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S.1. IDENTIFIABILITY PROOFS 10

Proof of Proposition 1. The proof follows ideas similar to those of Theorem 12 in Allman et al. [2011].
For notational convenience this proof is presented in the undirected setup where the set of intensities is
α = {α(q,l) : q, l = 1, . . . , Q; q ≤ l}. The directed case is treated in the same way.

To explain the general idea of the proof we start by considering the distribution of one marginal process
Ni,j . This is a Cox process directed by the random measure 15

Ai,j ∼
Q∑
q=1

Q∑
l=1

πqπlδA(q,l) .

For any q ≤ l, we useA(q,l) for the measure on [0, T ] defined byA(q,l)(I) =
∫
I
α(q,l)(u)du for all measur-

able I ⊂ [0, T ]. We recall that δu is the Dirac mass at point u. It is known that the mapping of probability
laws of random measures into laws of Cox processes directed by them is a bijection, see for example
Proposition 6.2.II in Daley and Vere-Jones [2003]. In other words the distribution of Ni,j uniquely deter-
mines the finite measure 20

Q∑
q=1

Q∑
l=1

πqπlδA(q,l) ,

on the set of measures on [0, T ]. According to Assumption 1 the intensities α(q,l) are distinct. Hence, the
corresponding measures A(q,l) are all different and we may recover from the distribution of our counting
process Ni,j the set of values {(π2

q , A
(q,q)) : q = 1, . . . , Q} ∪ {(2πqπl, A(q,l)) : q, l = 1, . . . , Q; q < l}

or equivalently the set {(π2
q , α

(q,q)) : q = 1, . . . , Q} ∪ {(2πqπl, α(q,l)); q, l = 1, . . . , Q; q < l}. In par-
ticular we recover the functions α(q,l) almost everywhere on [0, T ] up to a permutation on the pairs of 25

groups (q, l). However for the recovery up to a permutation in SQ it is necessary to consider higher-order
marginals.

We now fix three distinct integers i, j, k in {1, . . . , n} and consider the trivariate counting process
(Ni,j , Ni,k, Nj,k). In the same way, these are Cox processes directed by the triplet of random measures
(Ai,j , Ai,k, Aj,k) such that30

(Ai,j , Ai,k, Aj,k) ∼
Q∑
q=1

Q∑
l=1

Q∑
m=1

πqπlπmδ(A(q,l),A(q,m),A(l,m)).
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We write this distribution in such a way that distinct components appear only once

Q∑
q=1

π3
qδ(A(q,q),A(q,q),A(q,q))

+

Q∑
q=1

Q∑
l=1
l 6=q

π2
qπl

{
δ(A(q,q),A(q,l),A(q,l)) + δ(A(q,l),A(q,q),A(q,l)) + δ(A(q,l),A(q,l),A(q,q))

}

+

Q∑
q=1

Q∑
l=1
l 6=q

Q∑
m=1
m 6=q,l

πqπlπmδ(A(q,l),A(q,m),A(l,m)). (S.1)

Using the same reasoning we identify the triplets of values {(A(q,l), A(q,m), A(l,m)) : q, l,m = 1, . . . , Q}35

up to a permutation on the triplets (q, l,m). Among these, the only values with three identical components
are {(A(q,q);A(q,q);A(q,q)) : q = 1, . . . , Q} and thus the measures {A(q,q) : q = 1, . . . , Q} are identifi-
able up to a permutation in SQ. Going back to (S.1) and looking for the Dirac terms at points that have
two identical components, namely of the form (A(q,q), A(q,l), A(q,l)) and two other similar terms with
permuted components, we can now identify the set of measures40

{(A(q,q), {A(q,l) : l = 1, . . . , Q; l 6= q}) : q = 1, . . . , Q}.

This is equivalent to saying that we identify the measures {A(q,l) : q, l = 1, . . . , Q; q ≤ l} up to a permu-
tation in SQ. Obviously this also identifies the corresponding intensities {α(q,l) : q, l = 1, . . . , Q; q ≤ l}
almost everywhere on [0, T ] up to a permutation in SQ. To finish the proof we need to identify the pro-
portions πq . As we identified the components {A(q,q) : q = 1, . . . , Q}, we recover from (S.1) the set of
values {π3

q : q = 1, . . . , Q} up to the same permutation as on the A(q,q)’s. This concludes the proof. �45

Proof of Proposition 2. The setup considered here is undirected. We follow some of the arguments
already appearing in the proof of Proposition 1. Let Ain and Aout denote the measures whose intensities
are αin and αout, respectively. The univariate processNi,j is a Cox process directed by the random measure
Ai,j that is distributed as

Ai,j ∼ (

Q∑
q=1

π2
q )δAin + (

Q∑
q=1

Q∑
l=1
l 6=q

πqπl)δAout .

