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§ S1 gives all the proofs, § S2 presents a simulation study, § S3 extends the theory to the average
treatment effect on the treated, and § S4 provides more detailed analysis of the National Health
and Nutrition Examination Survey Data.

Below we use C = D for C =D + Op(N_l/Q). Because 6 is the solution to the score
equation S(f) = 0, under certain regularity conditions, § — 6* = J(6*)~1S(6*) + o,(N~1/?),
where J(0*) = E{0S(6*)/060} (e.g., van der Vaart, 2000). When the propensity model is cor-
rectly specified, then 7 (6*) = Z(6*); when the propensity score model is misspecified, 7 (6*)
is not necessarily equal to Z(6*)-

S1. PROOFS
S1-1.  Proof of Theorem 1
We write
e = 7e(0)
~ 2 ok O7(0") \ (5 o
:7'6(9)-1—E{ 0 }(0—9) (S1)

1o we(X}0%) A;Y; (1-A)Y; 07.(0%) IR
"N Z < B{we(X'6%)} {e(xge*) - e(XZ{Q*)} * E{ 0 }1(9 )~'S(073S2)

Z E{w Xfe* {e(xge*) 1 e(Xge*)}
, A; — e(X;07)
+B NZX (X70{1 — e(X16°)}

F(X507),

where (S1) follows from the Taylor expansion, (S2) follows from 8 — 6* =2 Z(6*)~'5(6*) and
07 (6"

oy’
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2 S. YANG AND P. DING

Therefore, the asymptotic linearity of 7, follows. Moreover,

R we(X;0%)  TAA{Y: — (A, Xi)} (1= A){Yi — (A, Xi)}
Nl/Q(Te 1/2 Z E{we X/O* } |: e(Xl’O*) o 1— €(Xl/0*) :|

we (X[6%) {A; — e(X[0") Hu(As, Xi) — p{ A, e(X;0%)}]
N Z .m0 X1 {1~ e(X00)] )

we(X[0%) {Ai — e(X[07) }u{Ai, e(X;07) } e
+N~ 1/22E{w5 5] [ X8 — c(X70)} —7{e(X]0 )}]

N7 Z { EE;@% relX/07)} - n]

A; — e(X16%)
e(X;0°){1 — e(X;0%)}

+N~ I/QZBX

=To+T1 +T2+T3,
where 7{e(X'0*)} = E{Y(1) — Y(0) | e(X'6*)}, and by grouping different terms,

N2 Z e} .

F(Xi07),

L w0 [ e il A e X))
/ZE{%XH*}[ ) )]

Ai - e(X{H)

LN Z B'E{X, | e(X{G*)}e(X(Q){l —e(X10)}

i1
N-1/2 Z we(X;0%) <{Ai — e(X70°) Hp(Ai, Xi) — pl{ Ay, B(X{G*)H>
E{we (X107 (X109 {1 — e(X167)}

F(Xi67),

A; — e(X16%)

i=1 ¢ ¢
» and
Y we( X 9* AdYi —p(Ai, X))} (1= Ap{Y; - M(Ai»Xi)}} ‘
Define

Fo={X10%,..., Xn0"}, Fi={A1, ..., AN, X10%, ..., X0},
Fo={A1,..., AN, X160, ... X0, X1, XN}

By conditioning arguments, E(Ty) = 0,fork =1,...,3, E(T) = E{E(T} | Fr—1)} =0, and
fork=1,...,3,
COV(To,Tk) = COV{E(TO ‘ fo),E(Tk ‘ ~F())} + E{COV(T(),Tk ’ .7:0)}
= cov{E(Tp | Fo),0} + E{0} =0,
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for k = 2, 3,

cov(Ty,Ty) = cov{E(Th | F1), E(Ty | F1)} + E{cov(Th, Ty | F1)}
= COV{E(Tl | fl), 0} + E{O} = 0,

and

COV(TQ,Tg) == COV{E(T2 | ]:2), E(Tg | .7:2)} + E{COV(TQ,Tg | ]:2)}
= cov{E(Ty | F2),0} + E{0} = 0-

