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S1. NOTATION AND CONVENTIONS FOR THE GENEALOGICAL TRACING VARIABLES AND
MEASURES ON X⊗2

We first write an expression for the probability mass function of the genealogical random variables
(K1,K2) described in Section 3·1. Let [N0:n] = [N0]× · · · × [Nn]. Then with a = (a0, . . . , an−1) ∈
[N0]N1 × · · · × [Nn−1]Nn , z = (z0, . . . , zn) ∈ XN0 × · · · × XNn and k1 = (k10, . . . , k

1
n) ∈ [N0:n], we 10

define

C1(a, z; k1) =
I(k1n ∈ [Nn])

Nn

n∏
p=1

I(k1p−1 = a
k1p
p−1).

With k2 = (k20, . . . , k
2
n) ∈ [N0:n], we also define

C2(a, z, k1; k2) =
I(k2n ∈ [Nn])

Nn

n∏
p=1

I
(
k2p 6= k1p, k

2
p−1 = a

k2p
p−1

)
+

I
(
k2p = k1p

)
Gp−1(z

k2p−1

p−1 )∑Np−1

j=1 Gp−1(zjp−1)

 .

Note that with a, z fixed C1(a, z; ·) is a probability mass function on [N0:n], as is C2(a, z, k1; ·) when
(a, z, k1) is fixed. With C1 and C2 so-defined and

C(A, ζ; k1:2) = C1(A, ζ; k1)C2(A, ζ, k1; k2), (S1)

it is evident that C(A, ζ; ·) is the probability mass function of (K1,K2). 15

We now recursively define a collection of measures on X⊗2, which include the measure µb of Sec-
tion 3·2. We define G̃p = G⊗2p , p ∈ {0, . . . , n}. For any b ∈ Bn and writing x1:2p = (x1p, x

2
p), we define

M̃ b0
0 (dx1:20 ) = M0(dx10)

{
I(b0 = 0)M0(dx20) + I(b0 = 1)δx1

0
(dx20)

}
,

and for each p ∈ {1, . . . , n},

M̃ bp
p (x1:2p−1,dx

1:2
p ) = Mp(x

1
p−1,dx

1
p)
{
I(bp = 0)Mp(x

2
p−1,dx

2
p) + I(bp = 1)δx1

p
(dx2p)

}
.

We now define, similarly to (1), µb0 = M̃ b0
0 and for p ∈ {1, . . . , n}, recursively,

µb0:p(S) =

∫
X2

µb0:p−1(dx1:2p−1)G̃p−1(x1:2p−1)M̃ bp
p (x1:2p−1, S), S ∈ X⊗2. (S2)

It follows that for b ∈ Bn, the measure µb described in Section 3·2 is defined by (S2). 20

S2. ALGORITHMS FOR COMPUTING THE ESTIMATES

Algorithm 2 provides pseudo-code for computing V Nn (ϕ) in O(N) time after Algorithm 1 has been
run, with Lemma 6 providing its justification.

Algorithm 2. Computing V Nn (ϕ).

C© 2017 Biometrika Trust
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1. Let S0,n be an array of length N0, initialized to 0.25

2. For j ∈ [Nn], set S0,n(Ejn)← S0,n(Ejn) + ϕ(ζjn)/Nn.
3. Set

mN
? (ϕ)←

(
n∏
p=0

Np
Np − 1

)ηNn (ϕ)2 −
∑
i∈[N0]

S0,n(i)2

 .

4. Set V Nn (ϕ)← ηNn (ϕ)2 −mN
? (ϕ).

LEMMA 6. For any ϕ ∈ L(ϕ), mN
? (ϕ) = µN0n(ϕ⊗2)/γNn (1)2.

Proof. We have S0,n[i] = N−1n
∑
j∈[Nn]:E

j
n=i

ϕ(ζjn), for each i ∈ [N0] upon completion of step 2 of30

Algorithm 2. Noting that

1

N2
n

∑
i,j:Ei

n 6=E
j
n

ϕ(ζin)ϕ(ζjn) = ηNn (ϕ)2 −
∑
i∈[N0]

 1

Nn

∑
j:Ej

n=i

ϕ(ζjn)


2

,

the result follows from (11) and (13). �

Algorithm 3 provides pseudo-code for computing each vNp,n(ϕ), p ∈ {0, . . . , n} in O(Nn) time after
Algorithm 1 has been run, with Lemma 7 providing its justification. The computation involves indexing
sets of offspring indices, which we define as35

Oip = {j ∈ [Np+1] : Ajp = i}, p ∈ {0, . . . , n− 1}, i ∈ [Np]. (S3)

Algorithm 3. Computing each vNp,n(ϕ), and vNn (ϕ).

1. Let Sn,n be an array of length Nn, such that Sn,n(i) = ϕ(ζin)/Nn.
2. For each p = n− 1, . . . , 0:

a. Let Sp,n be a zero array of length Np.
b. For j ∈ [Np+1], set Sp,n(Ajp)← Sp,n(Ajp) + Sp+1,n(j).40

3. For each p ∈ {0, . . . , n− 1}:
a. Let tp be an array of length Np such that tp(i) = Gp(ζ

i
p)/
∑
j∈[Np]

Gp(ζ
j
p).

b. Let g0,p be a zero array of length N0. For j ∈ [Np], set g0,p(Ejp)← g0,p(E
j
p) + tp(j).

4. Set mN
? (ϕ)←

(∏n
p=0

Np

Np−1

){
ηNn (ϕ)2 −

∑
i∈[N0]

S0,n(i)2
}

.

5. Set mN
n,n(ϕ)← (Nn − 1)

[∏n
q=0

Nq

Nq−1

]∑
i∈[Nn]

Sn,n(i)2
{

1− g0,n−1(Ein)
}

.45

6. For p ∈ {0, . . . , n− 1},
a. Let R(1)

p and R(2)
p be zero arrays of length Np.

b. For j ∈ [Np+1], set R(1)
p (Ajp)← R

(1)
p (Ajp) + Sp+1,n(j) .

c. For j ∈ [Np+1], set R(2)
p (Ajp)← R

(2)
p (Ajp) + Sp+1,n(j)2.

d. If p ≥ 1, setmN
p,n(ϕ)← (Np − 1)

(∏n
q=0

Nq

Nq−1

)∑
i∈[Np]

{
R

(1)
p (i)2 −R(2)

p (i)
}{

1− g0,p−1(Eip)
}

;50

otherwise set mN
0,n(ϕ)← (N0 − 1)

(∏n
q=0

Nq

Nq−1

)∑
i∈[N0]

{
R

(1)
0 (i)2 −R(2)

0 (i)
}

.

7. For p ∈ {0, . . . , n}, set vNp,n(ϕ)← mN
p,n(ϕ)−mN

? (ϕ). Set vNn (ϕ)←
∑n
p=0 c

−1
p vNp,n(ϕ).

LEMMA 7. For any ϕ ∈ L(X ) and p ∈ {0, . . . , n}, mN
p,n(ϕ) = µNep(ϕ⊗2)/γNn (1)2.

Proof. We define, for any p ∈ {0, . . . , n− 1},

Ḡi0,p :=

∑
j∈[Np]:E

j
p=i

Gp(ζ
j
p)∑

j∈[Np]
Gp(ζ

j
p)

, i ∈ [N0].
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We also define ψin,n(ϕ) = ϕ(ζin)/Nn for i ∈ [Nn], and for p ∈ {0, . . . , n− 1}, 55

ψip,n(ϕ) =
∑

j∈[Np+1]:A
j
p=i

ψjp+1,n(ϕ), i ∈ [Np].

In Algorithm 3, Sp,n(i) = ψip,n(ϕ) for each i ∈ [Np] and each p ∈ {0, . . . , n} upon completion of step
2. Upon completion of step 3, g0,p(i) = Ḡi0,p for each i ∈ [N0] and p ∈ {0, . . . , n− 1}. Finally, upon

completion of step 6(c), R(1)
p (i) =

∑
j∈Oi

p
ψip+1,n and R(2)

p (i) =
∑
j∈Oi

p

(
ψip+1,n

)2
for each i ∈ [Np]

and p ∈ {0, . . . , n− 1}. We now verify that mN
p,n(ϕ) = µNep(ϕ⊗2)/γNn (1)2 for each p ∈ {0, . . . , n}.