Thus the measuresAin andAout are identifiable from the distribution ofNi,j , but only up to a permutation.50

Similarly to the previous proof we rather consider the trivariate Cox processes (Ni,j , Ni,k, Nj,k) directed
by the random measures (Ai,j , Ai,k, Aj,k) whose distribution in the affiliation case has now five atoms

( Q∑
q=1

π3
q

)
δ(Ain,Ain,Ain) +

( Q∑
q=1

Q∑
l=1
l 6=q

π2
qπl

)
δ(Ain,Aout,Aout) +

( Q∑
q=1

Q∑
l=1
l 6=q

π2
qπl

)
δ(Aout,Ain,Aout)

+
( Q∑
q=1

Q∑
l=1
l 6=q

π2
qπl

)
δ(Aout,Aout,Ain) +

( Q∑
q=1

Q∑
l=1
l 6=q

Q∑
m=1
m 6=q,l

πqπlπm

)
δ(Aout,Aout,Aout).55

As previously, these five components are identifiable up to a permutation on S5. Now it is easy to identify
the three components for which two marginals have same parameters and the third one has a different
parameter. Thus we recover exactly the measures Ain and Aout. This also identifies the corresponding
intensities αin and αout almost everywhere on [0, T ].

Now identification of the proportions {πq : q = 1, . . . , Q} follows an argument already used in the60

proof of Theorem 13 in Allman et al. [2011] that we recall here for completeness. From the trivariate
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distribution of (Ni,j , Ni,k, Nj,k) and the already recovered values Ain and Aout, we identify the propor-
tion

∑Q
q=1 π

3
q . Similarly for any n ≥ 1, by considering the multivariate distribution of (Ni,j)(i,j)∈R, we

can identify the Dirac mass at point (Ain, . . . , Ain) and thus its weight which is equal to
∑Q
q=1 π

n
q . By

the Newton identities the values {
∑Q
q=1 π

n
q : n = 1, . . . , Q} determine the values of elementary symmet- 65

ric polynomials {σn(π1, . . . , πQ) : n = 1, . . . , Q}. These, in turn, are up to sign the coefficients of the
monic polynomial whose roots with multiplicities are precisely {πq : q = 1, . . . , Q}. Thus the proportion
parameters are recovered up to a permutation. �

S.2. VARIATIONAL E-STEP: PROOF OF PROPOSITION 3

For the Kullback-Leibler divergence we compute 70

KL{prτ (· | O)‖prθ(· | O)} = Eτ

{
log

prτ (Z | O)
prθ(Z | O)

| O
}

= Eτ

{
log

prτ (Z | O)prθ(O)
L(O,Z | θ)

| O
}

=

n∑
i=1

Eτ
(
log τ i,Zi | O

)
+ log prθ(O)− Eτ {logL(O,Z | θ) | O} .

The complete-data log-likelihood logL(O,Z | θ) is

−
Q∑
q=1

Q∑
l=1

Y
(q,l)
Z A(q,l)(T ) +

Q∑
q=1

Q∑
l=1

M∑
m=1

Z(q,l)
m log

{
α(q,l)(tm)

}
+

n∑
i=1

Q∑
q=1

Zi,q log πq,

where Y
(q,l)
Z and Z

(q,l)
m have been introduced in Equations (1) and (3), respectively. Now note that

Eτ (Z
i,q | O) = prτ (Z

i,q = 1 | O) = prτ (Zi = q | O) = τ i,q . Moreover by the factorised form of prτ ,
for every i 6= j we have

Eτ (Z
i,qZj,l | O) = Eτ (Z

i,q | O)Eτ (Zj,l | O) = τ i,qτ j,l.

The quantity Y (q,l) is thus equal to Eτ (Y
(q,l)
Z | O), namely the variational approximation of the mean

number of dyads with latent groups (q, l). Similarly τ (q,l)m equals Eτ (Z
(q,l)
m | O), the variational approxi- 75

mation of the probability that observation (tm, im, jm) corresponds to a dyad with latent groups (q, l). It
follows that

τ̂ = argmin
τ∈T

KL{prτ (· | O)‖prθ(· | O)} = argmax
τ∈T

J(θ, τ),

where J(θ, τ) is

−
Q∑
q=1

Q∑
l=1

Y (q,l)A(q,l)(T ) +

Q∑
q=1

Q∑
l=1

M∑
m=1

τ (q,l)m log
{
α(q,l)(tm)

}
+

n∑
i=1

Q∑
q=1

τ i,q log
( πq
τ i,q

)
. (S.2) 80

The variational E-step consists in maximizing J with respect to the τ i,q’s which are constrained to satisfy∑Q
q=1 τ

i,q = 1 for all i. In other words we maximize

M(τ, γ) = J(θ, τ) +

n∑
i=1

γi

(
Q∑
q=1

τ i,q − 1

)
,
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with Lagrange multipliers γi. The partial derivatives are

∂

∂τ i,q
M(τ, γ) = −

Q∑
l=1

∑
j 6=i

τ j,l
{
A(q,l)(T ) +A(l,q)(T )

}
+

Q∑
l=1

M∑
m=1

1{im=i}τ
jm,l log

{
α(q,l)(tm)

}

+

Q∑
l=1

M∑
m=1

1{jm=i}τ
im,l log

{
α(l,q)(tm)

}
+ log

( πq
τ i,q

)
− 1 + γi,85

∂

∂γi
M(τ, γ) =

Q∑
q=1

τ i,q − 1.

