = 2, . . . , d}.

Let µρ be the uniform measure on F(ρ) and ρ = c0(log d/n)1/2 for some small enough constant c0 <320

1. Let prΣ denote the probability measure of Nd(0,Σ) and prµρ =
∫

prΣdµρ(Σ). Let pr0 denote the
probability measure of Nd(0, Id). Note that, for any set A, we have

sup
Σ∈F(ρ)

prΣ(AC) ≥ prµρ(A
C), 1 = prµρ(A

C) + prµρ(A),

and

prµρ(A) ≤ pr0(A) + |prµρ(A)− pr0(A)|.

Letting A ≡ {Tα = 1}, the above equations yield

inf
Tα∈Tα

sup
Σ∈F(ρ)

prΣ(Tα = 0) ≥ 1− α− sup
A:pr0(A)≤α

|prµρ(A)− pr0(A)| ≥ 1− α− 1

2
‖prµρ − pr0‖TV ,

where ‖ · ‖TV denotes the total variation norm. Setting Lµρ(y) ≡ dprµρ(y)/dpr0(y), and by Jensen’s325

inequality, we have

‖prµρ − pr0‖TV =

∫
|Lµρ(y)− 1|dpr0(y) = Epr0 |Lµρ(Y )− 1| ≤ [Epr0{L

2
µρ(Y )} − 1]1/2.

Therefore, as long as Epr0{L
2
µρ(Y )} = 1 + o(1), we have

inf
Tα∈Tα

sup
Σ∈F(ρ)

prΣ(Tα = 0) ≥ 1− α− o(1) > 0. (C11)

We then prove that Epr0{L
2
µρ(Y )} = 1 + o(1). By construction, we have

Lµρ =
1

d− 1

∑
Σ∈F(ρ)

[
n∏
i=1

1

|Σ|1/2
exp

{
−1

2
ZT

i,·(Ω− Id)Zi,·
}]

,
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where Ω ≡ Σ−1 and Z1,·, . . . , Zn,· are d-dimensional vectors to be specified later. We have 330

Epr0{L
2
µρ(Y )} =

1

(d− 1)2

∑
Σ1,Σ2∈F(ρ)

E

[
n∏
i=1

1

|Σ1|1/2
1

|Σ2|1/2
exp

{
−1

2
ZT

i,·(Ω1 + Ω2 − 2Id)Zi,·

}]
,

where Ωi ≡ Σ−1
i for i = 1, 2 and {Zi,·, 1 ≤ i ≤ n} are independent and identically distributed as

Nd(0, Id). We write

A =
ρ

1− ρ2

 2ρ −1 −1
−1 ρ 0
−1 0 ρ

 , B =
2ρ

1− ρ2

(
ρ −1
−1 ρ

)
.

It is easy to derive that

Epr0(L2
µρ) =

d− 2

d− 1

n∏
i=1

[
1

1− ρ2
E

{
exp

(
−1

2
ZT

i,{1,2,3}AZi,{1,2,3}

)}]
︸ ︷︷ ︸

E1

+
1

d− 1

n∏
i=1

[
1

1− ρ2
E

{
exp

(
−1

2
ZT

i,{1,2}BZi,{1,2}

)}]
︸ ︷︷ ︸

E2

, 335

where E1 represents the set of (Σ1,Σ2) with Σ1 6= Σ2, and E2 represents the set of (Σ1,Σ2) with Σ1 =
Σ2. By standard argument in moment generating functions of the Gaussian quadratic form, we have

E1 =
d− 2

d− 1

1

(1− ρ2)n
[{1 + λ1(A)}{1 + λ2(A)}{1 + λ3(A)}]−n/2 ,

where λi(A) is the ith eigenvalue of A. Moreover, we have {1 + λ1(A)}{1 + λ2(A)}{1 + λ3(A)} =
|A+ Id| = (1− ρ2)−2. When d grows with n, we know that

E1 =
1

(1− ρ2)n
(1− ρ2)n{1 + o(1)} = 1 + o(1). (C12) 340

For E2, it is easy to calculate that λ1(B) = 2ρ/(1− ρ) and λ2(B) = −2ρ/(1 + ρ). Similar to the
calculation ofE1, we haveE2 = (d− 1)−1(1− ρ2)−n. Recalling that ρ = c0(log d/n)1/2 and log d/n =
o(1), we have

E2 = (d− 1)−1(1− c20 log d/n)−n = (d− 1)−1 exp(c20 log d){1 + o(1)} = o(1) (C13)

as long as c0 < 1. Combining (C12) and (C13) yields (C11). Lastly, because the Pearson’s covariance 345

matrix Σ ∈ F(ρ) implies that the Pearson’s correlation matrix R ∈ F(ρ), we have {X : Σ ∈ F(ρ)} ⊂
{X : R ∈ F(ρ)} and thus

inf
Tα∈Tα

sup
R∈F(ρ)

prΣ(Tα = 0) ≥ inf
Tα∈Tα

sup
Σ∈F(ρ)

prΣ(Tα = 0) ≥ 1− α− o(1) > 0.