When p = n, we have 60

µNen(ϕ⊗2){
(Nn − 1)

∏n
q=0

Nq

Nq−1

}
γNn (1)2

=
∑

k1:2∈I(en)

C(A, ζ; k1:2)ϕ(ζ
k1n
n )ϕ(ζ

k2n
n )

=
∑

k1:2∈[N0:n]2

I(k1n = k2n)

N2
n

ϕ(ζ
k1n
n )2

∑
i∈[Nn−1]

Gn−1(ζin−1)I(Ein−1 6= E
k1n
n )∑

j∈[Nn−1]
Gn−1(ζjn−1)

=
∑
i∈[Nn]

1

N2
n

(
1− ḠE

i
n

0,n−1

)
ϕ(ζin)2,

and we conclude by noting that ψin,n(ϕ) = ϕ(ζin)/Nn. When p = 0, we have

µNe0(ϕ⊗2){
(N0 − 1)

∏n
q=0

Nq

Nq−1

}
γNn (1)2

=
∑

k1:2∈I(e0)

C(A, ζ; k1:2)ϕ(ζ
k1n
n )ϕ(ζ

k2n
n )

=
∑

k1:2∈[N0:n]2

I(k10 = k20)

N2
n

{
n∏
q=1

I(k1q 6= k2q , k
1
q−1 = A

k1q
q−1, k

2
q−1 = A

k2q
q−1)

}
ϕ(ζ

k1n
n )ϕ(ζ

k2n
n )

=
∑
i∈[N0]

∑
j 6=j′∈Oi

0

ψj1,n(ϕ)ψj
′

1,n(ϕ) =
∑
i∈[N0]

∑
j∈Oi

0

ψj1,n(ϕ)


2

−
∑
j∈Oi

0

ψj1,n(ϕ)2.

Finally when p ∈ {1, . . . , n− 1}, we have

µNep(ϕ⊗2){
(Np − 1)

∏n
q=0

Nq

Nq−1

}
γNn (1)2

=
∑

k1:2∈I(ep)

C(A, ζ; k1:2)ϕ(ζ
k1n
n )ϕ(ζ

k2n
n )

=
∑

k1:2∈[N]2

I(k1p = k2p)

N2
n

{
n∏

q=p+1

I(k1q 6= k2q , k
1
q−1 = A

k1q
q−1, k

2
q−1 = A

k2q
q−1)

}

· ϕ(ζ
k1n
n )ϕ(ζ

k2n
n )

∑
i∈[Np−1]

Gp−1(ζip−1)I(Eip−1 6= E
k1p
p )∑

j∈[Np−1]
Gp−1(ζjp−1)

=
∑
i∈[N0]

 ∑
j 6=j′∈Oi

p

ψjp+1,n(ϕ)ψj
′

p+1,n(ϕ)


(

1− ḠE
i
p

0,p−1

)

=
∑
i∈[Np]

(
1− ḠE

i
p

0,p−1

)
∑
j∈Oi

p

ψjp+1,n(ϕ)


2

−
∑
j∈Oi

p

ψjp+1,n(ϕ)2

 . �
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S3. Lr ERROR BOUNDS

As in Remark 3, we define

Qp(xp−1,dxp) = Gp−1(xp−1)Mp(xp−1,dxp), p ∈ {1, . . . , n},

and Qn,n = Id, Qp,n = Qp+1 · · ·Qn for p ∈ {0, . . . , n− 1}. The following Lemma will be put to mul-65

tiple uses in our analysis.

LEMMA 8. For any ϕ ∈ L(X ) and r ≥ 1,

sup
N≥1

N1/2E
{∣∣γNn (ϕ)− γn(ϕ)

∣∣r}1/r

<∞, sup
N≥1

N1/2E
{∣∣ηNn (ϕ)− ηn(ϕ)

∣∣r}1/r

<∞.

Proof. Consider the decomposition:

γNn (ϕ)− γn(ϕ) =

n∑
p=0

γNp Qp,n(ϕ)− γNp−1Qp−1,n(ϕ) =

n∑
p=0

γNp (1)
1

Np

∑
i∈[Np]

∆i
p,n,

with the convention γN−1Q−1,n(ϕ) = M0Q0,n(ϕ) in the first equality, and

∆i
0,n = Q0,n(ϕ)(ζip)−M0Q0,n(ϕ),

∆i
p,n = Qp,n(ϕ)(ζip)−

ηNp−1Qp−1,n(ϕ)

ηNp−1(Gp−1)
, 1 ≤ p ≤ n.

Note that (∆i
0,n)i∈[N0] are independent, identically distributed and zero-mean random variables, and70

for each p ≥ 1, given σ(ζ0:p−1), the (∆i
p,n)i∈[Np] are conditionally independent, identically dis-

tributed and zero-mean random variables. Moreover, there exists a finite constant say Cn such that
supN≥1 max1≤p≤n maxi∈[Np]

∣∣∆i
p,n

∣∣ < Cn and supN≥1 max1≤p≤n γ
N
p (1) < Cn. Applying these ob-

servations together with the Minkowski and Burkholder–Davis–Gundy inequalities, there exists a finite
constant Bn,r such that75

sup
N≥1

N1/2E
{∣∣γNn (ϕ)− γn(ϕ)

∣∣r}1/r

≤ sup
N≥1

N1/2
n∑
p=0

E


∣∣∣∣∣∣γNp (1)

1

Np

∑
i∈[Np]

∆i
p,n

∣∣∣∣∣∣
r

1/r

≤ Bn,r sup
N≥1

N1/2
n∑
p=0

1

Np
E


∣∣∣∣∣∣∣
 ∑
i∈[Np]

(∆i
p,n)2


1/2
∣∣∣∣∣∣∣
r

1/r

<∞.

Applying Minkowski’s inequality to the decomposition

ηNn (ϕ)− ηn(ϕ) =
γNn (ϕ)

γNn (1)

{
γn(1)− γNn (1)

γn(1)

}
+
γNn (ϕ)− γn(ϕ)

γn(1)

gives

sup
N≥1

N1/2E
{∣∣ηNn (ϕ)− ηn(ϕ)

∣∣r}1/r

≤ supx |ϕ(x)|
γn(1)

sup
N≥1

N1/2E
{∣∣γNn (1)− γn(1)

∣∣r}1/r

+
1

γn(1)
sup
N≥1

N1/2E
{∣∣γNn (ϕ)− γn(ϕ)

∣∣r}1/r

,

and the result follows since both terms on the right-hand side are finite from the previous bound. �
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S4. PROOFS OF LEMMAS 1–3 AND PROPOSITION 1
S4·1. Conditional particle filters and proof of Lemma 1 80

We define MN
0 (dz0) =

∏
i∈[N0]

M0(dzi0), and

MN
p (zp−1; ap−1,dzp) =

∏
i∈[Np]

Gp−1(z
aip−1

p−1 )Mp(z
aip−1

p−1 , z
i
p)∑

j∈[Np−1]
Gp−1(zjp−1)

, p ≥ 1.

The probability measure associated with the particle system in Algorithm 1 is specified by

PN (a,dz) = MN
0 (dz0)

n∏
p=1

MN
p (zp−1; ap−1,dzp).

We also define GNp (zp) = 1
Np

∑
i∈[Np]

Gp(z
i
p) for p ∈ {0, . . . , n}. Let

QN1 (k, a, dz) = PN (a,dz)C1(a, z; k),

which specifies the probability measure associated with the random variables (K1, A, ζ) obtained by
simulating the particle system using Algorithm 1 and selecting K1as described in Section 3·1. 85

We now introduce the conditional particle filter construction of Andrieu et al. (2010). Let −kp denote
the set [Np] \ {kp}. We define z−kpp = (z1p, . . . , z

k−1
p , zk+1

p , . . . , zNp ), zk = (zk00 , . . . , zknn ) and z−k =

(z−k00 , . . . , z−knn ), only for the purpose of analysis. We define a variant of MN
p in which one ancestor

index and particle is excluded

M̄N
p,kp(zp−1; a

−kp
p−1 ,dz

−kp
p ) =

∏
i∈[Np]\{kp}

Gp−1(z
aip−1

p−1 )Mp(z
aip−1

p−1 ,dz
i
p)∑

j∈[Np−1]
Gp−1(zjp−1)

,

with M̄N
0,k0

(dz−k00 ) =
∏
i∈[N0]\{k0}M0(dzi0). With a fixed reference path zk in position k, we define the 90

conditional particle filter to be a Markov kernel defined by

P̄N1 (k, zk; a,dz−k) = M̄N
0,k0(dz−k00 )

n∏
p=1

{
M̄N
p,kp(zp−1; a

−kp
p−1 ,dz

−kp
p )I

(
kp−1 = a

kp
p−1

)}
.

This specifies a particular distribution for the particle system excluding zk, and the ancestor indices con-
ditional upon k and zk. We also define the Feynman–Kac measure on the path space

γ
n
(A) =

∫
A

M0(dx0)

n∏
p=1

Gp−1(xp−1)Mp(xp−1,dxp), A ∈ X⊗n+1.

Finally,

Q̄N1 (k, a, dz) =
I (k ∈ [N0:n])

|[N0:n]|
γ
n
(dzk)

γn(1)
P̄N1 (k, zk; dz−k, a).

specifies the probability measure associated with an alternative distribution for (K1, A, ζ), where K1 is 95

first sampled uniformly from [N0:n], then ζK
1 ∼ γ

n
(·)/γn(1) and finally (A, ζ−K

1

) ∼ P̄N1 (K1, ζK
1

; ·).
We denote by Ē1 expectations with respect to the law of this alternative process.