The partial derivatives are null if and only if
∑Q
q=1 τ

i,q = 1 and the τ i,q’s satisfy the fixed point equa-
tions (6), with exp(γi − 1) being the normalizing constant.

S.3. DETAILS ON THE ALGORITHM

Initialisation is a crucial point for any clustering method. Our variational expectation-maximization90

algorithm starts with a classification of the nodes and iterates an M-step followed by a variational E-step.
We apply the algorithm on multiple initial classifications of the nodes based on various aggregations of the
data: on the whole time interval and on sub-intervals. Sub-intervals are obtained through regular dyadic
partitions of [0, T ], this is parameter l.part in the R code, and a k-means algorithm applied on the rows
of the adjacency matrices of each of the aggregated datasets provides starting points for our algorithm.95

To obtain further starting values we use perturbations of the different k-means classifications: a given
percentage of the total number of individuals is picked at random, this is parameter perc.perturb,
and their group memberships are shuffled. The perturbation procedure can be applied several times, this
is parameter n.perturb. The algorithm returns as final result the run that achieves the largest value of
criterion J .100

There is no theoretical result on the existence of a solution to the fixed point equation (6). The iterations
for the fixed point equation are initialized with the value of τ obtained at the previous variational E-step.
In practice, convergence is fast and we stop the fixed-point iterations either when convergence is achieved
|τ [s] − τ [s−1]| < ε = 10−6 or when the maximal number of iterations is attained, here fix.iter=10.

As the variational expectation-maximization algorithm aims at maximizing J defined in (S.2), the al-
gorithm is stopped when the increase of J is less than a given threshold, here ε = 10−6, that is when∣∣∣∣J(θ[s+1], τ [s+1])− J(θ[s], τ [s])

J(θ[s], τ [s])

∣∣∣∣ < ε,

or when the maximal number of iterations has been attained, here nb.iter=50.105

S.4. ADDITIONAL TABLES AND FIGURES

Figure S.1 shows the intensities used in Scenario 1 from the synthetic experiments to assess the clus-
tering performances of our method.

Table S.1 gives the risks RISK(q, l) and standard deviations of the histogram and the kernel versions
of our method as well as oracle quantities obtained with known group labels in Scenario 2 when n = 20.110

This is the analogue of Table 1 in the main manuscript where n = 50.
Figure S.2 shows boxplots of the adjusted Rand index obtained from the synthetic experiments from

Scenario 2. They are computed over 1000 datasets with different numbers n of individuals and for the two
estimation methods: histogram and kernel.

Figure S.3 shows the model selection results on the number of groups based on the integrated115

classification likelihood in Scenario 2 with n = 20: the left panel shows the frequency of the selected
values Q̂ over the 1000 datasets; the right panel shows boxplots of the adjusted Rand index between the
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estimated classification with 3 groups and the true latent structure as a function of the number of groups
selected by the integrated classification likelihood criterion. On this right panel, the adjusted Rand index
of the classification with three groups is rather low when the criterion does not select the correct number 120

Q, indicating that the algorithm has failed in the classification task and probably only a local maximum
of the criterion J has been found.

Turning to the London bike-sharing system dataset, Figure S.4 shows the temporal profiles of the 2
stations in the smallest cluster for day 1. One can see that these are outgoing stations around 8am and 125

incoming stations between 5 and 7pm. Figure S.5 shows the highest intensities estimated by our model
between these 6 clusters, all other intensities are almost null. The most important interactions occur from
the smallest cluster that is number 4 to cluster 5 ‘City of London’ cluster, in the morning and conversely
from cluster 5 to cluster 4 at the end of the day.

130

Concerning the analysis of the Enron dataset we provide here additional tables and figures for Q = 4
groups. Table S.2 gives the size and composition of the four groups. For a part of the persons in the dataset
the position at Enron is not available. This is the reason why the total size of the group sometimes exceeds
the sum of the number of managers and employees in the group.

Figure S.6 gives the logarithm of the mean values of the estimated intensities α(q,l). The lack of sym- 135

metry of the matrix indicates that communication is far from being symmetric and that the use of the
directed model is appropriate.

Finally, Figure S.7 shows the estimated intensities and associated bootstrap confidence intervals. The
bootstrap intervals are obtained by parametric bootstrap. More precisely, every bootstrap sample contains
the same number of individuals, here n = 147 and for every individual i the group membership Z∗i is 140

drawn from the multinomial distributionM(1, π̂) where π̂ is the vector of group probabilities estimated
from the data. Then for every pair of individuals (i, j) realizations from a Poisson process with inten-
sity α̂(Z∗

i ,Z
∗
j ) are simulated, where {α̂(q,l)}q,l=1,...,Q denote the estimated intensities. Finally, bootstrap

confidence intervals are obtained by the percentile method.
Here the bootstrap intervals suffer from the fact that some of the group probabilities π̂k are very low, 145

implying that the probability that a bootstrap sample contains empty groups is relatively high (0.15). That
is, about 15% of the bootstrap samples do not provide any information on some of the intensities α(q,l),
implying that the associated estimators are completely erroneous. The groups that are the most concerned
by the problem are group 2 and 3.

