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1. Proof of Lemma 1

Lemmas 1 and 2 are stylised versions of similar results that can be found in earlier
work, such as Chwialkowski et al. (2016); Liu et al. (2016); Oates et al. (2017). Our
presentation differs in that we provide a convenient explicit sufficient condition, on the
tails of ‖∇g‖ for Lemma 1, and on the tails of ‖∇x∇>y k(x, y)‖ and ‖∇x∆yk(x, y)‖ for 25

Lemma 2, for their conclusions to hold.
Proof. The stated assumptions on the differentiability of p and g imply that the vector

field p(x)∇xg(x) is continuously differentiable on Rd. The divergence theorem can there-
fore be applied, over any compact set D ⊂ Rd with piecewise smooth boundary ∂D, to
reveal that 30

∫
D

(Lg)(x)p(x)dx =

∫
D
{∆xg(x) +∇xg(x) · ∇x log p(x)}p(x)dx

=

∫
D

[
1

p(x)
∇x · {p(x)∇xg(x)}

]
p(x)dx
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=

∫
D
∇x · {p(x)∇xg(x)}dx

=

∮
∂D

p(x)∇xg(x) · n(x)σ(dx),

where n(x) is the unit normal vector at x ∈ ∂D and σ(dx) is the surface element at35

x ∈ ∂D. Next, we let D = DR = {x : ‖x‖ ≤ R} be the ball in Rd with radius R, so that
∂DR is the sphere SR = {x : ‖x‖ = R}. The assumption ‖∇xg(x)‖ ≤ C‖x‖−δp(x)−1 in
the statement of the lemma allows us to establish the bound∣∣∣∣∣
∮
SR

p(x)∇xg(x) · n(x)σ(dx)

∣∣∣∣∣ ≤
∮
SR

∣∣p(x)∇xg(x) · n(x)
∣∣σ(dx) ≤

∮
SR

p(x)
∥∥∇xg(x)

∥∥σ(dx)

≤
∮
SR

C ‖x‖−δ σ(dx)40

= CR−δ
∮
SR

σ(dx)

= CR−δ
2πd/2

Γ(d/2)
Rd−1,

where in the first and second inequalities we used Jensen’s inequality and Cauchy–
Schwarz, respectively, and in the final equality we have made use of the surface area
of SR. The assumption that δ > d− 1 is then sufficient to obtain the result:45 ∣∣∣∣∫ (Lg)(x)p(x)dx

∣∣∣∣ = lim
R→∞

∣∣∣∣∣
∮
SR

p(x)∇xg(x) · n(x)σ(dx)

∣∣∣∣∣ ≤ lim
R→∞

C
2πd/2

Γ(d/2)
Rd−1−δ = 0.

This completes the argument. �

2. Differentiating the Kernel

This appendix provides explicit forms of (8) for kernels k that are radial. First we
present a generic result in Lemma S1 before specialising to the cases of the rational
quadratic (Section 2.1), Gaussian (Section 2.2) and Matérn (Section 2.3) kernels.50

Lemma S1. Consider a radial kernel k, meaning that k has the form

k(x, y) = Ψ(z), z = ‖x− y‖2,

where the function Ψ: [0,∞)→ R is four times differentiable and x, y ∈ Rd. Then (8)
simplifies to

k0(x, y) = 16z2Ψ(4)(z) + 16(2 + d)zΨ(3)(z) + 4(2 + d)dΨ(2)(z)

+ 4{2zΨ(3)(z) + (2 + d)Ψ(2)(z)}{u(x)− u(y)}>(x− y)

− 4Ψ(2)(z)u(x)>(x− y)(x− y)>u(y)− 2Ψ(1)(z)u(x)>u(y),

(S1)

where u(x) = ∇x log p(x).
Proof. The proof is direct and based on have the following applications of the chain55

rule:

∇xk(x, y) = 2Ψ(1)(z)(x− y),

∇yk(x, y) = −2Ψ(1)(z)(x− y),
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∆xk(x, y) = 4zΨ(2)(z) + 2dΨ(1)(z),

∆yk(x, y) = 4zΨ(2)(z) + 2dΨ(1)(z), 60

∂xi∂yjk(x, y) = −4Ψ(2)(z)(xi − yi)(xj − yj)− 2Ψ(1)(z)δij ,

∇x∆yk(x, y) = 8zΨ(3)(z)(x− y) + 4(2 + d)Ψ(2)(z)(x− y),

∇y∆xk(x, y) = −8zΨ(3)(z)(x− y)− 4(2 + d)Ψ(2)(z)(x− y),

∆x∆yk(x, y) = 16z2Ψ(4)(z) + 16(2 + d)zΨ(3)(z) + 4(2 + d)dΨ(2)(z).

Upon insertion of these formulae into (8), the desired result is obtained. � 65

Thus for kernels that are radial, it is sufficient to compute just the derivatives Ψ(j) of
the radial part.

2.1. Rational Quadratic Kernel

The rational quadratic kernel,

Ψ(z) = (1 + λ−2z)−1,

has derivatives Ψ(j)(z) = (−1)jλ−2jj!(1 + λ−2z)−j−1 for j ≥ 1. 70

2.2. Gaussian Kernel

For the Gaussian kernel we have Ψ(z) = exp(−z/λ2). Consequently,

Ψ(j)(z) = (−1)jλ−2j exp(−z/λ2),

for j ≥ 1.