Also, we calculate the variances of T;, for i = 0, ..., 3, as follows. For Ty,

we(X'0*)?var[r{e(X'0*
wa(my) = (1) = EAG I LCEOON)

For T7,
var(Ty) = E{var(T} | Fo)} = E{E(T? | Fo)}

1 e | [ 1= (X702 -
— WE{%(X& )2 [{e(X’G)} p{l,e(X'6%)}

N {e(X'm)}m u{o,e<X'0*>}]

2

1 —e(X'0*

o L
E{w(X'0%)}
[u{l,euf'e*)} {0, (X0}
e(X'0%) 1 —e(X'0%)

+ B'E{w(X'0")B{X | e(X'0")}

] FX0))

L E{X | e(X'0*)}E{X" | e(X’H*)}} B.
e(X70%){1 — e(X'6%)}

+B'E [f(X’G*)
For T5,

var(Ty) = E{var(Ty | F1)} = E{E(T22 | F1)}
B 1 Lo | 02{1,e(X'0%)}  02{0,e(X'6%)}
= Bl {“’G(X oy [ (X0 T T-e(x) ]}

cov{ X, u(1,X) | e(X'0%)}

1 / ! n* ! n*
—l—ZWBE{wG(XH VF(X'0 )[

cov{X, u(0, X) | e(X'6*)}
+ 1—e(X'0%) ]}

e(X'6%)

e [pcp L) ]

e(X'0%){1 — e(X'60%)}
For T3,

var(Ty) = E{var(Ts | F2)} = E{E(T} | F2)}

e [0 {?}(?) 1 —Uigf)m fJ
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4 S. YANG AND P. DING

s Because
976 f: 3 we(X10%) AY;  (1- A
80’ — oY’ E{w(X[0%)}] Lle(X[6*) 1—e(X[6%)
we X/O* A,LY; (1 — Al)Y
- X!0*
Z Flw (X167} L(X§9*)2 1= (X! 9*)}2] JXO7) X
we have

{755 1 =7 (3 B cosny] ™) ~ Bpemy L 0sxe)
y [E{X,u(l,Xl) Le(xfa*)} N E{X,M(E,X) ]/e*(X’G*)}]}
e(X'6%) 1 —e(X'6%)

where b1 and by are defined in Theorem 1. Therefore, according to (S3), B = (b1 —
bo.e)'Z(6*)7L. As aresul,

var(Ty) + var(Ty) + var(Ty) + var(T3)

_ E{WE(;(WE{we(X’H*)%arh{e(X'@*)}]} (S5)

v gl ey [[Lme XN e
+E{w€(X’0*)}2E{ (X°07) !{ e(X'6%) } p{l,e(X70%)}

(X0 1/2 2

1 e [0, e(X'0%)}  02{0,e(X'0%)}
+Eoemp 0 | s T e )
1 o (1,X)
T B2 Y [”6()( %) { (X107 1— ol X’H* } (56)
1 / w 1% 1oy [ EAX B, X) | e X/G* )}
2y | X [ (X'0°)
B{Xp(0,X) | (XD L o
R ]}+Bz(9 B
= 02 + 01 Z(6) " Tbre — 0 Z(67) Mhae, (S7)

where o2 is defined as the sum of terms in (S5) to (S6), and (S7) follows by plugging the expres-
« sion of B,

2B'byc + B'I(0%)B = 2b) Z(6%) "by,c — 2b5 Z(0%) "bac + (br.e + ba,e) Z(0°) " (b1 + baye)
= bll,ez(e*)ilbl,e - 65761(0*)7119276'
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Moreover, o2 can be further simplified as
9 1
¢ B{w(X'0%)}2

_ ez | [ 1= e(X'67) 2 ,
+E{w€(X/9*)}2E{w€(X9) [{ (X707 } wu(l, X)

e(X'6%) V2 ’
) ““)’X)]}

g

Elw(X'6%)*var{7(X)}]

1 (X2 o*(1,X)  o%*0,X) .
R K S 1o )

Finally, the Central Limit Theorem implies
NY2(3. — 1) = N {0, 02 + b} Z(0%) by, — by Z(0%) "boc }
in distribution, as N — oo.