S.5. ADDITIONAL EXAMPLE: PRIMARY SCHOOL TEMPORAL NETWORK DATASET 150

To understand contacts between children at school and to quantify the transmission opportunities of
respiratory infections, data on face-to-face interactions in a French primary school were collected. The
dataset is presented in detail in Stehlé et al. [2011] and available online [SocioPatterns, 2015]. Children
are aged from 6 to 12 years and the school is composed of five grades, each of them comprising two
classes, for a total of 10 classes, denoted by 1A, 1B, . . . , 5A, 5B. Each class has an assigned teacher and 155

an assigned room. The school day runs from 8.30am to 4.30pm, with a lunch break from 12pm to 2pm
and two breaks of 20-25 min in the morning and in the afternoon. Lunch is served in a common canteen
and a shared playground is located outside the main building. As the playground and the canteen do not
have enough capacity to host all pupils at a time, only two or three classes have breaks together, and lunch
is served in two turns. The dataset contains 125, 773 face to face contacts among n = 242 individuals, 160

232 children and 10 teachers, observed during two days. We applied our procedure in the undirected setup
with histograms based on a regular dyadic partitions with maximum size 256, corresponding to dmax = 8.

The integrated classification likelihood criterion achieves its maximum with Q̂ = 17 latent groups. Fig-
ure S.8 shows the clustering of the n individuals into the 17 groups, where children from different classes
are represented with different colors. Some groups correspond exactly or almost exactly to classes: for ex- 165

ample, group 9 consists almost perfectly of class 1A, whereas other classes are split into several groups;
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for example class 1B is split into groups 1 and 16. Moreover, one group which is group 6, corresponds to
the entire class 4B with, in addition, pupils coming from almost all other classes. Teachers never form a
particular group apart, but they are generally in the cluster of their assigned class.

The highest intensities are the intra-group intensities. As groups mainly correspond to classes, this170

highlights that most contacts involve individuals of the same class and that the dataset is structured into
communities, i.e. groups of highly connected individuals and with few inter-groups interactions. Fig-
ure S.9 shows the estimated intra-group intensities for each group with at least 3 individuals. Peaks of
interactions are observed during the two breaks in the morning and in the afternoon. At lunch time inter-
actions between children vary from the first to the second day and are less important than during the breaks175

when they play together. We also observe periods with no interaction at all. For example, the estimated
intensity of group 9 corresponding to class 1A, is null between 3:30am and 4am suggesting that some
particular school activity like sports takes place during which contacts were not observable for technical
reasons. The group number 6 composed with the entire class 4B and others pupils clearly appears as the
group with the lowest intra-group intensity. This means that this cluster gathers the individuals having180

less interactions with others. Class 4B also appears as the class having the least intra-class interactions
in Stehlé et al. [2011].

Concerning inter-group connections most of the estimated intensities for groups (q, l) with q 6= l can
be considered as null, except for some that we discuss now. First, as our procedure splits some children of
the same class into separate groups, the inter-group interactions associated with these clusters correspond185

in fact to intra-class interactions. For example, class 1B is split into group 1 with 18 pupils and group 16
with 7 pupils. The estimated inter-group intensity shows that those two groups interact. Our clustering
has formed two separate groups because group 1 has more intra-group interactions than the other, see
Figure S.9.

Second, intensities between groups made of children of the same grade are significant, suggesting190

that children mostly interact with children of the same age, see e.g. Figure S.10 that shows the case
(q, l) = (5, 13). Those interactions are observed during the two breaks in the morning and in the afternoon
as well as at lunch time.

Third, the estimated intensities suggest particular behaviour of some pupils. Consider for example class
2B, except the two pupils assigned to group 6, which is separated into group 12 with 21 pupils, group 11195

with 2 pupils and group 17 with only one pupil. The estimated intensities in Figure S.11 suggest first that
the two children in group 11 have very strong interaction with the pupil in group 17: notice the different
y-scale used in the Figure; and second that those interactions do not occur during the lunch time.

Similar results are obtained for classes 2A and 5B. This means that our procedure detects subgroups of
pupils with a specific behaviour.200

S.6. THE SPARSE SETUP: THEORY

We consider an extended setup where some of the processes Ni,j may have a null intensity. We thus in-
troduce additional latent variables Ui,j ∈ {0, 1}, ((i, j) ∈ R) that conditional on the Zi’s are independent
Bernoulli with βq,l being the parameter of the distribution of Ui,j conditional on Zi,qZj,l = 1. We keep
the global conditional independence assumption by imposing that conditional on (Zi, Ui,j)(i,j)∈R the205

counting processes (Ni,j)(i,j)∈R are independent. Then conditional on Ui,j , Zi, Zj , the counting process
Ni,j is an inhomogeneous Poisson process with intensity

Ui,jα
Zi,Zj =

Q∑
q,l=1

UijZ
i,qZj,lα(q,l), ((i, j) ∈ R).