2.3. Matérn Kernels 75

For a Matérn kernel of smoothness ν > 0 we have

Ψ(z) = bcνzν/2 Kν(c
√
z ), b =

21−ν

Γ(ν)
, c =

√
2ν

λ
,

where Γ the Gamma function and Kν the modified Bessel function of the second kind of
order ν. By the use of the formula ∂zKν(z) = −Kν−1(z)− ν

zKν(z) we obtain

Ψ(j)(z) = (−1)j
bcν+j

2j
z(ν−j)/2 Kν−j(c

√
z ),

for j = 1, . . . , 4. In order to guarantee that the kernel is twice continously differentiable, 80

so that k0 in (7) is well-defined, we require that dνe > 2. As a Matérn kernel induces a
reproducing kernel Hilbert space that is norm-equivalent to the standard Sobolev space
of order ν + d

2 (Fasshauer & Ye, 2011, Example 5.7), the condition dνe > 2 implies, by the
Sobolev imbedding theorem (Adams & Fournier, 2003, Theorem 4.12), that the functions
in H(k) are twice continuously differentiable. Notice that Ψ(3)(z) and Ψ(4)(z) may not be 85

defined at z = 0, in which case the terms 16z2Ψ(4)(z), 16(2 + d)zΨ(3)(z) and 8zΨ(3)(z)
in (S1) must be interpreted as limits as z → 0 from the right.

3. Properties of H(k0)

The purpose of this appendix is to establish basic properties of the reproducing kernel
Hilbert space H(k0) of the kernel k0 in (7). For convenience, in this appendix we abbre- 90

viate H(k0) to H. In Lemma S2 we clarify the reproducing kernel Hilbert space structure
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of H. Then in Lemma S3 we establish square integrability of the elements of H and in
Lemma S4 we establish the local smoothness of the elements of H.

To state these results we require several items of notation: The notation Cs(Rd) denotes
the set of s-times continuously differentiable functions on Rd; i.e. ∂αf ∈ C0(Rd) for all95

|α| ≤ s where C0(Rd) denotes the set of continuous functions on Rd. For two normed
spaces V and W , let V ↪→W denote that V is continuously embedded in W , meaning
that ‖v‖W ≤ C‖v‖V for all v ∈ V and some constant C ≥ 0. In particular, we write
V 'W if and only if V and W are equal as sets and both V ↪→W and W ↪→ V . Let
L2(p) denote the vector space of square integrable functions with respect to p and equip100

this with the norm ‖h‖L2(p) = {
∫
h(x)2p(x)dx}1/2. For h : Rd → R and D ⊂ Rd we let

h|D : D → R denote the restriction of h to D.
First we clarify the reproducing kernel Hilbert space structure of H:
Lemma S2 (Reproducing kernel Hilbert space structure of H). Let

k : Rd × Rd → R be a positive-definite kernel such that the regularity assumptions
of Lemma 2 are satisfied. Let H denote the normed space of real-valued functions on Rd
with norm

‖h‖H = inf
h=Lg
g∈H(k)

‖g‖H(k).

Then H admits the structure of a reproducing kernel Hilbert space with kernel κ : Rd ×
Rd → R given by κ(x, y) = k0(x, y). That is, H = H(k0). Moreover, for D 6= ∅, let H|D
denote the normed space of real-valued functions on D with norm

‖h′‖H|D = inf
h|D=h′

h∈H

‖h‖H.

Then H|D is a reproducing kernel Hilbert space with kernel κ|D : D ×D → R given by
κ|D(x, y) = k0(x, y). That is, H|D = H(κ|D).105

Proof. The first statement is an immediate consequence of Theorem 5 in Section 4.1 of
Berlinet & Thomas-Agnan (2011). The second statement is an immediate consequence
of Theorem 6 in Section 4.2 of Berlinet & Thomas-Agnan (2011). �

Next we establish when the elements of H are square-integrable functions with respect
to p.110

Lemma S3 (Square integrability of H). Let κ be a radial kernel satisfying the
pre-conditions of Lemma S1. If ui = ∇xi log p(x) ∈ L2(p) for each i = 1, . . . , d, then H ↪→
L2(p).

Proof. From the representer theorem and Cauchy–Schwarz we have∫
h(x)2p(x)dx =

∫
〈h, κ(·, x)〉2H p(x)dx ≤ ‖h‖2H

∫
κ(x, x)p(x)dx. (S2)

Now, in the special case k(x, y) = Ψ(z), z = ‖x− y‖2, the conclusion of Lemma S1 gives115

that κ(x, x) = 4(2 + d)dΨ(2)(0)− 2Ψ(1)(0)‖u(x)‖2, from which it follows that

0 ≤
∫
κ(x, x)p(x)dx = 4(2 + d)dΨ(2)(0)− 2Ψ(1)(0)

∫
‖u(x)‖2p(x)dx = C2. (S3)

The combination of (S2) and (S3) establishes that ‖h‖L2(p) ≤ C‖h‖H, which is the
claimed result. �

Finally we turn to the regularity of the elements ofH, as quantified by their smoothness
over suitable bounded sets D ⊂ Rd. In what follows we will let H(k) be a reproducing
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kernel Hilbert space of functions in L2(Rd), the space of square Lebesgue integrable
functions on Rd, such that the norms

‖h‖H(k) ' ‖h‖W r
2 (Rd) =

(∑
|α|≤r ‖∂αh‖2L2(Rd)

) 1
2

are equivalent. The latter is recognized as the standard Sobolev norm; this space is
denoted W r

2 (Rd). For example, the Matérn kernel in Section 2.3 corresponds toH(k) with 120

r = ν + d
2 . The Sobolev embedding theorem implies that W r

2 (Rd) ⊂ C0(Rd) whenever

r > d
2 .