Proof of Lemma 1. The second equality in the statement of the lemma follows from the first since

E
{
γNn (ϕ)

}
= E

γNn (1)
1

Nn

∑
i∈[Nn]

ϕ(ζin)

 = E
{
γNn (1)ϕ(ζ

K1
n

n )
}

= γn(ϕ).
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To establish the first equality in the statement of the lemma, it suffices to show that{
n−1∏
p=0

GNp (zp)

}
QN1 (k, a, dz) = γn(1)Q̄N1 (k, a, dz), (S4)

since it then follows that E
{
γNn (1)ϕ(ζ

K1
n

n )
}

= Ē1

{
γn(1)ϕ(ζ

K1
n

n )
}

= γn(ϕ). We observe that for any100

k ∈ [Np],

MN
p (zp−1; ap−1,dzp) =

Gp−1(z
akp−1

p−1 )Mp(z
akp−1

p−1 , z
k
p )∑

j∈[Np−1]
Gp−1(zjp−1)

M̄N
p,k(zp−1; a−kp−1,dz

−k
p ).

Hence, {
n−1∏
p=0

GNp (zp)

}
QN1 (k, a, dz) =

{
n−1∏
p=0

GNp (zp)

}
PN (a,dz)C1(a, z; k)

=
1

Nn

{
n−1∏
p=0

GNp (zp)

}
MN

0 (dz0)
n∏
p=1

MN
p (zp−1; ap−1,dzp)I

(
kp−1 = a

kp
p−1

)

=
1

Nn

{
n−1∏
p=0

GNp (zp)

}{
M̄N

0,k0(dz−k00 )

n∏
p=1

M̄N
p,kp(zp−1; ap−1,dz

−kp
p )I

(
kp−1 = a

kp
p−1

)}

·M0(dzk00 )

n∏
p=1

Gp−1(z
kp−1

p−1 )Mp(z
kp−1

p−1 ,dz
kp
p )

Np−1Gp−1(zp)

=
1

|[N0:n]|

{
M̄N

0,k0(dz−k00 )

n∏
p=1

M̄N
p,kp(zp−1; ap−1,dz

−kp
p )I

(
kp−1 = a

kp
p−1

)}

·M0(dzk00 )

n∏
p=1

Gp−1(z
kp−1

p−1 )Mp(z
kp−1

p−1 ,dz
kp
p )

=
1

|[N0:n]|
P̄N1 (k, zk; a,dz−k)γ

n
(dzk) = γn(1)Q̄N1 (k, a, dz). �

S4·2. Doubly conditional particle filters and proof of Lemma 2
The structure of the proof of Lemma 2 is very similar to the structure of the proof of Lemma 1. Let

QN2 (k1:2, a,dz) = PN (a,dz)C(a, z; k1:2),

which specifies the probability measure associated with the random variables (K1:2, A, ζ) obtained by105

simulating the particle system using Algorithm 1 and selecting (K1,K2) as described in Section 3·1. We

define M̄N
0,k1:20

(dz
−k1:20
0 ) =

∏
i∈[N0]\{k1:20 }

M0(dzi0),

M̄N
p,k1:2p

(zp−1; a
−k1:2p

p−1 ,dz
−k1:2p
p ) =

∏
i∈[Np]\{k1:2p }

Gp−1(z
aip−1

p−1 )Mp(z
aip−1

p−1 ,dz
i
p)∑N

j∈[Np−1]
Gp−1(zjp−1)

,
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and the Markov kernel associated with a doubly conditional particle filter as

P̄N2 (k1:2, zk
1:2

; a,dz−k
1:2

) = M̄N
0,k1:20

(dz
−k1:20
0 )

{
n∏
p=1

M̄N
p,k1:2p

(zp−1; a
−k1:2p

p−1 ,dz
−k1:2p
p )

}

·
n∏
p=1

I(k1p−1 = a
k1p
p−1)

{
I
(
k2p 6= k1p, k

2
p−1 = a

k2p
p−1

)
+ I
(
k2p = k1p

)}
.

A doubly conditional particle filter was also used in Andrieu et al. (2018), but for a different purpose. We
also define the path space counterpart for each µb, b ∈ Bn, by 110

µ
b
(A) =

∫
A

M̃ b0
0 (dx1:20 )

n∏
p=1

G̃p−1(x1:2p−1)M̃ bp
p (x1:2p−1,dx

1:2
p ), A ∈ X⊗2n+2,

Finally, we define

Q̄N2 (k1:2, a,dz) =
I
(
k1:2 ∈ [N0:n]2

)
|[N0:n]|2

µ
χ(k1:2)

(dzk
1:2

)

µχ(k1:2)(1)
P̄N2 (k1:2, zk

1:2

; a,dz−k
1:2

),

where χ : [N0:n]2 → Bn maps (k1, k2) to the unique b ∈ Bn such that (k1, k2) ∈ I(b). Q̄N2 speci-
fies the probability measure associated with an alternative distribution for (K1:2, A, ζ), where K1:2 is
first sampled uniformly from [N0:n]2, then ζK

1:2 ∼ µ
χ(K1:2)

(·)/µχ(K1:2)(1) and finally (A, ζ−K
1:2

) ∼
P̄N2 (K1:2, ζK

1:2

; ·). We denote by Ē2 expectations with respect to the law of this alternative process. 115

Proof of Lemma 2. The proof of (6)⇒(7) is relatively straightforward so we present that first:

E
{
γNn (ϕ)2

}
= E

γNn (1)2

 1

Nn

∑
i∈[Nn]

ϕ(ζin)


2


= E

γNn (1)2
1

N2
n

∑
i,j∈[Nn]

ϕ(ζin)ϕ(ζjn)


= E

{
γNn (1)2ϕ(ζ

K1
n

n )ϕ(ζ
K2

n
n )

}
= E

[∑
b∈Bn

I
{

(K1,K2) ∈ I(b)
}
γNn (1)2ϕ(ζ

K1
n

n )ϕ(ζ
K2

n
n )

]

=
∑
b∈Bn

E
[
I
{

(K1,K2) ∈ I(b)
}
γNn (1)2ϕ(ζ

K1
n

n )ϕ(ζ
K2

n
n )

]
=
∑
b∈Bn

{
n∏
p=0

(
1

Np

)bp (
1− 1

Np

)1−bp
}
µb(ϕ

⊗2),

where the final equality is due to (6). To complete the proof of the Lemma it remains to establish (6). For
this it suffices to show that{

n−1∏
p=0

GNp (zp)

}2

QN2 (k1:2, a,dz) = µχ(k1:2)(1)Q̄N2 (k1:2, a,dz),



8

since it then follows that for any b ∈ Bn,

E
[
I
{

(K1,K2) ∈ I(b)
}
γNn (1)2φ(ζ

K1
n

n , ζ
K2

n
n )

]
= Ē2

[
I
{

(K1,K2) ∈ I(b)
}
µb(1)φ(ζ

K1
n

n , ζ
K2

n
n )

]
=

(
1

|[N0:n]|

)2 ∑
k1,k2∈I(b)

µb(φ)

=

n∏
p=0

(
1

Np

)bp (
1− 1

Np

)1−bp
µb(φ),

where the last equality follows from the fact that |I(b)| =
∏n
p=0Np (Np − 1)

1−bp .120

We first note that by application of (S4),

{
n−1∏
p=0

GNp (zp)

}2

QN2 (k1:2, a,dz) =

{
n−1∏
p=0

GNp (zp)

}2

QN1 (k1, a,dz)C2(a, z, k1; k2)

=

{
n−1∏
p=0

GNp (zp)

}
γn(1)Q̄N1 (k1:2, a,dz)C2(a, z, k1; k2).

We then observe that for any k1, k2 ∈ [N0:n] and zk
1 ∈ Xn+1, we have

P̄N1 (k1, zk
1

; a,dz−k
1

)

n∏
p=1

{
I
(
k2p 6= k1p, k

2
p−1 = a

k2p
p−1

)
+ I
(
k2p = k1p

)}

=

{
M̄N

0,k10
(dz
−k10
0 )

n∏
p=1

M̄N
p,k1p

(zp−1; a
−k1p
p−1 ,dz

−k1p
p )

}

·
n∏
p=1

I(k1p−1 = a
k1p
p−1)

{
I
(
k2p 6= k1p, k

2
p−1 = a

k2p
p−1

)
+ I
(
k2p = k1p

)}

=

{
M̄N

0,k1:20
(dz
−k1:20
0 )

n∏
p=1

M̄N
p,k1:2p

(zp−1; a
−k1:2p

p−1 ,dz
−k1:2p
p )

}

·
n∏
p=0

I
(
k2p 6= k1p

) Gp−1(z
k2p−1

p−1 )Mp(z
k2p−1

p−1 ,dz
k2p
p )

Np−1Gp−1(zp−1)
+ I
(
k2p = k1p

)
·

n∏
p=1

I(k1p−1 = a
k1p
p−1)

{
I
(
k2p 6= k1p, k

2
p−1 = a

k2p
p−1

)
+ I
(
k2p = k1p

)}

= P̄N2 (k1:2, zk
1:2

; a,dz−k
1:2

)

n∏
p=0

I
(
k2p 6= k1p

) Gp−1(z
k2p−1

p−1 )Mp(z
k2p−1

p−1 ,dz
k2p
p )

Np−1Gp−1(zp−1)
+ I
(
k2p = k1p

) .
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It follows that{
n−1∏
p=0

GNp (zp)

}
γn(1)Q̄N1 (k1:2, a,dz)C2(a, z, k1; k2)