This completes the proof. �

C·5. Proofs of Theorems A3 and A5
We first prove Theorem A3. 350

Proof. By checking the proof of Theorem 4 in Cai & Jiang (2011), we only need to verify the following
three statements to show that Theorem A3 holds.
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S1. Suppose that Z ≡ (Z1, Z2, Z3, Z4)T ∼ N4(0,Σ1) with

Σ1 ≡


1 0 r 0
0 1 0 0
r 0 1 0
0 0 0 1

 , |r| ≤ 1.

Let Z1,·, . . . , Zn,· ∈ R4, with Zi,· = (Zi,1, . . . , Zi,4)T, be n independent observations of Z. Further
set tn ≡ {(4 log d− log log d+ y)/n}1/2 for some fixed y ∈ R, as n grows, and log d = o(n1/3). We355

have

sup
|r|≤1

pr(3τ12/2 > tn, 3τ34/2 > tn) = O(d−4),

where for (j, k) ∈ {(1, 2), (3, 4)},

τjk ≡
2

n(n− 1)

∑
1≤i<i′≤n

sign(Zi,j − Zi′,j)sign(Zi,k − Zi′,k).

S2 Suppose that Z ≡ (Z1, Z2, Z3, Z4)T ∼ N4(0,Σ2) with

Σ2 ≡


1 0 r1 0
0 1 r2 0
r1 r2 1 0
0 0 0 1

 , |r1| ≤ 1, |r2| ≤ 1.

Let Z1,·, . . . , Zn,· ∈ R4, with Zi,· = (Zi,1, . . . , Zi,4)T, be n independent observations of Z. Then set
tn ≡ {(4 log d− log log d+ y)/n}1/2 for some fixed y ∈ R, n and d grow, and log d = o(n1/3). We360

have

sup
|r1|≤1,|r2|≤1

pr(3τ12/2 > tn, 3τ34/2 > tn) = O(d−4).

S3 Suppose that Z ≡ (Z1, Z2, Z3, Z4)T ∼ N4(0,Σ3) with

Σ3 ≡


1 0 r1 0
0 1 0 r2

r1 0 1 0
0 r2 0 1

 , |r1| ≤ 1, |r2| ≤ 1.

Let Z1,·, . . . , Zn,· ∈ R4, with Zi,· = (Zi,1, . . . , Zi,4)T, be n independent replicates of Z. Then setting
tn ≡ {(4 log d− log log d+ y)/n}1/2 for some fixed y ∈ R, as n and d grow, and log d = o(n1/3).
Then we have, for any fixed δ ∈ (0, 1), there exists ε0 = ε(δ) > 0 such that365

sup
|r1|,|r2|≤1−δ

pr(3τ12/2 > tn, 3τ34/2 > tn) = O(d−2−ε0).

For showing S1, S2, and S3 hold, consider the general setting where Z ≡ (Z1, Z2, Z3, Z4)T ∼
N4(0,Σ) and Σ has diagonals all equal one. The Kendall’s tau correlation coefficient is a U -statistic
with degree two and the kernel function bounded by one. By exploiting the Hájek’s projection (Hájek
et al., 1999), with a little abuse of notation, we can write

3τjk/2 =
2

n

n∑
i=1

E(3τjk/2 | Zi,{j,k}) + Ejk =
1

n

n∑
i=1

E(3τjk | Zi,{j,k})︸ ︷︷ ︸
Ψi,jk

+Ejk, (C14)370
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where Ψ1,jk,Ψ2,jk, . . . ,Ψn,jk are n independent random variables, and Ejk is a degenerate U -statistic.
Moreover, both Ψi,jk and Ejk are bounded. Using (C14) and the Slutsky’s argument, we can further write

pr(3τ12/2 > tn, 3τ34/2 > tn)

=pr
( 1

n

n∑
i=1

Ψi,12 + E12 > tn,
1

n

n∑
i=1

Ψi,34 + E34 > tn

)
≤pr

( 1

n

n∑
i=1

Ψi,12 > tn − ε1,
1

n

n∑
i=1

Ψi,34 > tn − ε1
)

+ pr(E12 > ε1) + pr(E34 > ε1) 375

, =pr
{
n−1/2

n∑
i=1

Ψi,12 > n1/2(tn − ε1), n−1/2
n∑
i=1

Ψi,34 > n1/2(tn − ε1)
}

+ pr(E12 > ε1) + pr(E34 > ε1)

where ε1 is a constant to be specified later. Because |Ψi,jkn
−1/2| ≤ 3n−1/2 for (j, k) ∈ {(1, 2), (3, 4)},

using Theorem 1 in Zaı̈tsev (1987), we have

pr
{
n−1/2

n∑
i=1

Ψi,12 > n1/2(tn − ε1), n−1/2
n∑
i=1

Ψi,34 > n1/2(tn − ε1)
}

380

≤pr
{
Y1 ≥ n1/2(tn − ε1 − ε2), Y2 ≥ n1/2(tn − ε1 − ε2)

}
+ c1 exp

(
−nε2/c2

)
, (C15)

where c1 and c2 are two positive constants and (Y1, Y2)T is bivariate Gaussian with mean zero and covari-
ance matrix

ΣY = cov
{(
n1/2

n∑
i=1

Ψi,12, n
1/2

n∑
i=1

Ψi,34

)T}
.