In this way the additional latent variable Ui,j accounts for sparsity in the interaction processes; in each
pair of groups (q, l), there is now a proportion 1− βq,l of dyads (i, j) ∈ R that do not interact, so that
the corresponding process Ni,j is almost surely 0. As such these non interacting dyads will not tend210

to decrease the estimate of the common intensity α(q,l). Moreover clustering in this model should give
different groups, less driven by the absence of interactions.
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We let U = (Ui,j)(i,j)∈R and the parameter value is θ = (π, β, α).

Identifiability may be proved under the same assumptions, requiring moreover that none of the intensi- 215

ties α(q,l) is itself equal to zero. We discuss this in the undirected case, similarly to the identifiability proof
of the main model. Indeed Ni,j is now a counting process directed by the random measure Ai,j whose
distribution is

Ai,j ∼
Q∑
q=1

Q∑
l=1

πqπl{βq,lδA(q,l) + (1− βq,l)δ0}.

Fixing three distinct integers i, j, k in {1, . . . , n} and considering the trivariate counting process
(Ni,j , Ni,k, Nj,k) we end up with the distribution of the triplet of random measures (Ai,j , Ai,k, Aj,k). 220

There the expressions become more cumbersome but the very same reasoning may be applied to identify
the measures {A(q,l) : q, l = 1, . . . , Q; q ≤ l} up to a permutation in SQ. Concerning identification of
π and β, we obtain the set of weights {π3

qβ
3
q,q : q = 1, . . . , Q} that is attached to the Q components

corresponding to Dirac masses at points of the form (A(q,q), A(q,q), A(q,q)). Moreover we also obtain the
set of weights {π3

qβ
2
q,q(1− βq,q) : q = 1, . . . , Q} attached to Dirac masses at points (A(q,q), A(q,q), 0). 225

As the A(q,q)’s are unique we can match the value π3
qβ

3
q,q with π3

qβ
2
q,q(1− βq,q) and thus obtain (through

a simple ratio) βq,q and also πq . In other words the sets {βq,q : q = 1, . . . , Q}q and {πq : q = 1, . . . , Q}q
are identifiable. Finally we may look at the weights π2

qπlβq,qβ
2
q,l associated with Dirac masses at points of

the form (A(q,q), A(q,l), A(q,l)) with q 6= l. As the cumulative intensities {A(q,l) : q, l = 1, . . . , Q; q ≤ l}
have been identified up to a permutation in SQ, together with the pair of (πq, βq,q)’s for the same 230

permutation, we obtain the values {βq,l : q 6= l}.

Let us turn to inference of this model. To fix the notation we use the directed setup but similar equations
may be derived in the undirected case. The complete-data likelihood is

Lsparse(O,Z,U | θ) =L(O | Z,U , θ)× L(U | Z, θ)× L(Z | θ) 235

=exp

− ∑
(i,j)∈R

Ui,jA
(Zi,Zj)(T )

×
M∏
m=1

α(Zim ,Zjm )(tm)

×
∏

(i,j)∈R

Q∏
q=1

Q∏
l=1

{
β
Ui,j

q,l (1− βq,l)1−Ui,j

}Zi,qZj,l

×
n∏
i=1

Q∏
q=1

πZ
i,q

q .

The true conditional distribution of the latent variables (Z,U) given the observations writes

prθ(Z,U | O) = prθ(Z | O)prθ(U | Z,O) = prθ(Z | O)
∏

(i,j)∈R

prθ(Ui,j | Zi, Zj , Ni,j).

A main difference with the previous setting is that now this conditional distribution has two parts: the one 240

concerning U has a factorised form and can thus be computed exactly, while the part concerning Z still
has an intricate dependence structure and we rely on a variational approximation to deal with it. We thus
introduce a new conditional factorised distribution p̃rτ,θ(· | O) on the variables Z,U that depends on the
observations O and is defined as

p̃rτ,θ
(
Z = (q1, . . . , qn),U = (ui,j)(i,j)∈R | O

)
245

=

n∏
i=1

prτ (Zi = qi | O)
∏

(i,j)∈R

prθ(Ui,j = ui,j | Zi = qi, Zj = qj , Ni,j)

=

n∏
i=1

τ i,qi
∏

(i,j)∈R

prθ(Ui,j = ui,j | Zi = qi, Zj = qj , Ni,j),
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for any (q1, . . . , qn) ∈ {1, . . . , Q}n and (ui,j)(i,j)∈R ∈ {0, 1}r. As it does not depend on θ, we let p̃rτ (Z |
O) denote the marginal distribution on Z of the distribution p̃rτ,θ(· | O) and Ẽτ (· | O) the corresponding
expectation. Moreover, the true conditional distribution of Ui,j is given by250

prθ(Ui,j = 1 | Zi = q, Zj = l, Ni,j) = 1{Ni,j(T ) > 0}+ ρθ(q, l)1{Ni,j(T ) = 0} := ρθ(i, j, q, l),

where ρθ(q, l) =
βq,l exp{−A(q,l)(T )}

1− βq,l + βq,l exp{−A(q,l)(T )}
. (S.3)