=

{
n−1∏
p=0

GNp (zp)

}
1

|[N0:n]|
γ
n
(dzk

1

)P̄N1 (k1, zk
1

; a,dz−k
1

)C2(a, z, k1; k2)

=
1

|[N0:n]|

{
n−1∏
p=0

GNp (zp)

}
P̄N2 (k1:2, zk

1:2

; a,dz−k
1:2

)

·γ
n
(dzk

1

)

n∏
p=0

I
(
k2p 6= k1p

) Gp−1(z
k2p−1

p−1 )Mp(z
k2p−1

p−1 ,dz
k2p
p )

Np−1Gp−1(zp−1)
+ I
(
k2p = k1p

)
· 1

Nn

n∏
p=1

I
(
k2p 6= k1p, k

2
p−1 = a

k2p
p−1

)
+ I
(
k2p = k1p

) Gp−1(z
k2p−1

p−1 )

Np−1Gp−1(zp−1)


=

(
1

|[N0:n]|

)2
{
M̃ b0

0 (dx
k1:20
0 )

n∏
p=1

G̃p−1(x
k1:2p−1

p−1 )M̃ bp
p (x

k1:2p−1

p−1 ,dx
k1:2p
p )

}
P̄N2 (k1:2, zk

1:2

; a,dz−k
1:2

)

=

(
1

|[N0:n]|

)2

µ
χ(k1:2)

(dzk
1:2

)P̄N2 (k1:2, zk
1:2

; a,dz−k
1:2

) = µχ(k1:2)(1)Q̄N2 (k1:2, a,dz). �

S4·3. Proofs of Lemma 3 and Proposition 1
Proof of Lemma 3. To obtain the limit of Nvar

{
γNn (ϕ)/γn(1)

}
, first combine the equality 125

E{γNn (ϕ)} = γn(ϕ) from Lemma 1 and the expression for E{γNn (ϕ)2} in Lemma 2 to give

Nvar
{
γNn (ϕ)

}
= −γn(ϕ)2

n∑
p=0

N

dNcpe
+

n∑
p=0

µep(ϕ⊗2)
N

dNcpe
∏
q 6=p

(
1− 1

dNcqe

)
+O(N−1)

=

n∑
p=0

N

dNcpe

µep(ϕ⊗2)
∏
q 6=p

(
1− 1

dNcqe

)
− µ0n(ϕ⊗2)

+O(N−1).

Then divide through by γn(1)2 and take N →∞. It remains to verify (9). For the remainder of the proof,
denote ϕ0 = ϕ− ηn(ϕ). Observe

ηNn (ϕ0)− γNn (ϕ0)

γn(1)
= ηNn (ϕ0)

{
1− γNn (1)

γn(1)

}
,

and so by Cauchy–Schwarz,

N1/2E

{∣∣∣∣ηNn (ϕ0)− γNn (ϕ0)

γn(1)

∣∣∣∣2
}1/2

= N1/2E

[∣∣∣∣ηNn (ϕ0)

{
1− γNn (1)

γn(1)

}∣∣∣∣2
]1/2

≤ N1/2E
{∣∣ηNn (ϕ0)

∣∣4}1/4

E

{∣∣∣∣1− γNn (1)

γn(1)

∣∣∣∣4
}1/4

→ 0, as N →∞, (S5)

where the convergence to zero is a consequence of Lemma 8. Rearranging Minkowski’s inequality gives 130

for any random variables X,Y , E
{

(X − Y )
2
}1/2

≥
∣∣∣E (X2

)1/2 − E (Y 2
)1/2∣∣∣, so the convergence in
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(S5) implies ∣∣∣∣∣∣N1/2E
{
ηNn (ϕ0)2

}1/2 −N1/2E

[{
γNn (ϕ0)

γn(1)

}2
]1/2∣∣∣∣∣∣→ 0, as N →∞, (S6)

so limN→∞NE
{
ηNn (ϕ0)2

}
= limN→∞NE

[{
γNn (ϕ0)/γn(1)

}2]
. The proof is completed by noting

that E
[{
γNn (ϕ0)/γn(1)

}2]
= var

{
γNn (ϕ0)/γn(1)

}
. �

Proof of Proposition 1. Part 1. holds by Lemma 1. The almost sure convergence in parts 2. and 3.135

follows from Lemma 8 and the Borel–Cantelli Lemma. The convergence to the asymptotic variances in
parts 2. and 3. holds by Lemma 3.

S5. SUPPORTING RESULTS AND PROOF OF THEOREM 2
S5·1. Definitions and supporting lemmas

We first introduce a regularity result on randomly weighted, random measures comprised of pairs of140

independent and identically distributed particles.

LEMMA 9. For each N ≥ 1, let (W i,j)i,j∈[N ] be a collection of possibly dependent non-negative ran-
dom variables. Assume this sequence of collections of random variables satisfies, for any probability
measure ν on X and bounded φ ∈ L(X⊗2),

sup
N
N1/2E


N−2 ∑

i,j∈[N ]

W i,jφ(ζi, ζj)− ν⊗2(ϕ)


2

1/2

< +∞,

where each ζi ∼ ν independently. Then, with S = {(i, j, i′, j′) ∈ [N ]4 : i′, j′ /∈ {i, j}},145

sup
N
E

N−3 ∑
(i,j,i′,j′)∈S{

W i,jW i′,j′

 < +∞.

Proof. Let φ(x, x′) = f(x) + f(x′), where ν and f are taken such that ν({x : f(x) = 1}) = ν({x :
f(x) = −1}) = 1/2. Since ν⊗2(φ) = 0, we have

sup
N
N1/2E


N−2 ∑

i,j∈[N ]

W i,jφ(ζi,j)


2

1/2

< +∞.

We observe that

E
{
φ(ζi, ζj)φ(ζi

′
, ζj
′
)
}

=E
{
f(ζi)f(ζi

′
)
}

+ E
{
f(ζi)f(ζj

′
)
}

+ E
{
f(ζj)f(ζi

′
)
}

+ E
{
f(ζj)f(ζj

′
)
}
,150

so that in particular if (i, j, i′, j′) ∈ S{ then E{φ(ζi, ζj)φ(ζi
′
, ζj
′
)} ≥ 1. That is,

E


 1

N2

∑
i,j∈[N ]

W i,jφ(ζi,j)


2
 ≥ E

 1

N4

∑
(i,j,i′,j′)∈S{

W i,jW i′,j′

 .
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The result then follows from

sup
N
E

 1

N3

∑
(i,j,i′,j′)∈S{

W i,jW i′,j′


1/2

= sup
N
N1/2E

 1

N4

∑
(i,j,i′,j′)∈S{

W i,jW i′,j′


1/2

≤ sup
N
N1/2E


 1

N2

∑
i,j

W i,jφ(ζi,j)


2

1/2

< +∞. �

We recall the definition of µb0:p for p ∈ {0, , . . . , n} in Section S1, noting that it defines a Feynman–Kac
model on X⊗2, and define

Q̃bpp (x1:2p−1,dx
1:2
p ) = G̃p−1(x1:2p−1)M̃ bp

p (x1:2p−1,dx
1:2
p ), p ≥ 1.

Our analysis involves an induction argument on the number of time steps in the model defined by b and 155

(M̃
bp
p , G̃p)p∈{0,...,n}, where we allow (Mp, Gp)p∈{0,...,n} to be arbitrary with G0, . . . , Gn a sequence of

R-valued, strictly positive, upper-bounded functions. We define

FNb0 (i0, j0) = I(b0 = 0, i0 6= j0)
N0

N0 − 1
+ I(b0 = 1, i0 = j0)N0,

and for p ≥ 1,

FNb0:p(ip, jp) = I(bp = 0, ip 6= jp)
Np

Np − 1
FNb0:p−1

(A
ip
p−1, A

jp
p−1)

+I(bp = 1, ip = jp)Np

Np−1∑
jp−1=1

FNb0:p−1
(A

ip
p−1, jp−1)

Gp−1(ζ
jp−1

p−1 )∑Np−1

j=1 Gp−1(ζjp−1)
. (S7)

For each p we have

µNb0:p(ϕ) = γNp (1)2
∑

ip,jp∈[Np]

1

N2
p

FNb0:p(ip, jp)φ(ζip,jpp ) =
∑

ip,jp∈[Np]

1

N2
p

W ip,jp
p φ(ζip,jpp ), (S8)

whereW ip,jp
p = γNp (1)2FNb0:p(ip, jp). LetFp = σ(A0, . . . , Ap−1, ζ0, . . . , ζp), p ≥ 1 andF0 = σ(ζ0). We 160

show that if µNb0:p−1
(φ) approximates µb0:p−1

(φ) at a N−1/2 rate for any φ ∈ L(X⊗2) then µNb0:p(φ) ap-
proximates µb0:p(φ) at aN−1/2 rate for any φ ∈ L(X⊗2). The first step is to show in the following Lemma
that a mean-square error bound for µNb0:p−1

(φ) implies that the random variables W i,j
p−1 necessarily satisfy

a certain regularity condition.