S1-2.  Proof of Theorem 2
First, 72"¢(X;) can also be written as

AY; A; .
—+<1— — 5 (1, X5)
e(X!0) e(X10)

7

7B (X) =

(S8)

(89)

(1-4)Y; 1-4; | .
1 e(x) {1_ 1—e(X'0)}“(O X)]

Let f1(A;, X;) converge to ji(A;, X;) as N — oo. If the model for u(A;, X;) is correctly spec-

ified, fi(A;, Xi) = p(Ai, X5).
Write

~ Aaug * ~

gove — () = sevs(0r) + £ { P 901
N Wl (X107
; X/g*
1 on wl(X0%) [ AY A\
¥ X Bdory it * {1~ 70

N

Z

X9*) [(1—Ai)Yi {1_ 1- A

l 0788 (0%)
N

(X0 | T - e(Xy)

1 X — e(X]0%) L
Iy 2K XH* - ey 40
where

- o7 (0* o
B’:E{aef )}I(O) !

FUE(X) 1 B {689/}1(9*)—15(9*)

i | 0
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6 S. YANG AND P. DING

Therefore, the asymptotic linearity of 72"® follows. Moreover,

N1/2( aug Te)

o we(Xi0%)  [ALY: —p(As, Xi)} (1= A){Yi — p(Ai, Xi)}
=N Z Blw X107} [ (X6 1 — e(X76°)

we(X0*
N Z [E{we X'f)z)}T(Xi) B TE]

AZ' — G(XZ,Q*)
e(X;0){1 — e(X]0")}

NS B,
i=1

We(X 9*) A i
N ”QZE{WW«)}{l o X0 1 X0)

F(X76),

1/2 we(X707) 1A o vy .
+NT Z E{w (X'6%) {1 1—e(X)) {0, X;) — u(0, X3)}
=T3+T0+T1+T2,

where T = T} is defined in (S4),

N Z Emecontaadt

512N fry A e(Xih) i
hi=n QZBX’e(Xfem —e(xiayy i)

1/2 Z E?}; };'?;* {1 - 6(1;1(2'1) } {/l(lez) - ,U(lei)}
N ”22 ] i {1 T P 0.X) ~ u0.X):

ss By the same argument as in the proof of Theorem 1, E(T]) =0, for j=0,...,3, and
cov(T},Ty) = 0 for all j # k expect cov(T7,T>). Moreover,

var(T3) 4 var(Tp) + var(Ty) + var(Ty) + 2cov(Ty, Tb)
L L e [LX) | 2(0,X)
= s [« T 1
1

+WE[M€(X,9*)2VEM‘{T(X)H +B/I(9*)B

L e | 1= e(X9
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e( X0 1/2 2
_{%} {ﬂ(o,mu(o,X)}”

+E{w€(1X’0*)}B,E [we(x/e*)xf(x’e*) {—ﬁ(l’Xie)(;(:;(LXi) H
1 B'E [we(Xle*)X F(X'07) {ﬂ(oﬁx _) ;(éé())’X) H

"B (X))
= 5’62 + B,I(Q*)B + B/(Co — 01)
=52+ V. Z(0") oy + (Co + C1)'Z(0") " H(Co + Cy) + B'(Cy — Cy)
where ¢ 0 , Cy and C are defined in Theorem 2. Because
ORB(0Y) 1N O [ we(X!0Y) .
- ~ 7 — . e\ S ~au, )(Z
90 Z 90 [E{w (Xge*)}] )

1 & we(X10%) s AilYs — (A, X5)}
N Z mXif(Xie ) e(XZ{Q*)Q

1ZN (X00T) e (L= ANY: — (A X))
Xif(X;0%)
N — E{w6 tAT

Xi0%)} {1-e(Xxj05)}* 7
we have
D72 (9) o[ wl(X'67)
{75} =2 (3 [ pcoon) T(X))
1 ) o (1.X) ~ (1, X)
E{we(XZ(H*)}E{ (XX P X0 }
1 ! n* 1 n* M(OaX)_ﬂ(()?X)
T E{wXi0) {"*(Xi@ Rl s o
=b1,e —Co— Ch1-
Therefore, 60

NY2(720 — 1) — N {0,657 + B Z(0%) " bre + (Co + C1YT(0%) " (Co+ C1) + B'(Co— C1) |

in distribution, as N — oo.