Indeed, whenever we observe an interaction event between (i, j), namely Ni,j(T ) > 0, we know that
Uij = 1 almost surely. Otherwise (Ni,j(T ) = 0), we either have a null intensity process or a non-null
intensity process with zero observations. Note that the parameters ρθ(q, l), or equivalently the ρθ(i, j, q, l),255

are not additional variational parameters; these are just functions of the original parameter θ. Finally we
have

p̃rτ,θ (Z,U | O) =
{ n∏
i=1

p̃rτ (Zi | O)
}
×

∏
(i,j)∈R

ρθ(i, j, Zi, Zj)
Ui,j{1− ρθ(i, j, Zi, Zj)}1−Ui,j .

Let us now derive our variational approximation. Denoting by Ẽτ,θ(· | O) the expectation under the
distribution p̃rτ,θ(· | O) on (Z,U) and by θ[s] the current parameter value, we write as usual

log prθ[s](O)260

= Ẽτ,θ{log prθ[s](O,Z,U) | O} − Ẽτ,θ{log prθ[s](Z,U | O) | O}
= Ẽτ,θ{log prθ[s](O,Z,U) | O}+H{p̃rτ,θ(Z,U | O)}+ KL{p̃rτ,θ(Z,U | O)‖prθ[s](Z,U | O)}.

As a consequence, we introduce a new criterion J̃(τ, θ; θ[s]) that is a lower bound on the log-likelihood
log prθ[s](O) and defined as

J̃(τ, θ; θ[s]) =Ẽτ,θ{log prθ[s](O,Z,U) | O}+H{p̃rτ,θ(Z,U | O)}265

=−
∑

(i,j)∈R

Q∑
q=1

Q∑
l=1

τ i,qτ j,lρθ(i, j, q, l)(A
[s])(q,l)(T )

+

Q∑
q=1

Q∑
l=1

M∑
m=1

τ im,qτ jm,l log
{
(α[s])(q,l)(tm)

}

+
∑

(i,j)∈R

Q∑
q=1

Q∑
l=1

τ i,qτ j,l
[
ρθ(i, j, q, l) log β

[s]
q,l + {1− ρθ(i, j, q, l)} log(1− β

[s]
q,l)
]

+

n∑
i=1

Q∑
q=1

τ i,q log

(
π
[s]
q

τ i,q

)
−

∑
(i,j)∈R

Q∑
q=1

Q∑
l=1

τ i,qτ j,lψ{ρθ(i, j, q, l)},

where ψ(ρ) = ρ log ρ+ (1− ρ) log(1− ρ) is the entropy of the Bernoulli distribution with parameter ρ.270

Using the definition of ρθ(i, j, q, l) and ψ(1) = 0, the last term in the right-hand side simplifies to

∑
(i,j)∈R

Q∑
q=1

Q∑
l=1

τ i,qτ j,lψ{ρθ(i, j, q, l)} =
Q∑
q=1

Q∑
l=1

ψ{ρθ(q, l)}
∑

(i,j)∈R

τ i,qτ j,l1{Ni,j(T ) = 0}.

The variational E-step consists in maximizing J̃(τ, θ; θ[s]) with respect to (τ, θ). This is equiva-
lent to choosing the variational distribution p̃rτ,θ that minimises the Kullback-Leibler divergence
KL{p̃rτ,θ(Z,U | O)‖prθ[s](Z,U | O)}. The solution in θ is naturally obtained for θ = θ[s].
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We need to choose the variational parameter τ that maximizes J̃(τ, θ[s]; θ[s]). Similarly to the non 275

sparse setup we obtain that τ [s] satisfies a fixed point equation in τ ,

τ i,q ∝ π[s]
q exp{D̃iq(τ, θ

[s])}, (i = 1, . . . , n; q = 1, . . . , Q), (S.4)

where

D̃iq(τ, θ) =−
Q∑
l=1

n∑
j=1
j 6=i

τ j,l
{
ρθ(i, j, q, l)A

(q,l)(T ) + ρθ(j, i, l, q)A
(l,q)(T )

}

−
Q∑
l=1

ψ{ρθ(q, l)}
n∑
j=1
j 6=i

τ j,l1{Ni,j(T ) = 0} −
Q∑
l=1

ψ{ρθ(l, q)}
n∑
j=1
j 6=i

τ j,l1{Nj,i(T ) = 0}

+

Q∑
l=1

M∑
m=1

[
1{im=i}τ

jm,l log
{
α(q,l)(tm)

}
+ 1{jm=i}τ

im,l log
{
α(l,q)(tm)

}]
280

+

Q∑
l=1

n∑
j=1
j 6=i

τ j,l[ρθ(i, j, q, l) log βq,l + {1− ρθ(i, j, q, l)} log(1− βq,l)

+ ρθ(j, i, l, q) log βl,q + {1− ρθ(j, i, l, q)} log(1− βl,q)].