LEMMA 10. If, for any (Mq, Gq)q∈{0,...,p−1} and any φ ∈ L(X⊗2), 165

sup
N
N1/2E

[{
µNb0:p−1

(φ)− µb0:p−1
(φ)
}2
]1/2

<∞,

then, with Sp−1 = {(i, j, i′, j′) ∈ [Np−1]4 : i′, j′ /∈ {i, j}},

sup
N
E

N−3p−1
∑

(i,j,i′,j′)∈S{
p−1

W i,j
p−1W

i′,j′

p−1

 < +∞.

Proof. Let Mp−1(x, ·) = ν(·) for every x ∈ X, where ν is an arbitrary probability measure. Con-
sider the expression for µNb0:p−1

(φ) in (S8), and note from (S7) that W i,j
p−1 is measurable with respect

to σ(A0:p−2, ζ0:p−2). This allows us to apply Lemma 9 to obtain the result. �



12

Lemmas 11 and 12 together provide important bounds used in the proof of Proposition 2 below. Their170

proofs involve mainly tedious manipulations involving properties of multinomial random variables, and
can be found in Section S5·4. The analysis that follows makes use of the offspring indices defined by (S3).

LEMMA 11. With E
{

∆N
p,bp

(ip−1, jp−1) | Fp−1
}

= 0,

µNb0:p(φ)− µNb0:p−1
(Q̃bpp (φ)) =

∑
ip−1,jp−1∈[Np−1]

1

N2
p−1

W
ip−1,jp−1

p−1 ∆N
p,bp(ip−1, jp−1), (S9)

where

∆N
p,0(ip−1, jp−1) =


{∑Np−1

j=1 Gp−1(ζjp)
}2

Np(Np − 1)

∑
(ip,jp)∈O

ip−1
p−1 ×O

jp−1
p−1

I(ip 6= jp)φ(ζip,jpp )

− Q̃bpp (φ)(ζ
ip−1,jp−1

p−1 ),

and175

∆N
p,1(ip−1, jp−1) =

Gp−1(ζ
jp−1

p−1 )

∑Np−1

j=1 Gp−1(ζjp−1)

Np

∑
ip∈O

ip−1
p−1

φ(ζip,ipp )

− Q̃bpp (φ)(ζ
ip−1,jp−1

p−1 ).

LEMMA 12. Let φ ∈ L(X⊗2) be non-negative, and Sp−1 := {(i, j, i′, j′) ∈ [Np−1]4 : i′, j′ /∈ {i, j}}.
Then,

1. for any (ip−1, jp−1, i
′
p−1, j

′
p−1) ∈ Sp−1 ∩ I(bp−1)2,

E
{

∆N
p,bp(ip−1, jp−1)∆N

p,bp(i′p−1, j
′
p−1) | Fp−1

}
≤ 0;

2. there exists C <∞ such that

E
{

∆N
p,bp(ip−1, jp−1)∆N

p,bp(i′p−1, j
′
p−1) | Fp−1

}
≤ C,

for any (ip−1, jp−1, i
′
p−1, j

′
p−1) ∈ S{

p−1 ∩ I(bp−1)2.180

S5·2. Proof of the theorem
The following proposition constitutes the inductive step in the proof of Theorem 2.

PROPOSITION 2. If, for any (Mq, Gq)q∈{0,...,p−1} and φ ∈ L(X⊗2),

sup
N
N1/2E

[{
µNb0:p−1

(φ)− µb0:p−1(φ)
}2
]1/2

<∞.

Then, for any (Mq, Gq)q∈{0,...p} and φ ∈ L(X⊗2),

sup
N
N1/2E

[{
µNb0:p(φ)− µb0:p(φ)

}2
]1/2

<∞.

Proof. We decompose φ into its positive and negative parts. That is φ = φ+ − φ−, where φ+(x1:2) =185

max{0, φ(x1:2)} and φ−(x1:2) = |min{0, φ(x1:2)}|. We can therefore write

E

([
µNb0:p(φ)− µNb0:p−1

{Q̃bpp (φ)}
]2)1/2

= E

([
µNb0:p(φ+)− µNb0:p−1

{Q̃bpp (φ+)}+ µNb0:p−1
{Q̃bpp (φ−)} − µNb0:p(φ−)

]2)1/2

≤ E

([
µNb0:p(φ+)− µNb0:p−1

{Q̃bpp (φ+)}
]2)1/2

+ E

([
µNb0:p−1

{Q̃bpp (φ−)} − µNb0:p(φ−)
]2)1/2

,
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by application of Minkowski’s inequality. We bound the first term. It follows from Lemmas 11 and 12 that

E

([
µNb0:p(ϕ+)− µNb0:p−1

{Q̃bpp (ϕ+)}
]2)

= E


 ∑
i,j∈[Np−1]

1

N2
p−1

W i,j
p−1∆N

p,bp(i, j)


2


= E

 ∑
i,j,i′,j′∈[Np−1]

1

N4
p−1

W i,j
p−1W

i′,j′

p−1 ∆N
p,bp(i, j)∆N

p,bp(i′, j′)


= E

 ∑
i,j,i′,j′∈[Np−1]

1

N4
p−1

W i,j
p−1W

i′,j′

p−1E
{

∆N
p,bp(i, j)∆N

p,bp(i′, j′) | Fp−1
}

≤ CE


∑

(i,j,i′,j′)∈S{
p−1

1

N4
p−1

W i,j
p−1W

i′,j′

p−1

 ≤ C

Np−1
E


∑

(i,j,i′,j′)∈S{
p−1

1

N3
p−1

W i,j
p−1W

i′,j′

p−1

 .

It then follows from Lemma 10 that

sup
N
N1/2E

([
µNb0:p(φ+)− µNb0:p−1

{Q̃bpp (φ+)}
]2)1/2

< +∞,

and an identical argument shows that

sup
N
N1/2E

([
µNb0:p(φ−)− µNb0:p−1

{Q̃bpp (φ−)}
]2)1/2

< +∞,

so 190

sup
N
N1/2E

([
µNb0:p(φ)− µNb0:p−1

{Q̃bpp (φ)}
]2)1/2

< +∞. (S10)

Now, φ ∈ L(X⊗2) implies Q̃bpp (φ) ∈ L(X⊗2) because Gp−1 is bounded, and since µb0:p−1{Q̃
bp
p (φ)} =

µb0:p(φ) we have by the hypothesis in the statement

sup
N
N1/2E

([
µNb0:p−1

{Q̃bpp (φ)} − µb0:p(φ)
]2)1/2

< +∞. (S11)

Therefore, (S10), (S11) and Minkowski’s inequality together imply the result. �

Proof of Theorem 2. For part 1. of the theorem, let Cb =
∏n
p=0 (Np)

bp {Np/ (Np − 1)}1−bp , which is
finite by the assumption that minpNp ≥ 2. By applying Lemma 2, 195

C−1b E
{
µNb (φ)

}
= E

[
γNn (1)2I

{
(K1,K2) ∈ I(b)

}
φ(ζ

K1
n

n , ζ
K2

n
n )

]
= C−1b µb(φ).

The proof of part 2. of the theorem is by induction on n. In the case n = 0 we obtain,

µNb0(φ) =
1

N2
0

∑
i,j∈[N0]

W i,j
0 ϕ(ζi,j0 ) =

1

N2
0

∑
(i,j)∈I(b0)

N b0
0

(
N0

N0 − 1

)1−b0
φ(ζi,j0 )

=
∑

(i,j)∈I(b0)

1

|I(b0)|
φ(ζi,j0 ).
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Let φ̄(x1, x2) = φ(x1, x2)− µb0(φ), and ||φ̄|| := supx |φ̄(x)|. We observe that
E
[{
µNb0(φ)− µb0(φ)

}2]
= E

{
µNb0(φ̄)2

}
. In the case b0 = 1, we have

E
[{
µNb0(φ)− µb0(φ)

}2]
= E

 ∑
i∈[N0]

1

N2
0

φ̄(ζi,i0 )2

 =
1

N0
E
{
φ̄(X0, X0)2

}
≤ 1

N0
||φ̄||,

so supN N
1/2E

[{
µNb0(φ)− µb0(φ)

}2]1/2
< +∞ for any φ ∈ L(X⊗2). In the case b0 = 0, we obtain

E
[{
µNb0(φ)− µb0(φ)

}2]
= E

 ∑
i 6=j∈[N0]

∑
i′ 6=j′∈[N0]

1

N2
0 (N0 − 1)2

φ̄(ζi,j0 )φ̄(ζi
′,j′

0 )


= E

 ∑
(i,j,i′,j′)∈S{

0∩I(b0)

1

N2
0 (N0 − 1)2

φ̄(ζi,j0 )φ̄(ζi
′,j′

0 )


≤ ||ϕ̄||2 |S

{
0 ∩ I(b0)|

N2
0 (N0 − 1)2

= ||φ̄||2 4N0(N0 − 1)(N0 − 2) + 2N0(N0 − 1)

N2
0 (N0 − 1)2

≤ ||ϕ̄||2 4(N0 − 2) + 2

N0(N0 − 1)
≤ 4||φ̄||2

N0
,

so supN N
1/2E

[{
µNb0(φ)− µb0(φ)

}2]1/2
< +∞ for any φ ∈ L(X⊗2). The result then follows by ap-200

plying Proposition 2 multiple times. �

S5·3. Properties of multinomial random variables
All the results in Lemmas 13–15 can be obtained, after fairly tedious but straightforward calculations,

using the moment generating function of a Multinomial(n, p1, . . . , pk) random variable X , MX(t) =(∑k
i=1 pie

ti
)n

, and the fact that E
(∏m

j=1Xij

)
= ∂mMX

∂ti1 ···∂tim
(0).205

LEMMA 13. Let (X1, . . . , Xk) be a Multinomial(n, p1, . . . , pk) random variable. Then

1. for any i ∈ [k], E(Xi) = npi;
2. for distinct i, j ∈ [k], E(XiXj) = n(n− 1)pipj;
3. for any i ∈ [k], E {Xi(Xi − 1)} = n(n− 1)p2i .