S1-3.  Proof of Remark 1
We show that

bie=F [5)0 {we(g*)—lwe(X’0*>} T(X)]

goes to zero, as € — 0.
We note

0 *\ — e *\— &,ue(X/@*) 1 p* &,ue(X/@*) 1 p*
5 {we(0)  we(X'0%)} = we(6%) 2 [%E{we(XH )} —E{ae}we(XO )] ,

65



8 S. YANG AND P. DING

where

dw(X'6%) D .
W((?G) 89[(1) {e(X'0") — a1} ®c {a — e(X'0%)}]
= ¢ {e(X0%) — a1} @ {az — e(X'0%)} F(X'0°)X

—O {e(X'0%) — a1} ¢ {ao — e(X'0%)} F(X'07)X
and ¢¢(x) = d®¢(z)/dz. As € — 0, pc(z) — 0 implies that by ¢ goes to 0.

S1-4.  Proof of Remark 4

We write
#=7(0) A
=~ 7(6%) +E{6;(; >} 6 —6%)

N N~ pr{a < e(X'0*) <1-a}
1 Z Hon <e(Xj0) <o} [ AYi  (1-A)Y;
< prion < e(X'0) < a} |e(X[0%) 1—e(X;6%)

90" 1 & A; — e(X16%) -
*E{ 5 ) 2Ny - ey )

w Ly~ Uon<eXif)<ag) [ AY: (1= A)Y, O (0")\ 7 (gey—1
) : : {e(Xge*) 1—e(X9*)}+E{ BY }1(9) tS(6%)

o LetS ={X:e(X'0*) =ajoras}. If pr(X € §) =0, then

2% 1 = (30 Lo < 008 o) Le0m) ~ 1 e
H{og <e(X'0*) <as} 0 AY (1-A)Y
[pr{al < e(X'0%) < oo} 0O’ {e(X’H*) S 1—e(X'6%) H

is finite and well-defined, because the only possible problem that prevents the use of the bootstrap
is the derivative of the indicator function with respect to 6, which, however, has zero measure.

Therefore, 7 is asymptotically linear. According to Shao & Tu (2012), the bootstrap can be
used to estimate var(7). A similar discussion applies to 728,
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S1-5.  Proof of Remark 5 ”s
We write
Fo = 7e(0)
P 07 (6 .
=)+ 5{ T -0
N
Ly~ welX0) — A)Y; O%(0") L
NZE{(,U X’Q*}{ XQ* 1—6(X9*)}+ { o0’ j( ) S( )
1 iv: we(X[60%) (1—A)Y;
TN & E{w(X'07)} X 9* T 1= e(XI07)

A; — e(X10%)

+F/NZX T ey K-

where

o E{afgg*)}j(e*)y

Therefore, the asymptotic linearity of 7, follows.

Write
fove o) = sevs(or) + £ { P - 01
~ % é %%wg(m +E {8722,“0)} T(0%)715(6%)
- fvi By xR
i (o e
'y ZX T e K
where 80

g [O7ETE(0Y) -1

Therefore, the asymptotic linearity of 72® follows.
The asymptotic linearity of the weighting estimators allows for using the bootstrap to construct

confidence intervals.
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10 S. YANG AND P. DING

S2. SIMULATION

We assess the performance of the new weighting estimators of the average treatment effect
over a target population. We consider X = (X7, Xo, X3, X4, X5, X¢)', where X, X, and X3
are multivariate normal with means (0, 0,0), variances (2,1, 1) and covariances (1, —1, —0-5),
X4 ~ Uniform[—3, 3], X5 ~ x?, and X¢ ~ Bernoulli(0-5). The treatment indicator A is gener-
ated from Bernoulli{e(X)}. We consider four propensity score models:

(P1) 6(X) = logit{O-l(X1 + Xo+ X3+ Xy + X5+ XG)},
P2) 6(X) = logit{0-8(X1 +Xo+ X3+ Xy + X5+ XG)},
(P3) e(X) = logit{0-1(X1 + X2 + X2 + X4 + X5 + X¢)},
(P4) e(X) = logit{0-8(X1 + X2 + X3 + X4 + X5 + X¢) };

(P1) and (P3) represent weak separations, and (P2) and (P4) represent strong separations of
propensity score distributions between the treatment and control groups. We consider both linear
and nonlinear outcome models:

O Y(a) =a(X1+ Xo+ X5 — X4+ X5+ Xg) + 1, withn ~ N(0,1), fora =0, 1,
(02) Y(a) = a(X1 + X2 + X3)? +n, withn ~ N(0,1), fora = 0, 1.

The target population is represented by O = {X : 0-1 < e(X) < 0-9}, and the estimand of in-
terest is the average treatment effect over the target population 7(O).

We consider the weighting estimators with the indicator and smooth weight functions,
and 7(0) = {3V 1(X; e O)} ' N 1(X; € O){Yi(1) — Yi(0)} for benchmark compari-
son with NV = 500. The propensity scores are estimated by a logistic regression model with
linear predictors X . Therefore, the propensity score model is correctly specified under (P1) and
(P2) but misspecified under (P3) and (P4). For the augmented weighting estimators, u(a, X)
is estimated by a simple linear regression of Y on X, separately for A = 0, 1. Therefore, the
outcome regression model is correctly specified under (O1) but misspecified under (O2).

Table S1 shows the simulation results. Under Scenarios i, ii, v and vi when the propensity
score model is correctly specified, the weighting estimators are nearly unbiased for 7(Q), and the
augmented weighting estimators are nearly unbiased and more efficient than the simple weight-
ing estimators. However, under Scenarios iii, iv, vii and viii when the propensity score model
is misspecified, all estimators are biased, even when the outcome regression model is correctly
specified. The weighting estimators with the smooth weight function, 7. and 7:"', show slightly
smaller variances than the counterparts with the indicator weight function, 7 and 72"¢. Moreover,
as € becomes smaller, the performances of 7. and 7218 become closer to those of 7 and 721€. The
bootstrap works well with the variance estimates close to the true variances for all estimators.

S3. AVERAGE TREATMENT EFFECT ON THE TREATED
S3-1.  Notation, Assumptions and Extension of Crump et al. (2009)

Another estimand of interest is the average treatment effect for the treated 7o = E{Y (1) —
Y(0)| A=1} = E{7(X) | A= 1}. The outcome distribution for the treated is empirically
identifiable, because E{Y (1) | A=1} = E(Y | A = 1). Therefore, Assumptions 1 and 2 can
be weakened (Heckman et al., 1997).

Assumption S1. Y (0) LA | X.

Assumption S2. There exists a constant ¢ such that with probability 1, e(X) < ¢ < 1.
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Table S1. Results: mean, variance x100 (var), and variance estimate x100 (ve) based on 100
bootstrap replicates under eight combinations of the outcome and propensity score models: for
example, (O1)&(P1) means Outcome Model (O1) and Propensity Score Model (P1)

Scenario i (O1)&(P1) i (01)&(P2) iii (O1)&(P3) iv (O1)&(P4)
€ mean var ve mean var ve mean var ve mean var ve
(0) 1-46 1-33 1-44 1-37
#(6) - 145 34 34 133 47 52 148 29 28 145 40 41
Faug(f) - 146 28 27 132 34 34 150 26 25 149 33 3.2
#(6) 107 145 33 33 133 45 47 148 28 28 145 3.9 38
7280) 1074 146 28 27 133 34 33 150 26 25 149 33 31
%(6) 1075 145 34 33 133 46 50 148 29 28 145 3.9 40
Faug(f) 1075 146 28 27 132 34 34 150 26 25 149 33 32
v (02)&(P1) vi (02)&(P2) vii (02)&(P3) viii (02)&(P4)
7(0) 758 6-69 7-62 5-96
#(6) - 758 940 891 669 898 981 875 920 912 893 1420 1381