The following result establishes the smoothness of H in terms of the differentiability
of its elements. If the smoothness of f is known then k should be selected so that the
smoothness of H matches it. 125

Lemma S4 (Smoothness of H). Let r, s ∈ N be such that r > s+ 2 + d
2 . If

H(k) 'W r
2 (Rd) and log p ∈ Cs+1(Rd), then, for any open and bounded set D ⊂ Rd, we

have H|D ↪→W s
2 (D).

Proof. Under our assumptions, the kernel κ|D : D ×D → R from Lemma S2 is s-times
continuously differentiable in the sense of Definition 4.35 of Steinwart & Christmann 130

(2008). It follows from Lemma 4.34 of Steinwart & Christmann (2008) that ∂αxκ|D(·, x) ∈
H|D for all x ∈ D and |α| ≤ s. From the reproducing property in H|D and the Cauchy–
Schwarz inequality we have, for |α| ≤ s,

|∂αf(x)| =
∣∣〈f, ∂ακ|D(·, x)〉H|D

∣∣ ≤ ‖f‖H|D∥∥∂ακ|D(·, x)
∥∥
H|D

= ‖f‖H|D
{
∂αx ∂

α
y κ|D(x, y)|y=x

}1/2
.

See also Corollary 4.36 of Steinwart & Christmann (2008). Thus it follows from the 135

definition of W s
2 (D) and the reproducing property that

‖f‖2W s
2 (D) =

∑
|α|≤s

‖∂αf‖2L2(D) ≤ ‖f‖
2
H|D

∑
|α|≤s

∥∥x 7→ ∂αx ∂
α
y κ|D(x, y)|y=x

∥∥2

L2(D)

= ‖f‖2H|D
∥∥x 7→ κ|D(x, x)

∥∥2

W s
2 (D)

.

Now, from the definition of κ and using the fact that k is symmetric, we have

κ(x, x) = ∆x∆yk(x, y)|y=x + 2u(x)>∇x∆yk(x, y)|y=x + u(x)>
{
∇x∇>y k(x, y)|y=x

}
u(x). 140

Our assumption that H(k) 'W r
2 (Rd) with r > s+ 2 + d

2 implies that each of the func-

tions x 7→ ∆x∆yk(x, y)|y=x, ∇x∆yk(x, y)|y=x and ∇x∇>y k(x, y)|y=x, are Cs(Rd). In ad-

dition, our assumption that log p ∈ Cs+1(Rd) implies that x 7→ u(x) ∈ Cs(Rd). Thus
x 7→ κ(x, x) is Cs(Rd) and in particular the boundedness of D implies that ‖x 7→
κ|D(x, x)‖W s

2 (D) <∞ as required. � 145

4. Proof of Lemma 2

Proof. In what follows C is a generic positive constant, independent of x but possibly
dependant on y, whose value can differ each time it is instantiated. The aim of this
proof is to apply Lemma 1 to the function g(x) = Lyk(x, y). Our task is to verify the
pre-condition ‖∇xg(x)‖ ≤ C‖x‖−δp(x)−1 for some δ > d− 1. It will then follow from the 150

conclusion of Lemma 1 that
∫
k0(x, y)p(x) dx = 0 as required. To this end, expanding
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the term ‖∇xg(x)‖2, we have

‖∇xg(x)‖2 = ‖∇xLyk(x, y)‖2

=
∥∥∇x∆yk(x, y) +∇x{∇y log p(y) · ∇yk(x, y)}

∥∥2

= ‖∇x∆yk(x, y)‖2 + 2∇x
{
∇y log p(y) · ∇yk(x, y)

}>∇x∆yk(x, y)155

+
∥∥∇x{∇y log p(y) · ∇yk(x, y)

}∥∥2

= ‖∇x∆yk(x, y)‖2 + 2
[
{∇x∇>y k(x, y)}>∇y log p(y)

]>∇x∆yk(x, y)

+
∥∥{∇x∇>y k(x, y)}∇y log p(y)

∥∥2

≤ ‖∇x∆yk(x, y)‖2 + 2
∥∥{∇x∇>y k(x, y)}>∇y log p(y)

∥∥‖∇x∆yk(x, y)‖

+
∥∥{∇x∇>y k(x, y)}∇y log p(y)

∥∥2 (S4)

≤ ‖∇x∆yk(x, y)‖2 + 2‖∇x∇>y k(x, y)‖OP‖∇y log p(y)‖‖∇x∆yk(x, y)‖
+ ‖∇x∇>y k(x, y)‖2OP‖∇y log p(y)‖2

(S5)160

≤
{
C‖x‖−δp(x)−1

}2
+ 2
{
C‖x‖−δp(x)−1

}
‖∇y log p(y)‖

{
C‖x‖−δp(x)−1

}
+
{
C‖x‖−δp(x)−1

}2‖∇y log p(y)‖2
(S6)