We then determine what ΣY is. Recall that under S1, S2, or S3, Zj , Zk are independent for (j, k) ∈
{(1, 2), (3, 4)}. We can write 385

Ψi,jk = E(3τjk | Zi,{j,k}) = 3E{sign(Zi,j − Z̃j)sign(Zi,k − Z̃k) | Zi,j , Zi,k},

where (Z̃j , Z̃k)T is an independent copy of (Zi,j , Zi,k)T. Because Z̃j is independent of Z̃k, we can write

3E
{
sign(Zi,j − Z̃j)sign(Zi,k − Z̃k) | Zi,j , Zi,k

}
=3E

{
sign(Zi,j − Z̃j) | Zi,j

}
E
{
sign(Zi,k − Z̃k) | Zi,k

}
=3
{
pr(Z̃j > Zi,j | Zi,j)− pr(Z̃j < Zi,j | Zi,j)

}{
pr(Z̃k > Zi,k | Zi,k)− pr(Z̃k < Zi,k | Zi,k)

}
.

(C16)

Using the property of the Gaussian distribution, (C16) yields

Ψi,jk = 3{1− 2Φ(Zi,j)}{1− 2Φ(Zi,k)}, (C17)

where Φ(·) is the distribution function of the standard Gaussian. Using the result in Example 2 in the main
paper, we know 390

nvar(τjk) =
2(2n+ 5)

9(n− 1)
=

4

9
+ o(1).

Combining it with Lemma A in Page 183 in Serfling (2002) yields that

nvar(3τjk) = 4 + o(1) = 4var(Ψ1,jk) +O(n−1).

Because var(Ψi,jk) is a constant irrelevant to n, we have var(Ψi,jk) = 1 for i = 1, . . . , n and (j, k) ∈
{(1, 2), (3, 4)}. This yields

[ΣY ]11 = [ΣY ]22 = var(Ψ1,12) = 1.



16 F. HAN, S. CHEN AND H. LIU

In the end, we determine the value of [ΣY ]12. It is immediately clear that

[ΣY ]12 = cov
(
n−1/2

n∑
i=1

Ψi,12, n
−1/2

n∑
i=1

Ψi,34

)
= cov(Ψ1,12,Ψ1,34).

Using (C17), we can further write395

cov(Ψ1,12,Ψ1,34) = 9E{1− 2Φ(Z1)}{1− 2Φ(Z2)}{1− 2Φ(Z3)}{1− 2Φ(Z4)}. (C18)

Using (C18), we are now ready to prove that statements S1, S2, and S3 hold. Recall that (Y1, Y2)T ∼
N2(0, I2). (C14) yields

pr(3τ12/2 > tn, 3τ34/2 > tn) ≤pr{Y1 ≥ n1/2(tn − ε1 − ε2), Y2 ≥ n1/2(tn − ε1 − ε2)}
+ c1 exp(−nε2/c2) + pr(E12 > ε1) + pr(E34 > ε1).400

Both E12 and E34 are degenerate U -statistics with kernel function bounded. From Proposition 2.3 in
Arcones & Gine (1993), we know that there exist constants c3, c4 such that

pr(E12 > ε1) ≤ c3 exp(−c4nε1), pr(E34 > ε1) ≤ c3 exp(−c4nε1).

Recalling that tn = {(4 log d− log log d+ y)/n}1/2 � (4 log d/n)1/2 and log d = o(n1/3), we can pick
ε1, ε2 small enough such that ε1, ε2 � n−2/3. In this way, we have for any constant c > 0, there exists a
scalar C depending on c such that, for n large enough,405

exp(−cnεi) ≤ exp(−Cn1/3) = o(d−4), i = 1, 2,

and ε1 = o(tn), ε2 = o(tn).
For S1 and S2, we know that Z4 is independent of Z1, Z2, Z3, and accordingly

cov(Ψ1,12,Ψ1,34) =9E{1− 2Φ(Z1)}{1− 2Φ(Z2)}{1− 2Φ(Z3)}{1− 2Φ(Z4)}
=9E{1− 2Φ(Z1)}{1− 2Φ(Z2)}{1− 2Φ(Z3)}E{1− 2Φ(Z4)} = 0.

Therefore, we have (Y1, Y2)T ∼ N2(0, I2) and accordingly410

pr(3τ12/2 > tn, 3τ34/2 > tn) ≤[pr{Y1 ≥ n1/2(tn − ε1 − ε2)}]2 + c1 exp(−nε2/c2)

+ pr(E12 > ε1) + pr(E34 > ε1)

=(pr[Y1 ≥ n1/2tn{1 + o(1)}])2 + o(d−4) = o(d−4),

where we use the Gaussian tail bound that for any t > 0,

{pr(Y1 > t)}2 ≤ 2

πt2
exp(−t2).

415

For proving S3, we need one more lemma, which shows that [ΣY ]12 is upper bounded by a constant
strictly less than 1 when all off-diagonal values in Σ3 are upper bounded by r < 1.

LEMMA C1. Suppose that (Z1, Z2, Z3, Z4)T ∼ N4(0,Σfull) with

Σfull =


1 a1 a2 a3

a1 1 a4 a5

a2 a4 1 a6

a3 a5 a6 1

 .
If |a1|, |a2|, . . . , |a6| ≤ r < 1, then we have

sup
|a1|,|a2|,...,|a6|≤r

|corr[{Φ(Z1)− 1/2}{Φ(Z2)− 1/2}, {Φ(Z3)− 1/2}{Φ(Z4)− 1/2}]| = Cr < 1.