%a“g(é) - 759 854 765 667 792 84.2 882 849 793 906 1226 1096
) 107* 757 886 841 670 853 897 875 91-1 883 894 1342 1284
Te g(é) 1074 758 827 747 668 766 794 882 844 784 907 1190 1055
) 107° 757 920 873 669 888 953 875 91.9 902 893 1400 1348
Te (é) 1075 759 841 759 668 787 825 882 847 790 906 121.7 1082

A simple weighting estimator (Hirano et al., 2003) is

Sl AY: S (1 A)Yie(Xi0)/{1 — e(Xi0)} _ L, e(X{0)7(X))
Zf\; e(X;0) Zi\il e(X;0) 25\21 e(X;0)

TATT =
which is a special case of the weighting estimator (4) by choosing w(X/0) = e(X{é). Analo-
gously, we propose the augmented weighting estimator

oug _ Lin e(XI0)FE(Xs).
ATt Sy e(X16)

Remark S1. An existing augmented weighting estimator for 7o is

SN AY 1 i (1= Ai)e(X[D)Y; + (0, X;){Ai — e(X16)}

foil A; Zi\il A; i=1 1- e(Xz(é) ’

which is doubly robust in the sense that the estimator is consistent for 7o if either (0, X) or
e(X) is correctly specified (Mercatanti & Li, 2014). See also Shinozaki & Matsuyama (2015)
and Zhao & Percival (2017) for other forms of doubly robust estimators for 741T. The advantage
of these estimators is that they do not require estimating (1, X) unlike (S10). However, (S10) is
locally efficient in the sense that if the outcome and propensity score models are correctly speci-
fied, the asymptotic variance of (S10) achieves the efficiency bound. To show this, we recognize
that (S10) is (3) with w.(X'6) replaced by e(X'0). Let p; = E{e(X'0*)}. Following a similar
derivation as in Theorem 2, with correctly specified propensity score and outcome models, the
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12 S. YANG AND P. DING

asymptotic variance of (S10) is

p1 2Ele(X'0*)?var{r(X)}] +p1_2E {e(X’@*)2 {JQ(LX) + o*(0, X) H ,

e(X) 1 —e(X)
which is the efficiency bound for TaTT (Hahn, 1998).

There is a limited literature dealing with lack of overlap for 7oTT when Assumption S2 may
not hold. Dehejia & Wahba (1999) suggested dropping control units with estimated propensity
scores lower than the smallest value of the estimated propensity score among the treated units.
Heckman et al. (1997) and Smith & Todd (2005) proposed to discard units with covariate values
at which the estimated density is below some threshold. However, few formal results have been
established on properties of these procedures.

Similar to Crump et al. (2009), if 02(1, X) = 02(0, X), we can show that the optimal overlap
for estimating 7o is of the form O = {X : 1 — e(X) > «} for some «, for which the esti-
mators have smallest asymptotic variance. Intuitively, for the treated units with e(X) close to 1,
there are no similar units in the control group that can provide information to infer Y(0) for these
treated units. Statistically, the control units with e(X') close to 1 contribute large weights. There-
fore, it is reasonable to drop these units with e( X ') close to 1. By restricting to the subpopulation,
the estimand of interest becomes TarT(0) = E{7(X) | A =1, X € O}. Below, we formalize
this argument.

S3-2.  Theory of trimming for the average treatment effect on the treated
Define a general weighting average treatment effect,

Zi:xieoW(Xi)T(Xi)‘
Zi:XiEO w(XZ)

According to the technique report in 2006 prior to Crump et al. (2009), the efficiency bound for
7,(0) is

7,(0) =

(S11)

1 21, X 20, X
E OJ(X)2 o ( ) ) o ( ) )
[E{w(X) | X € O}]? e(X) 1—e(X)
Crump et al. (2009) showed that the optimal set with which 7,,(O) achieves the smallest asymp-
totic variance over all choices of O is