≤ C‖x‖−2δp(x)−2

as required. Here (S4) follows from the Cauchy–Schwarz inequality applied to the second
term, (S5) follows from the definition of the operator norm ‖ · ‖OP and (S6) employs the
pre-conditions that we have assumed. �165

5. Proof of Lemma 3

Proof. Our first task is to establish that it is sufficient to prove the result in just
the particular case x̂N = 0 and N−1I(x̂N )−1 = I, where I is the d-dimensional identity
matrix. Indeed, if x̂N 6= 0 or N−1I(x̂N )−1 6= I, then let t(x) = W (x− x̂N ) where W is a
non-singular matrix satisfying W>W = NI(x̂N ) so that t(x) ∼ N (0, I). Under the same
co-ordinate transformation the polynomial subspace

A = Pr0 = span{xα : α ∈ Nd0, 0 ≤ |α| ≤ r}

becomes B = span{t(x)α : α ∈ Nd0, 0 ≤ |α| ≤ r}. Exact integration of functions in A with
respect to N (x̂N , I) corresponds to exact integration of functions in B with respect to
N (0, I). Thus our first task is to establish that B = A. Clearly B is a linear subspace of A,
since elements of B can be expanded out into monomials and monomials generate A, so it170

remains to argue that B is all of A. In what follows we will show that dim(B) = dim(A)
and this will complete the first part of the argument.

The co-ordinate transform t is an invertible affine map on Rd. The action of such a
map t on a set S of functions on Rd can be defined as t(S) = {x→ s(t(x)) : s ∈ S}. Thus
B = t(A). Let t∗(x) = W−1x+ x̂n and notice that this is also an invertible affine map on175

Rd with t∗(t(x)) = x being the identity map on Rd. The composition of invertible affine
maps on Rd is again an invertible affine map and thus t∗t is also an invertible affine map
on Rd and its action on a set is well-defined. Considering the action of t∗t on the set A
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gives that t∗(t(A)) = A and therefore t(A) must have the same dimension as A. Thus
dim(A) = dim(t(A)) = dim(B) as claimed. 180

Our second task is to show that, in the case where p is the density of N (0, I) and thus
∇x log p(x) = −x, the set F = span{1} ⊕ LPr on which ICV is exact is equal to Pr0 . Our
proof proceeds by induction on the maximal degree r of the polynomial. For the base
case we take r = 1:

span{1} ⊕ LP1 = span{1} ⊕ span
{
Lxj : j = 1, . . . , d

}
185

= span{1} ⊕ span
{

∆xxj +∇x log p(x) · ∇x(xj) : j = 1, . . . , d
}

= span{1} ⊕ span
{

0− x · ej : j = 1, . . . , d
}

= span{1} ⊕ span
{
− xj : j = 1, . . . , d

}
= P1

0 .

For the inductive step we assume that span{1} ⊕ LPr−1 = Pr−1
0 holds for a given r ≥ 2 190

and aim to show that span{1} ⊕ LPr = Pr0 . Note that the action of L on a polynomial
of order r will return a polynomial of order at most r, so that span{1} ⊕ LPr ⊆ Pr0 and
thus we need to show that Pr0 ⊆ span{1} ⊕ LPr. Under the inductive assumption we
have

span{1} ⊕ LPr = span{1} ⊕
(
LPr−1 ⊕ span

{
Lxα : α ∈ Nd0, |α| = r

})
195

=
(

span{1} ⊕ LPr−1
)
⊕ span

{
Lxα : α ∈ Nd0, |α| = r

}
= Pr−1

0 ⊕ span
{
Lxα : α ∈ Nd0, |α| = r

}
= Pr−1

0 ⊕ span
{

∆xx
α +∇xxα · ∇x log p(x) : α ∈ Nd0, |α| = r

}
= Pr−1

0 ⊕ span

{
d∑
j=1

αj(αj − 1)x
αj−2
j

∏
k 6=j

xαk
k −

d∑
j=1

αjx
α : α ∈ Nd0, |α| = r

}
︸ ︷︷ ︸

=:Qr

To complete the inductive step we must therefore show that, for each α ∈ Nd0 with |α| = r,
we have xα ∈ span{1} ⊕ LPr. Fix any α ∈ Nd0 such that |α| = r. Then

φ(x) =
d∑
j=1

αj(αj − 1)x
αj−2
j

∏
k 6=j

xαk
k −

d∑
j=1

αjx
α ∈ Qr.

and

ϕ(x) =
1

1>α

d∑
j=1

αj(αj − 1)x
αj−2
j

∏
k 6=j

xαk
k ∈ P

r−1
0

because this polynomial is of order less than r. Since ϕ− (1>α)−1φ ∈ Pr−1
0 ⊕Qr = 200

span{1} ⊕ LPr and

ϕ(x)− 1

1>α
φ(x) =

∑d
j=1 αj

1>α
xα = xα,

we conclude that xα ∈ span{1} ⊕ LPr. Thus we have shown that {xα : α ∈ Nd0, |α| =
r} ⊂ span{1} ⊕ LPr and this completes the argument. �
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6. Proof of Lemma 4