LEMMA 14. Let (X1, . . . , Xk) be a Multinomial(n, p1, . . . , pk) random variable. Then210

1. for distinct i1, i2, i3, i4 ∈ [k],

E (Xi1Xi2Xi3Xi4) =
n!

(n− 4)!

4∏
j=1

pij ≤ n2(n− 1)2
4∏
j=1

pij = E (Xi1Xi2)E (Xi3Xi4) ;

2. for distinct i, j ∈ [k],

E{Xi(Xi − 1)Xj(Xj − 1)} = n(n− 1)(n− 2)(n− 3)p2i p
2
j

≤ n2(n− 1)2p2i p
2
j = E{Xi(Xi − 1)}E{Xj(Xj − 1)};

LEMMA 15. Let (X1, . . . , Xk) be a Multinomial(n, p1, . . . , pk) random variable. Then

1. for any i ∈ [k], E
(
X2
i

)
= n(n− 1)p2i + npi;

2. for any i ∈ [k],215

E
{
X2
i (Xi − 1)2

}
= n(n− 1)(n− 2)(n− 3)p4i + 4n(n− 1)(n− 2)p3i + 2n(n− 1)p2i ;
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3. for distinct i1, i2, i3 ∈ [k],

E
{
X2
i1Xi2Xi3

}
= n(n− 1)(n− 2)(n− 3)p2i1pi2pi3 + n(n− 1)(n− 2)pi1pi2pi3 ;

4. for distinct i1, i2 ∈ [k],

E
(
X2
i1X

2
i2

)
= n(n− 1)(n− 2)(n− 3)p2i1p

2
i2 + n(n− 1)(n− 2)(p2i1pi2 + pi1p

2
i2) + n(n− 1)pi1pi2 .

LEMMA 16. Let (X1, . . . , Xk) be a Multinomial(n, p1, . . . , pk) random variable where pi = S−1gi,
k/n ≤ c and n > 4. Then there exists a constant C <∞ such that, with ḡ := maxi∈{1,...,k} gi,

1. for any i ∈ [k], E
(
S2X2

i /n
2
)
≤ g2i + Cḡ2; 220

2. for any i ∈ [k], E
{
S4X2

i (Xi − 1)2/n4
}
≤ g4i + Cḡ4;

3. for distinct i1, i2, i3 ∈ [k], E
[
S4X2

i1
Xi2Xi3/

{
n2(n− 1)2

}]
≤ g2i1gi2gi3 + Cḡ4;

4. for distinct i1, i2 ∈ [k], E
[
S4X2

i1
X2
i2
/
{
n2(n− 1)2

}]
≤ g2i1g

2
i2

+ Cḡ4.

Proof. We use the properties from Lemma 15. For part 1.,

E

(
S2

n2
X2
i

)
=
S2

n2
{
n(n− 1)p2i + npi

}
≤ g2i +

S

n
gi ≤ g2i +

k

n
ḡ2.

For part 2., 225

E

{
S4

n2(n− 1)2
X2
i (Xi − 1)2

}
=

S4

n2(n− 1)2
{
n(n− 1)(n− 2)(n− 3)p4i + 4n(n− 1)(n− 2)p3i + 2n(n− 1)p2i

}
≤ g4i +

4S(n− 2)

n(n− 1)
g3i +

2S2

n(n− 1)
g2i ≤ g4i +

4k

n
ḡ4 + 2

k2

n(n− 1)
ḡ4 ≤ g4i + 4cḡ4 + 2c2

n

n− 1
ḡ4.

For part 3.,

E

{
S4

n2(n− 1)2
X2
i1Xi2Xi3

}
=

S4

n2(n− 1)2
{
n(n− 1)(n− 2)(n− 3)p2i1pi2pi3 + n(n− 1)(n− 2)pi1pi2pi3

}
≤ g2i1gi2gi3 +

S(n− 2)

n(n− 1)
gi1gi2gi3 ≤ g2i1gi2gi3 + cḡ4.

For part 4.,

E

{
S4

n2(n− 1)2
X2
i1X

2
i2

}
=

S4

n2(n− 1)2
{
n(n− 1)(n− 2)(n− 3)p2i1p

2
i2 + n(n− 1)(n− 2)(p2i1pi2 + pi1p

2
i2) + n(n− 1)pi1pi2

}
≤ g2i1g

2
i2 +

S(n− 2)

n(n− 1)
(g2i1gi2 + gi1g

2
i2) +

S2

n(n− 1)
gi1gi2 ≤ g2i1g

2
i2 + cḡ4 + c2

n

n− 1
ḡ4.

The result follows by taking C = 4c+ 4
3 · 2c

2 since n
n−1 ≤

4
3 . �

COROLLARY 1. Assume supx∈XGp−1(x) <∞ and (i, j, i′, j′) ∈ S{
p−1 ∩ I(bp−1)2. Then there exists

C <∞ such that for any Np, Np−1 ∈ N and ζp−1 ∈ XNp−1 , 230

E


{∑Np−1

k=1 Gp−1(ζkp−1)
}4

N2
p (Np − 1)2

|Oip−1|
{
|Ojp−1| − I(i = j)

}
|Oi
′
|
{
|Oj

′
| − I(i′ = j′)

}
| Fp−1

 ≤ C,
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and

Gp−1(ζjp−1)Gp−1(ζj
′

p−1)E


{∑Np−1

k=1 Gp−1(ζkp−1)
}2

N2
p

|Oip−1||Oi
′

p−1| | Fp−1

 ≤ C.
Proof. Let k = Np−1, n = Np, S =

∑Np−1

j=1 Gp−1(ζjp−1) and (X1, . . . , Xk) be a
Multinomial(n, p1, . . . , pk) random variable where pi = S−1Gp−1(ζip−1) and n > 4. For the first
expression, consider the case i = j. Then the expression can be written as

E

{
S4

n2(n− 1)2
X2
i (Xi − 1)

2

}
,

and we conclude by combining part 2. of Lemma 16 with supx∈XGp−1(x) <∞. Now consider the case235

i 6= j. Then the expression can be written as either

E

{
S4

n2(n− 1)2
X2
iX

2
j

}
, or E

{
S4

n2(n− 1)2
X2
i1Xi2Xi3

}
,

and we conclude by combining parts 3. and 4. of Lemma 16 with supx∈XGp−1(x) <∞. The second
expression can be bounded by {supx∈XGp−1(x)}2E

(
S2X2

i /n
2
)

and we conclude by combining the
part 1. of Lemma 16 with supx∈XGp−1(x) <∞. �

S5·4. Expressions and bounds for ∆N
p,bp

240

Proof of Lemma 11. We obtain expressions for ∆N
p,bp

for each of the cases bp ∈ {0, 1}, making use of
(S7). In the case bp = 0, we have

µNb0:p(φ) = γNp (1)2
∑

ip,jp∈[Np]

1

N2
p

FNb0:p(ip, jp)φ(ζip,jpp )

= γNp−1(1)2
∑

ip−1,jp−1∈[Np−1]

FNb0:p−1
(ip−1, jp−1){

∑Np−1

j=1 Gp−1(ζjp−1)}2

N2
p−1Np(Np − 1)

∑
(ip,jp)∈O

ip−1
p−1 ×O

jp−1
p−1 ,ip 6=jp

φ(ζip,jpp )

=
∑

ip−1,jp−1∈[Np−1]

1

N2
p−1

W
ip−1,jp−1

p−1

{∑Np−1

j=1 Gp−1(ζjp−1)
}2

Np(Np − 1)

∑
(ip,jp)∈O

ip−1
p−1 ×O

jp−1
p−1

I(ip 6= jp)φ(ζip,jpp ),

from which the expression for ∆N
p,0(ip−1, jp−1) follows. We have

E


{∑Np−1

j=1 Gp−1(ζjp−1)
}2

Np(Np − 1)

∑
(ip,jp)∈O

ip−1
p−1 ×O

jp−1
p−1

I(ip 6= jp)φ(ζip,jpp ) | Fp−1



= E


{∑Np−1

j=1 Gp−1(ζjp−1)
}2

Np(Np − 1)
|Oip−1

p−1 |
{
|Ojp−1

p−1 | − I(ip−1 = jp−1)
}
M̃ bp
p (φ)(ζ

ip−1,jp−1

p−1 ) | Fp−1


= G̃p−1(ζ

ip−1,jp−1

p−1 )M̃ bp
p (φ)(ζ

ip−1,jp−1

p−1 ),

where the last line follows from Lemma 13. Hence E
{

∆N
p,0(ip−1, jp−1) | Fp−1

}
= 0.
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In the case bp = 1, we have 245