Here Cr ≤ 1 only depends on r. Moreover, we have Cr = 1 only when r = 1 and {a1, a2, . . . , a6} attain420

the boundary that |aj | = 1 for some j ∈ {1, . . . , 6}.
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Proof. First, we show that Cr = 1 only when r = 1 and {a1, a2, . . . , a6} attain the boundary. When
Cr = 1, we have

{Φ(Z1)− 1/2}{Φ(Z2)− 1/2} = a{Φ(Z3)− 1/2}{Φ(Z4)− 1/2}

for some constant a. This implies that

Z1 = Φ−1

[
a{Φ(Z3)− 1/2}{Φ(Z4)− 1/2}

Φ(Z2)− 1/2
+ 1/2

]
.

We have Z1 ∼ N1(0, 1) if and only if a{Φ(Z3)− 1/2}{Φ(Z4)− 1/2}/{Φ(Z2)− 1/2} ∼ 425

Unif(−1/2, 1/2). Here Unif(−1/2, 1/2) represents the random variable uniformly distributed
in the interval [−1/2, 1/2]. Because when Z2 6= ±Z3 and Z2 6= ±Z4, there is always possi-
bility such that Z2 is very close to zero and both Z3 and Z4 are away from zero, such that
a{Φ(Z3)− 1/2}{Φ(Z4)− 1/2}/{Φ(Z2)− 1/2} is very close to ∞ and outside of [−1/2, 1/2].
Accordingly, Z2 must be equal to either ±Z3 or ±Z4. Or equivalently, {a1, a2, . . . , a6} attain the 430

boundary r = 1. This completes the proof of the first part.
Secondly, it is obvious that there is a one-to-one mapping between r and

Cr ≡ sup
|a1|,|a2|,...,|a6|≤r

|corr[{Φ(Z1)− 1/2}{Φ(Z2)− 1/2}, {Φ(Z3)− 1/2}{Φ(Z4)− 1/2}]|.

Accordingly, as long as r < 1, Cr < 1 only depends on r. �

Using Lemma C1, we can continue to prove S3 holds. Recall that now (Y1, Y2)T ∼ N2(0,ΣY ), where
Lemma C1 shows sup|r1|,|r2|≤1−δ |[ΣY ]12| ≤ Cr < 1. Thus, we have 435

pr(Y1 ≥ t, Y2 ≥ t) = pr{min(Y1, Y2) ≥ t}.

Denoting ρ ≡ [ΣY ]12, using Equation (8) in Nadarajah & Kotz (2008), we have

E[exp{tmin(Y1, Y2)}] = exp
( t2

2

)
Φ
{ −t(1− ρ)

(2− 2ρ)1/2

}
.

Using the Chernoff’s bounding method, we immediately have

sup
|r1|,|r2|≤1−δ

pr(Y1 ≥ t, Y2 ≥ t) ≤ sup
|r1|,|r2|≤1−δ

inf
λ>0

E[exp{λmin(Y1, Y2)}]
eλt

≤ sup
|r1|,|r2|≤1−δ

inf
λ>0

eλ
2/2−λtΦ

{ −λ(1− ρ)

(2− 2ρ)1/2

}
= inf
λ>0

eλ
2/2−λtΦ

[
−λ{(1− Cr)/2}1/2

]
. 440

Picking λ = t, the above equation yields

sup
|r1|,|r2|≤1−δ

pr(Y1 ≥ t, Y2 ≥ t) ≤ e−t
2/2Φ

[
−t{(1− Cr)/2}1/2

]
.

Setting t = n1/2tn{1 + o(1)}, then there exists a constant C such that

sup
|r1|,|r2|≤1−δ

pr(Y1 ≥ t, Y2 ≥ t)≤Cd−2(log d)1/2pr[Y1>{(1− Cr)/2}1/2t]

≤Cd−2(log d)1/2O(d−M ), (C19)

where M > 0 is a constant only depending on Cr. Thus, the statement S3 holds. 445

All in all, we have S1, S2, and S3 all hold. This completes the proof. �

We then proceed to prove Theorem A5.
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Proof. We strictly follow the proof of Theorem 5 in the main paper and adopt the same notation system.
In particular, we consider the following alternative set of parameters:

Fm(ρ) = {Σ0 = Id + ρe1e
T

j + ρeje
T

1 , for j ∈ {m+ 1,m+ 2, . . . , d}}.

Then the whole proof in Theorem 5 applies here with the only exception that E2 = (d−m)−1(1−450

ρ2)−n. However, because d−m � d, we have E2 = (d−m)−1(1− ρ2)−n � d−1(1− ρ2)−n. Taking
ρ = c′0(log d/n)1/2, we still have

E2 �
1

d
(1− c′20 log d/n)n = d−1 exp(c′20 log d){1 + o(1)} = o(1).

This completes the proof. �

C·6. Proofs of Theorems A6, A7, and A8
The proof of Theorem A6 is very similar to that of Theorem 1 and is accordingly omitted. In the455

following we give the proof of Theorem A7.