2 2
o= {rw{ e+ <) o1
where 7 is defined through the following equation:
B w2(X) {52 + T8989} lw(x) {252 + 2553 } <
E [w(X) | w(X) { 2852 + £33 <] |
The weighting estimator for the average treatment effect on the treated is (S11) with w(X) =
e(X). Assuming that 02(1, X) = 02(0, X) = o2, the optimal set (S13) reduces to O = {X :

1 — e(X) > a} with the cut-off value o = o2 /~. In practice, o can be determined by the small-
est value of « that satisfy the empirical estimate of (S14):

1 POl e2(Xi){ﬁ+ﬁ(Xi)}1{1—e(Xi) > a)
—=2Xx N )
“ >im1 e(Xi) {1 —e(X;) > o}

Vo, (0) = } | X € o} . (S12)
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The choice of @ in O = {X : 1 — e(X) > a} has two opposite effects on the asymptotic vari-
ance in (S12). On the one hand, as « increases, we reduce the denominator of the right hand side
of (S12), [E{w(X) | X € O}]? = E[{e(X) | X € O}]?, and therefore increase the asymptotic
variance. On the other hand, as « increases, we decrease the numerator of the right hand side of
(512),

oo {Zh i) 1]

e(X)202(0, X)
1—e(X)

and therefore decrease the asymptotic variance. The optimal value of « balances the two effects.

:EFuw%hm+ | X € O],

S4. THE NATIONAL HEALTH AND NUTRITION EXAMINATION SURVEY DATA
S4-1.  Interpretation of the trimmed population for the average smoking effect

To interpret the target population O = {X : 0-05 < e(X) < 0-6} for the average smoking
effect, an effective strategy is to first present summary statistics for covariates X in the
original population. See Table S2 for the description of the covariates. Then, from the fitted
logistic regression for e(X), the target population can be represented by {X : —2.944 < —9 —
0-018xAge+0-841 xMale+8-972 x Edu.1t9+9-331 x Edu.9to114-8-875 x Edu.hischl+8-546 x
Edu.somecol+7-118 x Edu.college—0-254 x Income-0-145 x Income.mis+0-689 x White—0-067 x
Black—1-639x Mexicanam—1-304 x Otherhispan< —0-405}.

S4-2.  Analysis for the average smoking effect on the smokers

For the average smoking effect on the smokers, we drop subjects with estimated propensity
scores greater than 0-7. This removes 36 subjects, with 29 smokers and 7 non-smokers. Thus,
the analysis sample includes 3304 subjects, with 650 smokers and 2654 non-smokers. Following
the main paper for the average treatment effect, we consider the weighting estimators using
both the indicator and smooth weight functions with ¢ = 10~* and ¢ = 1075, For the augmented
weighting estimator, we consider the outcome model to be a linear regression model adjusting
for all covariates, separately for A = 0, 1.

Table S3 shows the results from the estimators for the average smoking effect on the smokers
based on the trimmed samples. The weighting estimators with the smooth weight function are
close to the counterparts with the indicator weight function, but have slightly smaller estimated
standard errors. The smooth weighting estimators are insensitive to the choice of ¢- From the
results, on average, smoking increases the lead level in blood at least by 0-79 ug/dl for smokers
with e(X) < 0-7.
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Table S2. Descriptive statistics for covariates X in the original population in the National
Health and Nutrition Examination Survey Data

Covariate

Age, interquantile range (35, 63]

Income-to-poverty level, interquantile range [1-18, 3-77]
Missing, % 8:5

Male, % 41-7

Education, %
Less than 9th grade (Edu.1t9) 13-3
9 — 11th grade (Edu.9to11) 16-5
High school graduate (Edu.hischl) 25-1
Some college (Edu.somecol) 25-4
College (Edu.college) 19-6
Unknown 0-1

Race, %
White 45-8
Black 19-1
Mexican American (Mexicanam) 18-3
Other Hispanic (Otherhispan) 11-6
Other races 5-2

Table S3. Estimate of the average smoking effect on the smokers, estimated standard error based
on 100 bootstrap replicates, and 95% confidence interval
€  estimate  s.e. 95% c.i. estimate  s.e. 95% c.i.
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