µNb0:p(φ) = γNp (1)2
∑

ip,jp∈[Np]

1

N2
p

FNb0:p(ip, jp)φ(ζip,jpp )

= γNp (1)2
∑

ip∈[Np]

1

N2
p

FNb0:p(ip, ip)φ(ζip,ipp )

= γNp−1(1)2
∑

ip−1,jp−1∈[Np−1]

FNb0:p−1
(ip−1, jp−1)Gp−1(ζ

jp−1

p−1 )

N2
p−1

∑Np−1

j=1 Gp−1(ζjp−1)

Np

∑
ip∈O

ip−1
p−1

φ(ζip,ipp )

=
∑

ip−1,jp−1∈[Np−1]

1

N2
p−1

W
ip−1,jp−1

p−1 Gp−1(ζ
jp−1

p−1 )

∑Np−1

j=1 Gp−1(ζjp−1)

Np

∑
ip∈O

ip−1
p−1

φ(ζip,ipp ),

from which the expression for ∆N
p,1(ip−1, jp−1) follows. We have

E

Gp−1(ζ
jp−1

p−1 )

∑Np−1

j=1 Gp−1(ζjp−1)

Np

∑
ip∈O

ip−1
p−1

φ(ζip,ipp ) | Fp−1


= Gp−1(ζ

jp−1

p−1 )E

{∑Np−1

j=1 Gp−1(ζjp−1)

Np
|Oip−1

p−1 |M̃ bp
p (φ)(ζ

ip−1,jp−1

p−1 ) | Fp−1

}
= G̃p−1(ζ

ip−1,jp−1

p−1 )M̃ bp
p (φ)(ζ

ip−1,jp−1

p−1 ),

where the last line follows from Lemma 13. Hence E
{

∆N
p,1(ip−1, jp−1) | Fp−1

}
= 0. �

Proof of Lemma 12. For the first part, consider first the case bp = 0. Then, since
(ip−1, jp−1, i

′
p−1, j

′
p−1) ∈ Sp−1 ∩ I(bp−1)2,

E
{

∆N
p,0(ip−1, jp−1)∆N

p,0(i′p−1, j
′
p−1) | Fp−1

}
= E


{∑Np−1

j=1 Gp−1(ζjp)
}4

N2
p (Np − 1)2

∑
(i,j)∈O

ip−1
p−1 ×O

jp−1
p−1 ,i6=j

φ(ζi,jp )
∑

(i′,j′)∈O
i′
p−1

p−1 ×O
j′p−1
p−1 ,i′ 6=j′

φ(ζi
′,j′

p ) | Fp−1


−Q̃bpp (φ)(ζ

ip−1,jp−1

p−1 )Q̃bpp (φ)(ζ
i′p−1,j

′
p−1

p−1 )

= E


{∑Np−1

j=1 Gp−1(ζjp)
}4

N2
p (Np − 1)2

|Oip−1

p−1 |
{
O
jp−1

p−1 − I(ip−1 = jp−1)
}
|Oi
′
p−1

p−1 |
{
|Oj

′
p−1

p−1 | − I(i′p−1 = j′p−1)
}
| Fp−1


·M̃ bp

p (φ)(ζ
ip−1,jp−1

p−1 )M̃ bp
p (φ)(ζ

i′p−1,j
′
p−1

p−1 )− Q̃bpp (φ)(ζ
ip−1,jp−1

p−1 )Q̃bpp (φ)(ζ
i′p−1,j

′
p−1

p−1 )

=

E

{∑Np−1

j=1 Gp−1(ζjp)
}4

N2
p (Np − 1)2

|Oip−1

p−1 |
{
O
jp−1

p−1 − I(ip−1 = jp−1)
}
|Oi
′
p−1

p−1 |
{
|Oj

′
p−1

p−1 | − I(i′p−1 = j′p−1)
}
| Fp−1


−G̃p−1(ζ

ip−1,jp−1

p−1 )G̃p−1(ζ
i′p−1,j

′
p−1

p−1 )

 · M̃ bp
p (φ)(ζ

ip−1,jp−1

p−1 )M̃ bp
p (φ)(ζ

i′p−1,j
′
p−1

p−1 )

≤ 0,
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where the final inequality follows from properties in Lemma 14. Now, in the case bp = 1, and again250

because (ip−1, jp−1, i
′
p−1, j

′
p−1) ∈ Sp−1 ∩ I(bp−1)2,

E
{

∆N
p,1(ip−1, jp−1)∆N

p,1(i′p−1, j
′
p−1) | Fp−1

}
= E

Gp−1(ζ
jp−1

p−1 )Gp−1(ζ
j′p−1

p−1 )

{∑Np−1

j=1 Gp−1(ζjp−1)
}2

N2
p

∑
i∈O

ip−1
p−1

φ(ζi,ip )
∑

i′∈O
i′
p−1

p−1

φ(ζi
′,i′

p ) | Fp−1


−Q̃bpp (φ)(ζ

ip−1,jp−1

p−1 )Q̃bpp (φ)(ζ
i′p−1,j

′
p−1

p−1 )

= E


{∑Np−1

j=1 Gp−1(ζjp−1)
}2

N2
p

|Oip−1

p−1 ||O
i′p−1

p−1 |
∣∣∣∣Fp−1

Gp−1(ζ
jp−1

p−1 )Gp−1(ζ
j′p−1

p−1 )

·M̃ bp
p (φ)(ζ

ip−1,jp−1

p−1 )M̃ bp
p (φ)(ζ

i′p−1,j
′
p−1

p−1 )− Q̃bpp (φ)(ζ
ip−1,jp−1

p−1 )Q̃bpp (φ)(ζ
i′p−1,j

′
p−1

p−1 )

=

E

{∑Np−1

j=1 Gp−1(ζjp−1)
}2

N2
p

|Oip−1

p−1 ||O
i′p−1

p−1 |
∣∣∣∣Fp−1

−Gp−1(ζ
ip−1

p−1 )Gp−1(ζ
i′p−1

p−1 )


·Gp−1(ζ

jp−1

p−1 )Gp−1(ζ
j′p−1

p−1 )M̃ bp
p (φ)(ζ

ip−1,jp−1

p−1 )M̃ bp
p (φ)(ζ

i′p−1,j
′
p−1

p−1 )

≤ 0,

where the final inequality follows from properties in Lemma 14. For the second part, let ||φ|| = supx φ(x).
In the case bp = 0 we have

E
{

∆N
p,bp(ip−1, jp−1)∆N

p,bp(i′p−1, j
′
p−1) | Fp−1

}

≤ E


{∑Np−1

j=1 Gp−1(ζjp)
}4

N2
p (Np − 1)2

∑
(i,j)∈O

ip−1
p−1 ×O

jp−1
p−1 ,i6=j

φ(ζi,jp )
∑

(i′,j′)∈O
i′
p−1

p−1 ×O
j′
p−1

p−1 ,i′ 6=j′

φ(ζi
′,j′

p )

∣∣∣∣Fp−1


≤ ||φ||2E


{∑Np−1

j=1 Gp−1(ζjp)
}4

N2
p (Np − 1)2

|Oip−1

p−1 |
{
|Ojp−1

p−1 | − I(ip−1 = jp−1)
}
|Oi
′
p−1

p−1 |
{
|Oj

′
p−1

p−1 | − I(i′p−1 = j′p−1)
} ∣∣∣∣Fp−1


≤ C||φ||2,

by applying Corollary 1 to obtain the last inequality. Similarly, in the case bp = 1 we have

E
[
∆N
p,bp(ip−1, jp−1)∆N

p,bp(i′p−1, j
′
p−1) | Fp−1

]

≤ E

Gp−1(ζ
jp−1

p−1 )Gp−1(ζ
j′p−1

p−1 )

[∑Np−1

j=1 Gp−1(ζjp−1)
]2

N2
p

∑
i∈O

ip−1
p−1

φ(ζi,ip )
∑

i′∈O
i′
p−1

p−1

φ(ζi
′,i′

p ) | Fp−1


≤ ||φ||2Gp−1(ζ

jp−1

p−1 )Gp−1(ζ
j′p−1

p−1 )E


[∑Np−1

j=1 Gp−1(ζjp−1)
]2

N2
p

|Oip−1

p−1 ||O
i′p−1

p−1 | | Fp−1


≤ C||φ||2,

by applying Corollary 1 to obtain the last inequality. �255
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S6. ESTIMATORS FOR UPDATED MEASURES

In some applications there is interest in approximating the updated measures:

γ̂n(S) =

∫
S

Gn(x)γn(dx), η̂n(S) =
γ̂n(S)

γ̂n(1)
, S ∈ X .