The M-step consists in maximizing J̃(τ [s], θ[s]; θ) with respect to θ. It is again divided into two parts,
treating the finite-dimensional parameter (π, β) differently than the infinite dimensional one α. We thus
first maximize J̃(τ [s], θ[s];π, β, α) with respect to (π, β) using the current parameter value α = α[s]. The 285

solution with respect to π is the same as in the non sparse case and given in (7). Now optimization with
respect to β leads to (denoting ρ[s] = ρθ[s] ),

β
[s+1]
q,l =

∑
(i,j)∈R(τ

[s])i,q(τ [s])j,lρ[s](i, j, q, l)∑
(i,j)∈R(τ

[s])i,q(τ [s])j,l
, q, l = 1, . . . , Q. (S.5)

Then estimation of the intensities α(q,l) is done exactly as previously, except that we replace the
variational process N (q,l) by Ñ (q,l) =

∑
(i,j)∈R ρ

[s](i, j, q, l)(τ [s])i,q(τ [s])j,lNi,j .
290

Finally we start from an initial value of the clusters Z , see Section S.3, that we treat as probabilities
{(τ i,q)1≤q≤Q; 1 ≤ i ≤ n}. Then we initialise the sparsity parameters βq,l and mean intensities A(q,l)(T )
with

βq,l =

∑
(i,j)∈R Z

i,qZj,l1{Ni,j(T ) > 0}∑
(i,j)∈R Z

i,qZj,l
, A(q,l)(T ) =

∑
(i,j)∈R Z

i,qZj,lNi,j(T )∑
(i,j)∈R Z

i,qZj,l1{Ni,j(T ) > 0}
.

This enables to initialise ρ(i, j, q, l) with (S.3). After these initialisations, we are ready to iterate the
following steps. At iteration s ≥ 1 we do 295r M-step: Update π[s+1] via (7) with τ [s]; Update β[s+1] via (S.5) with τ [s], ρ[s]; Update α[s+1] either via

Equation (8) for histogram method or (9) for kernel method, using the process Ñ (q,l) and variational
parameters ρ[s] and τ [s].r VE-step: Update the values ρ[s+1] via (S.3) with β[s+1] and A[s+1](T ) derived from α[s+1];
Update τ [s+1] as the solution to the fixed point equation (S.4) relying on the current values300

π[s+1], ρ[s+1], α[s+1], β[s+1].
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The integrated classification likelihood criterion becomes

ICLsparse(Q) = logPθ̂(Q){O, τ̂(Q), ρ̂(Q)} − 1

2
(Q− 1) log n− 1

2
log r

(
Q2 +

Q∑
q=1

Q∑
l=1

2d̂
(q,l)
)
.

S.7. THE SPARSE SETUP: EXAMPLES

We first discuss the results of the sparse analysis on the London bike-sharing system dataset. In this
dataset only 7% of pairs of bike stations have at least one interaction. The main model ignores that fact305

and this impacts the results as groups are mainly driven by these absences of interactions. For instance the
clusters obtained are mostly geographic, revealing absences of connections between distant bikes stations
We explore whether one can decipher different structure with our sparse setup. In the following we focus
on day 1 as similar results were obtained for day 2.

First our sparse integrated classification likelihood criterion selects only Q̂ = 2 groups, compared to310

Q̂ = 6 in the non sparse case. Geographic locations of the bike stations and the resulting clusters are
represented on a city map thanks to the OpenStreetMap project, see Figure S.12. There is one group
containing a central part of the city while the remaining stations form a large peripheral cluster. From the
estimated intensities in Figure S.13 we see that the second group, i.e. the central geographical group, has
large intra-group intensity with three modes: one in the morning around 8:30 am, one at lunch around315

1pm and the last at the end of the day at 5:50pm. Group 1, the peripheral one, mostly consists in leaving
stations in the morning, see mode in the estimated intensity for (q, l) = (1, 2) around 8:20am, and in
arriving stations at the end of the day with a mode in the estimated intensity for (q, l) = (2, 1) at 5:50pm.
Intra-group interactions in group 1 have a much lower intensity. On this dataset the sparse setup appears
as a complementary model that may shed some different light on the data.320

We also analysed the Enron corpus with the sparse model as 91% of the pairs of individuals do not
exchange any email during the observation time. The sparse integrated classification likelihood criterion
chooses Q̂ = 10 as the optimal number of groups, which is smaller than in the non sparse model where
no optimum has been found in the range of Q from 1 to 20. As in the non sparse model the algorithm325

identifies one large group with 125 members, while the other nine groups contain at most five individuals.
The adjusted Rand index of the clustering in the non sparse model withQ = 4 and in the sparse case equals
0.51 with Q = 10 and 0.52 when Q = 4, which means that there are substantial differences between the
clusterings in the two models. Figure S.14 shows the estimated values of the connectivity probabilities
βq,l. Most of these probabilities are significantly lower than 1 justifying the application of the sparse330

model to these data. A consequence of low connectivity probabilities βq,l is that the estimated intensities
are more elevated than in the non sparse case which can be observed in Figure S.15 in comparison to
the intensity values obtained in the non sparse model, see Figure S.6. We can also compare the estimated
intensities in the sparse model with Q = 4, Figure S.16, with those in the non sparse case. Again we
see that the intensities in the sparse setup are much more elevated. Moreover, the form of the intensities335

involving two small groups, i.e. (q, l) ∈ {2, 3, 4}2, are all quite different in the two models.
We conclude that as in the bike-sharing example the results in the sparse model differ much from

those in the non sparse case. The sparse model tends to select a smaller number of groups which makes
interpretation of results easier. As many real datasets are sparse in the sense that only a small percentage
of individuals effectively interact with another the sparse model seems to be particularly adapted to real340

data and provides the possibility of further insights on the data.