Proof. The assumptions that the x(i) are distinct and that k0 is a positive-definite205

kernel imply that the matrix K0 is positive-definite and thus non-singular. Likewise,
the assumption that the x(i) are F-unisolvent implies that the matrix P has full rank.
It follows that the block matrix in (13) is non-singular. The interpolation and semi-
exactness conditions in Section 2.3 can be written in matrix form as

1. K0 a+ Pb = f (interpolation);210

2. P>a = 0 (semi-exact).

The first of these is merely (10) in matrix form. To see how P>a = 0 is related to the
semi-exactness requirement (fn = f whenever f ∈ F), observe that for f ∈ F we have
f = Pc for some c ∈ Rm. Consequently, the interpolation condition should yield b = c
and a = 0. The condition P>a = 0 enforces that a = 0 in this case: multiplication of the215

interpolation equation with a> yields a>K0a+ a>Pb = a>Pc, which is then equivalent
to a>K0a = 0. Because K0 is positive-definite, the only possible a ∈ Rn is a = 0 and
P having full rank implies that b = c. Thus the coefficients a and b can be cast as the
solution to the linear system [

K0 P
P> 0

] [
a
b

]
=

[
f
0

]
.

From (13) we get220

b = (P>K−1
0 P )−1P>K−1

0 f,

where P>K−1
0 P is non-singular because K0 is non-singular and P has full rank. Recog-

nising that b1 = e>1 b for e1 = (1, 0, . . . , 0) ∈ Rm completes the argument. �

7. Nyström Approximation and Conjugate Gradient

In this appendix we describe how a Nyström approximation and the conjugate gradient
method can be used to provide an approximation to the proposed method with reduced225

computational cost. To this end we consider a function of the form

f̃n0(x) = b̃1 +

m−1∑
i=1

b̃i+1Lφi(x) +

n0∑
i=1

ãik0(x, x(i)), (S7)

where n0 � n represents a small subset of the n points in the dataset. Strategies for
selection of a suitable subset are numerous (e.g., Alaoui & Mahoney, 2015; Rudi et al.,
2015) but for simplicity in this work a uniform random subset was selected. Without loss
of generality we denote this subset by the first n0 indices in the dataset. The coefficients230

a and b in the proposed method (10) can be characterized as the solution to a kernel
least-squares problem, the details of which are reserved for Appendix 7.1. From this
perspective it is natural to define the reduced coefficients ã and b̃ in (S7) also as the
solution to a kernel least-squares problem, the details of which are reserved for Appendix
7.2. In taking this approach, the (n+m)-dimensional linear system in (13) becomes the235

(n0 +m)-dimensional linear system[
K0,n0,nK0,n,n0 + Pn0P

>
n0
K0,n0,nP

P>K0,n,n0 P>P

][
ã

b̃

]
=

[
K0,n0,nf
P>f

]
. (S8)
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Here K0,r,s denotes the matrix formed by the first r rows and the first s columns of K0.
Similarly Pr denotes the first r rows of P . It can be verified that there is no approxi-
mation error when n0 = n, with ã = a and b̃ = b. This is a simple instance of a Nyström
approximation and it can be viewed as a random projection method (Smola & Schökopf, 240

2000; Williams & Seeger, 2001).
The computational complexity of computing this approximation to the proposed

method is

O(nn2
0 + nm2 + n3

0 +m3),

which could still be quite high. For this reason, we now consider iterative, as opposed to
direct, linear solvers for (S8). In particular, we employ the conjugate gradient method
to approximately solve this linear system. The performance of the conjugate gradient
method is determined by the condition number of the linear system, and for this reason 245

a preconditioner should be employed1. In this work we considered the preconditioner[
B1 0
0 B2

]
.

Following Rudi et al. (2017), B1 is the lower-triangular matrix resulting from a Cholesky
decomposition

B1B
>
1 =

(
n

n0
K2

0,n0,n0
+ Pn0P

>
n0

)−1

,

the latter being an approximation to the inverse of K0,n0,nK0,n,n0 + Pn0P
>
n0

and obtained
at O(n3

0 +mn2
0) cost. The matrix B2 is 250

B2B
>
2 =

(
P>P

)−1
,

which uses the pre-computed matrix P>P and is of O(m3) complexity. Thus we obtain
a preconditioned linear system[

B>1 (K0,n0,nK0,n,n0 + Pn0P
>
n0

)B1 B
>
1 K0,n0,nPB2

B>2 P
>K0,n,n0B1 I

][
˜̃a
˜̃
b

]
=

[
B>1 K0,n0,nf
B>2 P

>f

]
.

The coefficients ã and b̃ of f̃n0 are related to the solution (˜̃a,
˜̃
b) of this preconditioner

linear system via ˜̃a = B−1
1 ã and

˜̃
b = B−1

2 b̃, which is an upper-triangular linear system
solved at quadratic cost.

The above procedure leads to a more computationally (time and space) efficient proce-
dure, and we denote the resulting estimator as IASECF(f) = b̃1. Further extensions could 255

be considered; for example non-uniform sampling for the random projection via leverage
scores (Rudi et al., 2015).

For the examples in Section 3, we consider n0 = d
√
n e where d·e denotes the ceil-

ing function. We use the R package Rlinsolve to perform conjugate gradient, where
we specify the tolerance to be 10−5. The initial value for the conjugate gradient pro- 260

cedure was the choice of ˜̃a and
˜̃
b that leads to the Monte Carlo estimate, ˜̃a = 0 and

˜̃
b = B−1

2 e1
1
n

∑n
i=1 f(x(i)). In our examples, we did not see a computational speed up

from the use of conjugate gradient, likely due to the relatively small values of n involved.