Proof. Assume that the first entry across X1,·, . . . , Xn,· is heterogeneity. It is obvious that sign(Xi,1 −
Xi′,1) is invariant to β0 and σ2 given β1/σ. Therefore, without loss of generality, we assume β0 = 0
and σ2 = 1. Moreover, without loss of generality, we can assume β1 ∈ (0,M), otherwise we can always
replace β1 with min(|β1|,M). We have460

E{sign(Xi′,1 −Xi,1)} = pr(Xi′,1 −Xi,1 > 0)− pr(Xi′,1 −Xi,1 < 0)

= pr{Zi′,1 − Zi,1 > −β1(i′ − i)/n} − pr{Zi′,1 − Zi,1 < −β1(i′ − i)/n}
= pr{Zi′,1 − Zi,1 < β1(i′ − i)/n} − pr{Zi′,1 − Zi,1 < −β1(i′ − i)/n},

where Zk,1 = {Xk,1 − E(Xk,1)}/var(Xk,1) is the standardized version of Zk,1 for k = 1, . . . , n. Then,
(A3) yields that the density function of Zi′,1 − Zi,1 is465

{pi′1 ∗ (−pi1)}(z) =

∫ ∞
−∞

pi′1(z + y)pi1(y)dy ≥ D4

∫ M

−M
pi′1(z + y)dy

≥D4

∫ min{M+z,M}

max{−M+z,−M}
pi′1(y)dy ≥ D2

4(2M − |z|), (|z| ≤ 2M).

This further implies

E(h1) =
2

n(n− 1)

∑
i<i′

E{sign(Xi′,1 −Xi,1)} =
2

n(n− 1)

∑
i<i′

[Fp{β1(i′ − i)/n} − Fp{−β1(i′ − i)/n}]

≥ 2D2
4Mβ

n2(n− 1)

∑
i<i′

(i′ − i) =
D2

4Mβ

3

n(n2 − 1)

n2(n− 1)
≥ 2D2

4Mβ

3
,470

where Fp(·) is the distribution function of Z1,1 − Z2,1. On the other hand, by the McDiarmid’s inequality
(McDiarmid, 1989), for any j ∈ {1, . . . , d},

pr{|hj − E(hj)| > t} ≤ 2 exp(−nt2/2).

The rest is similar to the proof of Theorem 3 in the main paper. �

We then proceed to prove Theorem A8.

Proof. We focus on a simple Gaussian model where X1,·, . . . , Xn,· are independent and normally475

distributed, with covariance matrix Id. Accordingly, by virtue of the normal distribution, we can write
(X1,j , . . . , Xn,j)

T ∼ Nn(µj,·, In) for j ∈ {1, . . . , d}. Here µj,· ∈ Rn is the mean vector. We then con-
sider the following simple alternative set of parameters:

H(β) =
{
µ={µ1, . . . , µd} : µi,·={0, β/n, 2β/n, . . . , (n− 1)β/n}T for some i, the rests are all zero

}
.



Supplementary Material for Distribution-Free Tests of Independence 19

Let µβ be the uniform measure on H(β) and β = c′′0(log d/n)1/2 for some small enough constant c′′0 <
31/2. Let prµ be the probability measure on Nn(µ1,·, In)⊗ · · · ⊗Nn(µn,·, In). In particular, let pr0 be 480

the probability measure on Nn(0, In)⊗ · · · ⊗Nn(0, In). Let prµβ ≡
∫

prµdµβ(µ) be the measure based
onH(β). Similar to the proof of Theorem 5, to prove Theorem A8, it suffices to show that

Epr0{L
2
µβ

(Y )} = 1 + o(1),

where Lµβ (y) ≡ dprµβ (y)/dpr0(y). By construction, we can write

Lµβ (y) =
1

d

∑
µ∈H(β)

{ d∏
i=1

exp
(
ZT

i,·µi,· − ‖µi,·‖22/2
)}
.

Accordingly, the above equation yields that

Epr0{L
2
µβ

(Y )} =
1

d2

∑
µ1,µ2∈H(β)

E
{ d∏
i=1

exp(ZT

i,·µ
1
i,· + ZT

i,·µ
2
i,· − ‖µ1

i,·‖22/2− ‖µ2
i,·‖22/2)

}
,

whereZ1,·, . . . , Zd,· ∼ Nn(0, In) and µk = {µk1,·, . . . , µkd,·} for k ∈ {1, 2}. We can then continue to write 485

Epr0L
2
µβ

=
1

d2

∑
µ1 6=µ2

E

{
d∏
i=1

exp(ZT

i,·µ
1
i,· + ZT

i,·µ
2
i,· − ‖µ1

i,·‖22/2− ‖µ2
i,·‖22/2)

}
︸ ︷︷ ︸

H1

+

1

d2

∑
µ1=µ2

E

{
d∏
i=1

exp(ZT

i,·µ
1
i,· + ZT

i,·µ
2
i,· − ‖µ1

i,·‖22/2− ‖µ2
i,·‖22/2)

}
︸ ︷︷ ︸

H2

. (C20)

Let µ∗ ≡ {0, β/n, . . . , (n− 1)β/n}T. For the first term in (C20), we have

H1 =
d− 1

d
E{exp(ZT

1,·µ
∗ − ‖µ∗‖22/2)}E{exp(ZT

2,·µ
∗ − ‖µ∗‖22/2)} = 1 + o(1).