We also analysed the primary school dataset with the sparse model. In this dataset 28% of pairs of
individuals have at least one interaction. Our sparse integrated classification likelihood criterion selects
Q̂ = 13 groups, which is smaller than in the non sparse model. The clustering in the non sparse model and345

in the sparse model are quite close, with some groups being the same. The main difference between the
two clusterings concerns the group composed in the non sparse model of class 4B with additional pupils
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coming from almost all other classes. This group was characterized by the lowest intra-group intensity.
In the sparse model, class 4B is separated into two groups: 6 pupils are gathered with class 4A to form
one group, that is group 1, whereas the 17 remaining pupils are gathered with class 1A and some pupils 350

coming from almost all other classes, composing group 3. Looking at the estimated intensities, we see
that group 3 has a low intra-group intensity during the lunch time contrary to group 1, see Figure S.17.
Moreover the estimated intra-connectivity probability for groups 1 and 3 are given by β̂1,1 = 0.84 and
β̂3,3 = 0.29. Therefore group 3 is composed of individuals which only a few proportion interacts, and
characterized by very few interactions during the lunch time. On this dataset with the non sparse and 355

sparse models we mainly recover the same clustering based on communities, but the sparse model also
exhibits particular temporal profile of some individuals.
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Fig. S.1: Intensities in the synthetic experiments from Scenario 1. Each picture represents the intra-group
intensity αin in bold line and the inter-group intensity αout in dashed line with different shift parameter
values ϕ ∈ {0.01, 0.05, 0.1, 0.2, 0.5}.

Table S.1: Mean number of events and risks with standard deviations (sd) in scenario 2 with n = 20. His-
togram (Hist) and kernel (Ker) estimators are compared with their oracle counterparts (Or.Hist, Or.Ker).
All values associated with the risks are multiplied by 100.

Groups (q, l) Nb.events Hist (sd) Or.Hist (sd) Ker (sd) Or.Ker (sd)

(1, 1) 84 136 (92) 50 (49) 215 (83) 113 (55)
(1, 2) 146 177 (146) 98 (27) 270 (107) 194 (23)
(1, 3) 86 211 (160) 78 (20) 178 (143) 43 (18)
(2, 2) 32 136 (72) 108 (29) 139 (109) 71 (41)
(2, 3) 130 265 (72) 217 (28) 238 (78) 182 (22)
(3, 3) 48 173 (61) 158 (47) 171 (111) 85 (43)

Table S.2: Enron: Total size and group composition with Q = 4 groups, some people’s positions are
unknown.

total managers employees

group 1 127 62 36
group 2 4 0 3
group 3 2 1 1
group 4 14 12 1
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Fig. S.2: Boxplots of the adjusted Rand index in the synthetic experiments for Scenario 2, for the his-
togram estimator (darkgrey) and the kernel estimator (white). Left panel: n = 20, right panel: n = 50.
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groups selected by ICL.
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Fig. S.4: London bike-sharing system: Barplots of outgoing countsNi·(·) on the left, and incoming counts
N·i(·) on the right, for the two stations i in the smallest cluster as top row and bottom row, respectively:
representation of volumes of connections to all other stations during day 1, with time on the x-axis.
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Fig. S.5: London bike-sharing system: estimated non almost null intensities for day 1; the x-axis gives the
time in seconds.
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Fig. S.8: Primary school: clustering of the 242 individuals into Q = 17 groups. Vertical bars represent the
Q clusters. Colours indicate the grades and the teachers, plain and hatching distinguish the two classes in
the same grade.
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Fig. S.9: Primary school: Estimated intra-group intensities
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Fig. S.10: Primary school: Estimated inter-group intensity between two classes of the same grade: classes
3A that is group 13 and 3B that is group 5.
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Fig. S.11: Primary school: Estimated intensities. Example of class 2B split into group 12 with 21 pupils,
group 11 with 2 pupils, and group 17 with only one pupil.
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Fig. S.12: London bike-sharing system: Geographic positions of the stations and clustering into two clus-
ters, represented by different colors and symbols, obtained from the sparse model for day 1.
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Fig. S.13: London bike-sharing system: estimated intensities from the sparse model for day 1, time on the
x-axis is in seconds.
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Fig. S.17: Primary school: Estimated intensities in the sparse model. Example of group 1 composed of
class 4A and 6 pupils of class 4B and group 3 composed of the entire class 1A, with 17 pupils of class 4B
and pupils from almost all other classes.
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