1 A linear system Ax = b can be preconditioned by an invertible matrix P to produce P>APz = P>b. The
solution z is related to x via x = Pz.
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7.1. Kernel Least-Squares Characterization

Here we explain how the interpolant fn in (10) can be characterized as the solution to265

the constrained kernel least-squares problem

arg min
a,b

1

n

n∑
i=1

[
f(x(i))− fn(x(i))

]2
s.t. fn = f for all f ∈ F .

To see this, note that similar reasoning to that in Appendix 6 allows us to formulate the
problem using matrices as

arg min
a,b

‖f −K0a− Pb‖2 s.t. P>a = 0. (S9)

This is a quadratic minimization problem subject to the constraint P>a = 0 and therefore
the solution is given by the Karush–Kuhn–Tucker matrix equation270  K2

0 K0P P
P>K0 P

>P 0
P> 0 0


ab
c

 =

 Kf
P>f

0

 . (S10)

Now, we are free to add a multiple, P , of the third row to the first row, which producesK2
0 + PP> K0P P
P>K0 P>P 0
P> 0 0


ab
c

 =

 Kf
P>f

0

 .
Next, we make the ansatz that c = 0 and seek a solution to the reduced linear system[

K2
0 + PP> K0P
P>K0 P>P

] [
a
b

]
=

[
Kf
P>f

]
.

This is the same as [
K0 P
P> 0

][
K0 P
P> 0

]
=

[
K0 P
P> 0

] [
f
0

]
and thus, if the block matrix can be inverted, we have[

K0 P
P> 0

]
=

[
f
0

]
(S11)

as claimed. Existence of a solution to (S11) establishes a solution to the original system275

(S10) and justifies the ansatz. Moreover, the fact that a solution to (S11) exists was
established in Lemma 4.

7.2. Nyström Approximation

To develop a Nyström approximation, our starting point is the kernel least-squares
characterization of the proposed estimator in (S9). In particular, the same least-squares280

problem can be considered for the Nyström approximation in (S7):

arg min
ã,b̃

‖f −K0,n,n0 ã− P b̃‖22 s.t. P>n0
ã = 0.
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This least-squares problem can be formulated as

arg min
ã,b̃

(f −K0,n,n0 ã− P b̃)>(f −K0,n,n0 ã− P b̃)

= arg min
ã,b̃

(
f>f − f>K0,n,n0 ã− f>P b̃− ã>K0,n0,nf + ã>K0,n0,nK0,n,n0 ã

+ã>K0,n0,nP b̃− b̃>P>f − b̃>P>K0,n,n0 ã− b̃>P>P b̃
)

285

= arg min
ã,b̃

[
ã

b̃

]> [
K0,n0,nK0,n,n0 K0,n0,nP
P>K0,n,n0 P>P

][
ã

b̃

]
− 2

[
K0,n0,nf
P>f

][
ã

b̃

]
+ f>f

This is a quadratic minimization problem subject to the constraint P>n0
ã = 0 and so the

solution is given by the Karush–Kuhn–Tucker matrix equationK0,n0,nK0,n,n0 K0,n0,nP Pn0

P>K0,n,n0 P>P 0
P>n0

0 0


 ãb̃
c̃

 =

K0,n0,nf
P>f

0

 . (S12)

Following an identical argument to that in Appendix 7.1, we first add Pn0 times the third
row to the first row to obtain 290K0,n0,nK0,n,n0 + Pn0P

>
n0
K0,n0,nP Pn0

P>K0,n,n0 P>P 0
P>n0

0 0


 ãb̃
c̃

 =

K0,n0,nf
P>f

0

 .
Taking again the ansatz that c̃ = 0 requires us to solve the reduced linear system[

K0,n0,nK0,n,n0 + Pn0P
>
n0
K0,n0,nP

P>K0,n,n0 P>P

][
ã

b̃

]
=

[
K0,n0,nf
P>f

]
. (S13)

As in Appendix 7.1, the existence of a solution to (S13) implies a solution to (S12) and
justifies the ansatz.

8. Sensitivity to the Choice of Kernel

In this appendix we investigate the sensitivity of kernel-based methods (ICF, ISECF 295

and IASECF) to the kernel and its parameter using the Gaussian example of Section
3.2. Specifically we compare the three kernels described in Appendix 2, the Gaussian,
Matérn and rational quadratic kernels, when the parameter, λ, is chosen using either
cross-validation or the median heuristic (Garreau et al., 2017). For the Matérn kernel,
we fix the smoothness parameter at ν = 4.5. 300

In the cross-validation approach,

λCV ∈ arg min

5∑
i=1

n5∑
j=1

{
f(x(i,j))− fi,λ(x(i,j))

}2
, (S14)

where n5 := bn/5c, fi,λ denotes an interpolant of the form (10) to f at the points {x(i,j) :

j = 1, . . . , n5

}
with kernel parameter λ, and x(i,j) is the jth point in the ith fold. In
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general (S14) is an intractable optimization problem and we therefore perform a grid-
based search. Here we consider λ ∈ 10{−1.5,−1,−0.5,0,0.5,1}.305

The median heuristic described in Garreau et al. (2017) is the choice of the bandwidth

λ̃ =

√
1

2
Med

{
‖x(i) − x(j)‖2 : 1 ≤ i < j ≤ n

}
for functions of the form k(x, y) = ϕ(‖x− y‖/λ), where Med is the empirical median.
This heuristic can be used for the Gaussian, Matérn and rational quadratic kernels,
which all fit into this framework.