For the second term in (C20), we have, when c′′0 ≤
√

3,

H2 =d−1E
{

exp(2ZT

1,·µ
∗ − ‖µ∗‖22)

}
= d−1 exp(‖µ∗‖22) = d−1 exp{(1− n−1)(2n− 1)β2/6} 490

=d−1 exp(nβ2/3){1 + o(1)} = exp{− log d+ (c′′0)2 log d/3}{1 + o(1)} = o(1).

This completes the proof. �

C·7. Proof of Theorem A1
Proof. We focus on simple linear rank statistics, as the extension to rank-type U -statistics is straight-

forward. Following the proof of Theorem 1 in the main paper and using Lemma C5, we can replace (C3) 495

with

pr(A12) = pr(|ψ12| > t) = 2{1− Φ(t)}[1 +O{(log d)3/2n−1/2 + (log d)1/2n−1/6}].

Furthermore, (C8) implies that

λn = d2{1− Φ(t)}[1 +O{(log d)3/2n−1/2 + (log d)1/2n−1/6}][1 +O{(log d)−3/2}]

= (8π)−1/2 exp
(
−y

2

)
[1 +O{(log d)3/2n−1/2 + (log d)1/2n−1/6 + (log d)−3/2}].

Accordingly, we can separately bound the first and second terms in (C10), yielding that 500

|pr(Ln ≤ t)− exp(−λn)| = o(d−1)
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and

| exp(−λn)− exp{− exp(−y/2)(8π)−1/2}| = O{(log d)3/2n−1/2 + (log d)1/2n−1/6 + (log d)−3/2}.

Here we use the fact that, when x approaches zero, exp(x)− 1 � x. This completes the proof. �

C·8. Auxiliary lemmas505

The following seven lemmas play crucial roles in our theory.

LEMMA C2 (ARRATIA ET AL. (1989)). Let I be an index set and {Bα, α ∈ I} be a set of subsets
of I; that is, Bα ⊂ I for each α ∈ I . Let also {ηα, α ∈ I} be random variables. For a given t ∈ R, set
λ =

∑
α∈I pr(ηα > t). Then∣∣pr

(
max
α∈I

ηα ≤ t
)
− e−λ

∣∣ ≤ min(1, λ−1)(b1 + b2 + b3),

where510

b1 ≡
∑
α∈I

∑
β∈Bα

pr(ηα > t)pr(ηβ > t), b2 ≡
∑
α∈I

∑
β 6=α,β∈Bα

pr(ηα > t, ηβ > t),

b3 ≡
∑
α∈I

E|pr{ηα > t | σ(ηβ , β /∈ Bα)} − pr(ηα > t)|,

where σ(ηβ , β /∈ Bα) is the σ-algebra generated by {ηβ , β /∈ Bα}. In particular, if ηα is independent of
{ηβ , β /∈ Bα} for each α, then b3 = 0.

LEMMA C3. Suppose that X,Y are two independent continuous random variables. Let X1, . . . , Xn515

and Y1, . . . , Yn be independent observations of X and Y . Let {QXi , i = 1, . . . , n} and {QYi , i =
1, . . . , n} be the rank of Xi and Yi in the samples {Xi}ni=1 and {Yi}ni=1. Let {Rni}ni=1 represent the
relative ranks:

Rni = QYi′ subject to QXi′ = i.

We then have {Rn1, . . . , Rnn} are uniformly distributed in all permutations of {1, . . . , n} with

pr(Rn1 = i1, . . . , Rnn = in) =
1

n!
, (C21)520

for any permeation {i1, . . . , in} of {1, . . . , n}. Here n! represents the factorial of n.

Proof. Using the fact that {Xi}ni=1 are independent of {Yi}ni=1, for any permutation {i1, . . . , in} of
{1, . . . , n} and any a1, . . . , an ∈ R, we have

pr(Xi1 < Xi2 < · · · < Xin | Y1 = a1, . . . , Yn = an) = pr(Xi1 < Xi2 < · · · < Xin).

Therefore, the relative ranks’ joint distribution is identical to the distribution of {QXi , i = 1, . . . , n}. The
latter’s distribution is known to be jointly distributed in the form of (C21). �525

LEMMA C4. Let {Sjk, 1 ≤ j < k ≤ d} be functions of relative ranks {Rjkni , i = 1, . . . , n} with the
same mapping function from {Rjkni , i = 1, . . . , n} for any j, k. Then, under the null hypothesis H0, Su1j

is identically and pairwise independently distributed to Su2k for any non-identical (u1, j) and (u2, k).

Proof. Using Lemma C3, the distribution of the relative ranks does not change as long as the indepen-
dence assumption holds. We then have {Sjk, 1 ≤ j < k ≤ d} are all identically distributed. It is obvious530

that, under H0, Su1j , Su2k are independent when there is no overlap between (u1, j) and (u2, k). In the
rest we show that Su1j , Su2k are independent when there is one overlap between (u1, j) and (u2, k).

We consider the case u1 = u2 6= j 6= k and the proofs of all the other settings are similar. We prove Suj
is independent of Suk with u = u1 = u2 ∈ {1, . . . , d}. It is sufficient to show that for any two bounded
and measurable functions g(x) and h(x), we have535

E{g(Suj)h(Suk)} = E{g(Suj)}E{h(Suk)}.
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Given {X1,u, X2,u, . . . , Xn,u}, Suj and Suk are independent. We have

E{g(Suj)h(Suk)} = E(E[g(Suj)h(Suk) | {X1,u, X2,u, . . . , Xn,u}])
= E(E[g(Suj) | {X1,u, X2,u, . . . , Xn,u}]E[h(Suk) | {X1,u, X2,u, . . . , Xn,u}]).