In the hidden Markov model setting described in Section 2·2, e.g., η̂n is the conditional distribution of Xn

given y0, . . . , yn, that is η̂n is a filtering distribution, while ηn is a predictive distribution.
The updated particle approximations are defined by 260

γ̂Nn (S) =

∫
S

Gn(x)γNn (dx), η̂Nn (S) =
γ̂Nn (S)

γ̂Nn (1)
, S ∈ X ,

and we now define their variance estimators. To facilitate this task, we consider a fixed ϕ ∈ L(X ), and
define ϕ̂(x) = Gn(x)ϕ(x). The following relationships can then be deduced: γ̂n(ϕ) ≡ γn(ϕ̂), η̂n(ϕ) ≡
ηn(ϕ̂)/ηn(Gn), γ̂Nn (ϕ) ≡ γNn (ϕ̂) and η̂Nn (ϕ) ≡ ηNn (ϕ̂)/ηNn (Gn). We define analogues of σ2

n and vp,n for
the updated particle approximations as

σ̂2
n(ϕ) = lim

N→∞
Nvar

{
γ̂Nn (ϕ)/γ̂n(1)

}
, v̂p,n(ϕ) =

vp,n(ϕ̂)

ηn(Gn)2
,

and the proposition below is a counterpart to Proposition 1 and Lemma 3. 265

PROPOSITION 3. For any ϕ ∈ L(X ),

1. γ̂Nn (ϕ)→ γ̂n(ϕ) almost surely and σ̂2
n(ϕ) =

n∑
p=0

c−1p v̂p,n(ϕ);

2. η̂Nn (ϕ)→ η̂n(ϕ) almost surely and NE
[{
η̂Nn (ϕ)− η̂n(ϕ)

}2]→ σ̂2
n{ϕ− η̂n(ϕ)}.

The proofs of Proposition 3, and Theorems 4–5 below can be found in the supplement. Proposition 3
implies the relationship σ̂2

n(ϕ) = σ2
n(ϕ̂)/ηn(Gn)2. The corresponding estimates of the variance, asymp- 270

totic variance and the terms therein are now obtained and analogues of Theorems 1 and 3 follow straight-
forwardly. Below we write the estimators V̂ Nn , v̂Np,n etc. in terms of V Nn , ηNn and vNp,n to emphasize that
the same algorithms can be used to compute them, just as γ̂Nn (ϕ) and η̂Nn (ϕ) can be computed as γNn (ϕ̂)
and ηNn (ϕ̂)/ηNn (Gn), respectively.

THEOREM 4. For any ϕ ∈ L(X ), with 275

V̂ Nn (ϕ) = V Nn (ϕ̂)/ηNn (Gn)2, (S12)

1. E
{
γ̂Nn (1)2V̂ Nn (ϕ)

}
= var

{
γ̂Nn (ϕ)

}
for all N ≥ 1;

2. NV̂ Nn (ϕ)→ σ̂2
n(ϕ) in probability;

3. NV̂ Nn {ϕ− η̂Nn (ϕ)} → σ̂2
n{ϕ− η̂n(ϕ)} in probability.

Remark 1. It follows from (3), (14), (S12) and simple manipulations that

NV̂ Nn {ϕ− η̂Nn (ϕ)}(∏n
p=0

Np

Np−1

) = N
∑
i∈[N0]

[∑
j∈[Nn]:E

j
n=i

Gn(ζjn)
{
ϕ(ζjn)− η̂Nn (ϕ)

}∑
j∈[Nn]

Gn(ζjn)

]2
,

the right hand side of which is, in the case whereN is not time-varying, precisely the estimator in Equation 280

2.9 of Chan & Lai (2013).

THEOREM 5. For any ϕ ∈ L(X ), with

v̂Np,n(ϕ) = vNp,n(ϕ̂)/ηNn (Gn)2, v̂Nn (ϕ) =

n∑
p=0

c−1p v̂Np,n(ϕ),
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1. E
{
γ̂Nn (1)2v̂Np,n(ϕ)

}
= γ̂n(1)2v̂p,n(ϕ) for all N ≥ 1;

2. v̂Np,n(ϕ)→ v̂p,n(ϕ) and v̂Np,n(ϕ− η̂Nn (ϕ))→ v̂p,n(ϕ− η̂n(ϕ)), both in probability;
3. E

{
γ̂Nn (1)2v̂Nn (ϕ)

}
= γ̂n(1)2σ̂2

n(ϕ) for all N ≥ 1 and v̂Nn (ϕ)→ σ̂2
n(ϕ) in probability.285

LEMMA 17. For any ϕ ∈ L(X ) and r ≥ 1,

sup
N≥1

N1/2E
{∣∣γ̂Nn (ϕ)− γ̂n(ϕ)

∣∣r}1/r

<∞, sup
N≥1

N1/2E
{∣∣η̂Nn (ϕ)− η̂n(ϕ)

∣∣r}1/r

<∞.

Proof. Let ϕ̂(x) = Gn(x)ϕ(x). Since γ̂n(ϕ) = γn(ϕ̂), Lemma 8 provides the first bound. The sec-
ond bound follows from the first bound and Minkowski’s inequality by an essentially identical line of
arguments as in the proof of Lemma 8. �

Proof of Proposition 3. The almost sure convergence in both parts follows from Lemma 17 and the290

Borel–Cantelli Lemma. To obtain the expression for σ̂2
n(ϕ), we have

lim
N→∞

Nvar
{
γ̂Nn (ϕ)

}
= lim
N→∞

Nvar
{
γNn (ϕ̂)

}
= γn(1)2

n∑
p=0

vp,n(ϕ̂)

cp
= γ̂n(1)2

n∑
p=0

v̂p,n(ϕ)

cp
,

and the result is obtained by dividing by γ̂n(1)2. The expression for limN→∞NE
[{
η̂Nn (ϕ)− η̂n(ϕ)

}2]
follows by combining this with an essentially identical line of arguments as in the proof of Lemma 3. �

Proof of Theorem 4. The results follow from Theorems 1 and 3. For the first part,

E
{
γ̂Nn (1)2V̂ Nn (ϕ)

}
= E

{
γNn (1)2V Nn (ϕ̂)

}
= var

{
γNn (ϕ̂)

}
= var

{
γ̂Nn (ϕ)

}
.

For the remainder of the proof,→ denotes convergence in probability. For the second part, since σ̂2
n(ϕ) =295

σ2
n(ϕ̂)/ηn(Gn)2, it follows that NV̂ Nn (ϕ) = NV Nn (ϕ̂)/ηNn (Gn)2 → σ̂2

n(ϕ) since NV Nn (ϕ̂)→ σ2
n(ϕ̂)

and ηNn (Gn)2 → ηn(Gn)2. The third part holds by the same reasoning as in the proof of Theorem 1. �

Proof of Theorem 5. For part 1.,

E
{
γ̂Nn (1)2v̂Np,n(ϕ)

}
= E

{
γNn (1)2vNp,n(ϕ̂)

}
= γn(1)2vp,n(ϕ̂) = γ̂n(1)2v̂p,n(ϕ).

For the remainder of the proof, → denotes convergence in probability. For part 2., we have
v̂Np,n(ϕ) = vNp,n(ϕ̂)/ηNn (Gn)2 → v̂p,n(ϕ) and letting f = ϕ− η̂n(ϕ) we obtain v̂Np,n{ϕ− η̂Nn (ϕ)} →300

vp,n(f̂)/ηn(Gn)2 = v̂p,n(f). Part 3. follows from parts 1. and 2. �
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Figure 9: Estimated asymptotic variances NV̂n(ϕ) (blue dots and error bars for the mean ± one
standard deviation) against log2N for the stochastic volatility example. Corresponding results
for the estimator of Chan & Lai (2013) are overlaid with boxes instead of dots and wider tick
marks on the error bars.
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Figure 10: Plot of v̂Np,n(ϕ) (blue dots and error bars for the mean ± one standard deviation) at
each p ∈ {0, . . . , n} in the stochastic volatility example, with N = 105.
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Figure 11: Plots for the simple adaptive N particle filter estimates of γ̂n(1) for the stochastic
volatility example. Figure (a) plots the base 2 logarithm of the empirical variance of γ̂Nn (1)/γ̂n(1)
against log2 δ, with the straight line y = x. Figure (b) plots log2N against log2 δ, where N is
the average number of particles used by the final particle filter.

1.0

1.5

2.0

2.5

3.0

10 12 14 16

log2(N)

A
s
y
m

p
to

ti
c
 v

a
ri

a
n

c
e

(a) ϕ ≡ 1

700

800

900

10 12 14 16

log2(N)

A
s
y
m

p
to

ti
c
 v

a
ri

a
n

c
e

(b) ϕ = Id− ηNn (Id)

Figure 12: Estimated asymptotic variances NV N
n (ϕ) (blue dots and error bars for the mean ±

one standard deviation) against log2N for the sequential Monte Carlo sampler example. Corre-
sponding results for the estimator of Chan & Lai (2013) are overlaid with boxes instead of dots
and wider tick marks on the error bars.
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Figure 13: Plots for the simple adaptive N particle filter estimates of ηn(Id) for the sequential
Monte Carlo sampler example. Figure (a) plots the base 2 logarithm of the squared L2 error of
ηNn (Id) against log2 δ, with the straight line y = x. Figure (b) plots log2N against log2 δ, where
N is the average number of particles used by the final particle filter.