Figures S1 and S2 show the statistical efficiency of each combination of kernel and310

tuning approach for n = 1000 and d = 4, respectively. The outcome that the performance
of ISECF and IASECF are less sensitive to the kernel choice than ICF is intuitive when
considering the fact that semi-exact control functionals enforce exactness on f ∈ F .
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Fig. S1: Gaussian example, estimated statistical efficiency for n = 1000 using different
kernels and tuning approaches. The estimators are (a) ICF, (b) ISECF with polynomial
order r = 1, (c) ISECF with r = 2, (d) IASECF with r = 1 and (e) IASECF with r = 2.
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Fig. S2: Gaussian example, estimated statistical efficiency for d = 4 using different kernels
and tuning approaches. The estimators are (a) ICF, (b) ISECF with polynomial order
r = 1, (c) ISECF with r = 2, (d) IASECF with r = 1 and (e) IASECF with r = 2.

9. Results for the Unadjusted Langevin Algorithm

Recall that the proposed method does not require that the x(i) form an empirical 315

approximation to p. It is therefore interesting to investigate the behaviour of the method
when the (x(i))∞i=1 arise as a Markov chain that does not leave p invariant. Figures S3
and S4 show results when the unadjusted Langevin algorithm is used rather than the
Metropolis-adjusted Langevin algorithm which is behind Figures 3 and 4 of the main
text. The benefit of the proposed method for samplers that do not leave p invariant is 320

evident through its reduced bias compared to IZV and IMC in Figure S5. Recall that the
unadjusted Langevin algorithm (Parisi, 1981; Ermak, 1975) is defined by

x(i+1) = x(i) +
h2

2
Σ∇x logPx|y(x

(i) | y) + εi+1,

for i = 1, . . . , n− 1 where x(1) is a fixed point with high posterior support and εi+1 ∼
N (0, h2Σ). Step sizes of h = 0.9 for the sonar example and h = 1.1 for the capture-
recapture example were selected. 325
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Fig. S3: Recapture example (a) estimated statistical efficiency and (b) estimated com-
putational efficiency when the unadjusted Langevin algorithm is used in place of the
Metropolis-adjusted Langevin algorithm. Efficiency here is reported as an average over
the 11 expectations of interest.
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Fig. S4: Sonar example (a) estimated statistical efficiency and (b) estimated compu-
tational efficiency when the unadjusted Langevin algorithm is used in place of the
Metropolis-adjusted Langevin algorithm.
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Fig. S5: Recapture example (a) boxplots of 100 estimates of
∫
x1Px|ydx when the

Metropolis-adjusted Langevin algorithm is used for sampling and (b) boxplots of 100
estimates of

∫
x1Px|ydx when the unadjusted Langevin algorithm is used for sampling.

The black horizontal line represents the gold standard of approximation.



16 L. South et al.

10. Reproducing Kernels and Worst-Case Error

The purpose of this section is to review some basic results about worst-case error
analysis in a reproducing kernel Hilbert space context. In Appendices 11 and 12 these
results are used to prove Proposition 1 and Theorem 1.

Let k : Rd × Rd → R be a positive-definite kernel such that
∫
|k(x, y)|p(x) dx <∞ for330

every y ∈ Rd and H(k) the reproducing kernel Hilbert space of k. The worst-case error
in H(k) of any weights v = (v1, . . . , vn) ∈ Rn and any distinct points {x(i)}ni=1 ⊂ Rd is
defined as

eH(k)(v; {x(i)}ni=1) := sup
‖h‖H(k)≤1

∣∣∣∣ ∫ h(x)p(x) dx−
n∑
i=1

vih(x(i))

∣∣∣∣. (S15)

In this appendix we consider a fixed set of points {x(i)}ni=1 and employ the shorthand

eH(k)(v) for eH(k)(v; {x(i)}ni=1). Then a standard result (see, for example, Section 10.2 in335

Novak & Woźniakowski, 2010) is that the worst-case error admits a closed form

eH(k)(v) =

(∫ ∫
k(x, y)p(x)p(y) dx dy − 2

n∑
i=1

vi

∫
k(x, x(i))p(x) dx+ v>Kv

)1/2

,

(S16)
where K is the n× n matrix with entries [K]i,j = k(x(i), x(j)), and∣∣∣∣ ∫ h(x)p(x) dx−

n∑
i=1

vih(x(i))

∣∣∣∣ ≤‖h‖H(k) eH(k)(v) (S17)

for any h ∈ H(k). Because the worst-case error in (S16) can be written as the quadratic
form

eH(k)(v) = (kpp − 2v>kp + v>Kv)1/2,

where kpp =
∫ ∫

k(x, y)p(x)p(y) dx dy and [kp]i =
∫
k(x, x(i))p(x) dx, the weights v which340

minimise it take an explicit closed form:

vopt = arg min
v∈Rn

eH(k)(v) = K−1kp

Let Ψ = {ψ0, . . . , ψm−1} be a collection of m ≤ n basis functions for which the gener-
alised Vandermonde matrix

PΨ =


ψ0(x(1)) · · · ψm−1(x(1))

...
. . .