Next we show that, given {X1,u, X2,u, . . . , Xn,u}, the conditional distributions of Suj and g(Suj) are
irrelevant to {X1,u, X2,u, . . . , Xn,u}. This follows by applying Lemma C3. A detailed proof can be found 540

in Pages 477–479 in Kendall & Stuart (1961). Using this argument, we then have

E[g(Suj) | {X1,u, X2,u, . . . , Xn,u}] = E[g(Suj) | {X ′1,u, X ′2,u, . . . , X ′n,u}],

for any sequence {X ′1,u, X ′2,u, . . . , X ′n,u} randomly drawn from Xu. This implies

E[g(Suj) | {X1,u, X2,u, . . . , Xn,u}] = E{g(Suj)}.

Similarly, we have

E[g(Suk) | {X1,u, X2,u, . . . , Xn,u}] = E{g(Suk)}.

This shows that {Sjk, 1 ≤ j < k ≤ d} are pairwise independent. �

LEMMA C5. Suppose that the boundedness assumption in Theorem 2 hold. We then have, in a region 545

x ∈ (0, o(n1/6)),

pr

[
Ujk − E(Ujk)

{var (Ujk)}1/2
> x

]
= {1− Φ(x)}

{
1 +O

(1 + x3

n1/2

)}
. (C22)

Suppose that the regularity conditions in Theorem 1 hold. Under the null hypothesis H0 holds, we have in
the region x ∈ (0, O(n1/6−ε)) for some ε > 0,

pr
[ Vjk − EH0

(Vjk)

{varH0(Vjk)}1/2
> x

]
= {1− Φ(x)}

{
1 +O

(1 + x3

n1/2
+

x

n1/6

)}
. (C23) 550

And we can replace the rate in the right-hand side of (C23) with 1 + o(1) when we have x ∈ (0, o(n1/6)).

Proof. For the moderate deviation properties of the U -statistics, the general results for them of un-
bounded kernel functions can be found in Malevich & Abdalimov (1979) and Vandemaele (1983).
Borovskikh & Weber (2003) give the result for U -statistics of bounded kernels with symmetric kernels.
However, using a similar argument as in Eichelsbacher (1998) and Hoeffding (1948), the results can be 555

generalized to the multivariate data and asymmetric kernel cases.
When we do not specify the rate of convergence on the right hand side of (C23), the proof of the

moderate deviation for simple linear rank statistics is in Kallenberg (1982). For explicitly characterizing
the rate, we simply follow Kallenberg (1982). Below we adopt some notation used in Kallenberg (1982).
Consider the data with n independent samples X1, . . . , Xn drawn from X ∈ R. Let F (·) be the distribu- 560

tion function of X . Let Rn1, . . . , Rnn be the ranks of X1, . . . , Xn. Let Sn =
∑n
i=1 cnig{Rni/(n+ 1)}

be the simple linear rank statistic of interest and Vn =
∑n
i=1 cnig{F (Xi)} be an intermediate one. It is

obvious that Sn is identically distributed to Vjk under the null hypothesis.
Let µn and τn be the mean and standard deviation of Sn. Without loss of generality, we assume µn = 0.

Equations (2.1) and (2.2) in Kallenberg (1982) imply 565

pr(Sn > xτn) ≥pr{Vn > (x+ n−1/6τn)} − pr(|Sn − Vn| > n−1/6τn)

and pr(Sn > xτn) ≤pr{Vn > (x− n−1/6τn)}+ pr(|Sn − Vn| > n−1/6τn). (C24)

On one hand, using the lemma in Page 406 in Kallenberg (1982), we have

pr(|Sn − Vn| > n−1/6τn){1− Φ(x)}−1 ≤(1/2)δn
1/3

{1− Φ(n1/6−ε)}−1

≤ exp{−(δn1/3) log 2 + n1/3−2ε/2}O(n1/6−ε). (C25) 570
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On the other hand, Vn is the sum of independent bounded random variables. Therefore, we can use the
classic result on the moderate deviation of sums of independence variables (check, for example, Chapter
8 in Petrov (1975)). It implies that for any yn,

pr(Vn > ynτn) = {1− Φ(yn)}
{

1 +O
(1 + y3

n

n1/2

)}
. (C26)

We let |yn − x| ≤ n−1/6, which implies that 1 + y3
n � 1 + x3. Then, standard arguments on Gaussian575

tail probabilities give us

{1− Φ(yn)}/{1− Φ(x)} = 1 +O(n−1/6x). (C27)

Plugging (C25), (C26), and (C27) into (C24), we have

pr(Sn > xτn) = {1− Φ(x)}
{

1 +O
(1 + y3

n

n1/2
+

x

n1/6

)}
.

This completes the proof. �

LEMMA C6 (CONCENTRATION INEQUALITY FOR SIMPLE LINEAR RANK STATISTICS). Assume the580

setting and notation in Lemma 3. Consider the simple linear rank statistic

V ≡
n∑
i=1

cnig
( Rni
n+ 1

)
=

1

n

n∑
i=1

f
( QXi
n+ 1

)
g
( QYi
n+ 1

)
,

where f(·) and g(·) are Lipschitz functions with Lipschitz constant ∆ <∞ and max{|f(0)|, |g(0)|} ≤
A2. We have, for any t > 0,

pr(|V − EV | > t) ≤ 2 exp(−Cnt2),

for some scalar C only depending on ∆ and A2.

Proof. The proof is an application of the McDiarmid’s inequality (McDiarmid, 1989). In the sam-585

ples {(Xi, Yi), i = 1, . . . , n}, consider replacing (X1, Y1) with (X ′1, Y
′
1) and fix all the others. Then the

ranks of {QXi , i = 1, . . . , n} and {QYi , i = 1, . . . , n} are changed to {Q̃Xi , i = 1, . . . , n} and {Q̃Yi , i =
1, . . . , n}. By the alignment assumption, we have∣∣∣∣∣

n∑
i=1

cnig
( Rni
n+ 1

)
−

n∑
i=1

cnig
( R̃ni
n+ 1

)∣∣∣∣∣ =
1

n

∣∣∣ n∑
i=1

f
( QXi
n+ 1

)
g
( QYi
n+ 1

)
−

n∑
i=1

f
( Q̃Xi
n+ 1

)
g
( Q̃Yi
n+ 1

)∣∣∣.
Because max1≤i≤n |f{i/(n+ 1)}| ≤ A2 + ∆ and max1≤i≤n |g{i/(n+ 1)}| ≤ A2 + ∆, it yields

1

n

∣∣∣ n∑
i=1

f
( QXi
n+ 1

)
g
( QYi
n+ 1

)
−

n∑
i=1

f
( Q̃Xi
n+ 1

)
g
( Q̃Yi
n+ 1

)∣∣∣590

≤A2 + ∆

n

{
n∑
i=1

∣∣∣f( QXi
n+ 1

)
− f

( Q̃Xi
n+ 1

)∣∣∣+

n∑
i=1

∣∣∣g( QYi
n+ 1

)
− g
( Q̃Yi
n+ 1

)∣∣∣} .
Here the inequality follows from the fact that for any two sequences {(x1

1, y
1
1), . . . , (x1

n, y
1
n)} and

{(x2
1, y

2
1), . . . , (x2

n, y
2
n)},∣∣∣ n∑

i=1

x1
i y

1
i −

n∑
i=1

x2
i y

2
i

∣∣∣≤ n∑
i=1

∣∣x1
i (y

1
i − y2

i )
∣∣+

n∑
i=1

∣∣y2
i (x1

i − x2
i )
∣∣

≤ max
1≤i≤n

|x1
i |

n∑
i=1

|y1
i − y2

i |+ max
1≤i≤n

|y2
i |

n∑
i=1

|x1
i − x2

i |.595
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Using the fact that both f(·) and g(·) are Lipschitz, we can further write

A2 + ∆

n

{ n∑
i=1

∣∣∣f( QXi
n+ 1

)
− f

( Q̃Xi
n+ 1

}∣∣∣+

n∑
i=1

∣∣∣g( QYi
n+ 1

)
− g
( Q̃Yi
n+ 1

)∣∣∣}
≤∆(A2 + ∆)

n(n+ 1)

( n∑
i=1

|QXi − Q̃Xi |+
n∑
i=1

|Qi − Q̃Yi |
)
.

Because only one position in {X1, . . . , Xn} and {Y1, . . . , Yn} is changing, we have
n∑
i=1

|QXi − Q̃Xi | ≤ 2(n− 1) and

n∑
i=1

|QYi − Q̃Yi | ≤ 2(n− 1).

This further implies that 600∣∣∣ n∑
i=1

cnig
( Rni
n+ 1

)
−

n∑
i=1

cnig
( R̃ni
n+ 1

)∣∣∣ ≤ 4(A2 + ∆)∆(n− 1)

n(n+ 1)
� 1

n
.

Then, by using the McDiarmid’s inequality, we have the desired concentration inequality. �

LEMMA C7 (CONCENTRATION INEQUALITY FOR U -STATISTICS). Suppose that U is a U -statistic
with degree m and bounded kernel |h(·)| ≤M . We then have, for any t > 0,

pr(|U − EU | > t) ≤ 2 exp{−nt2/(2mM2)}.

Proof. This concentration inequality follows from calculating the moment generating function of the
U -statistics and using the Hoeffding’s decoupling trick. Check Hoeffding (1963) for the detailed proof.� 605

LEMMA C8. Under the Gaussian model with the Pearson’s correlation matrix R, we have the follow-
ing four equations hold:

E(ρjk) =
6

π
arcsin(Rjk/2) +O(1/n), E(τjk) =

2

π
arcsin(Rjk),

E(ρ̂jk) =
6

π
arcsin(Rjk/2) +O(1/n), and E(τ̂jk) =

4

π
arcsin(Rjk/2) +O(1/n).

Proof. The relationship between Spearman’s rho, Kendall’s tau, and Pearson’s correlation coefficients 610

under the Gaussian model can be found in Kruskal (1958). Noticing that ρ̂jk and τ̂jk are asymptotically
equivalent to ρjk and 2ρjk/3, we have the other two equations. �
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