...

ψ0(x(n)) · · · ψm−1(x(n))

 ,
has full rank. In this paper we are interested in weights which satisfy the semi-exactness
conditions

∑n
i=1 viψ(x(i)) =

∫
ψ(x)p(x) dx for every ψ ∈ Ψ. Minimising the worst-case345

error under these constraints gives rise to the weights

vΨ
opt = arg min

v∈Rn
eH(k)(v) s.t.

n∑
i=1

viψ(x(i)) =

∫
ψ(x)p(x) dx for every ψ ∈ Ψ.

(S18)
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These weights can be solved from the linear system (Karvonen et al., 2018, Theorem 2.7
and Remark D.1) [

K PΨ

P>Ψ 0

][
vΨ

opt

a

]
=

[
kp
ψp

]
,

where a ∈ Rq is a nuisance vector and the ith element of ψp is
∫
ψi−1(x)p(x) dx. Note

that (S18) is merely a quadratic programming problem under the linear equality con- 350

straint P>Ψ v = ψp.
These facts will be used in Appendices 11 and 12 to prove Proposition 1 and Theorem 1.

Their relevance derives from the fact that eH(k0)(v; {x(i)}ni=1) coincides with the kernel

Stein discrepancy between p and the discrete measure
∑n

i=1 viδ(x
(i)).

11. Proof of Proposition 1 355

The following proof relies on the results reviewed in Appendix 10.
Proof of Proposition 1. Applying the results reviewed in Appendix 10 with k = k0 and

ψj = Lφj , for which kp = 0 and ψp = e1 from (9), we see that the solution to the opti-
misation problem

vFopt = arg min
v∈Rn

eH(k0)(v; {x(i)}ni=1) s.t.

n∑
i=1

vih(x(i)) =

∫
h(x)p(x) dx for every h ∈ F

can be obtained by solving the linear system 360[
K0 P
P> 0

][
vFopt

a

]
=

[
0
e1

]
.

A straightforward application of the block matrix inversion formula then gives

vFopt = K−1
0 P (P>K−1

0 P )−1e1 = w,

where in the final equality we have recognised this expression as being identical
to the weights w used in our semi-exact control functional method, i.e. ISECF(f) =∑n

i=1wif(x(i)) by (14) and (15). By (9) the only non-zero element on the right-hand
side of (S16) is v>K0v. Thus we have characterised the weights w in the semi-exact 365

control functional method as the solution to the problem

w = arg min
v∈Rn

(v>K0v)1/2 s.t.

n∑
i=1

vih(x(i)) =

∫
h(x)p(x) dx for every h ∈ F .

(S19)
If f = h+ g with h ∈ F and g ∈ H(k0), then it follows from the integral semi-exactness
property (S19) that

|I(f)− ISECF(f)| = |I(g)− ISECF(g) + I(h)− ISECF(h)| = |I(g)− ISECF(g)|.

Applying (S17) and (S19) yields

|I(f)− ISECF(f) ≤‖g‖H(k0) eH(k0)(w; {x(i)}ni=1) =‖g‖H(k0) (w>K0w)1/2.
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Since this bound is valid for any decomposition f = h+ g with h ∈ F and g ∈ H(k0) we370

have

|I(f)− ISECF(f)| ≤ inf
f=h+g

h∈F , g∈H(k0)

‖g‖H(k0)(w
>K0w)1/2 = |f |k0,F (w>K0w)1/2

as claimed. �

12. Proof of Theorem 1

The following proof relies on the worst-case error results reviewed in Appendix 10,375

together with the following result, due to Hodgkinson et al. (2020), which studies the
convergence of the worst-case error (i.e. the kernel Stein discrepancy) of a weighted
combination of the states {x(i)}ni=1, where the weights w̃ are obtained by minimising the
worst-case error subject to a non-negativity constraint:

Theorem S1. Let p be a probability density on Rd and k0 : Rd × Rd → R a reproducing380

kernel which satisfies ∫
k0(x, y)p(x) dx = 0

for every y ∈ Rd. Let q be a probability density with p/q > 0 on Rd and consider a q-
invariant Markov chain (x(i))ni=1, assumed to be V -uniformly ergodic for some V : Rd →
[1,∞), such that

sup
x∈Rd

V (x)−r
{
p(x)

q(x)

}4

k0(x, x)2 <∞

for some 0 < r < 1. Let

w̃ = arg min
v∈Rn

eH(k0)(v; {x(i)}ni=1) s.t.
n∑
i=1

vi = 1 and v ≥ 0. (S20)

Then eH(k0)(w̃; {x(i)}ni=1) = OP (n−1/2).
Proof. A special case of Theorem 1 in Hodgkinson et al. (2020). �

The sense in which Theorem S1 will be used is captured in the following corollary, which385

follows from the observation that removal of the non-negativity constraint in (S20) does
not increase the worst-case error:

Corollary S1. Under the same hypotheses as Theorem S1, let

w̄ = arg min
v∈Rn

eH(k0)(v; {x(i)}ni=1) s.t.

n∑
i=1

vi = 1. (S21)

Then eH(k0)(w̄; {x(i)}ni=1) ≤ eH(k0)(w̃; {x(i)}ni=1) = OP (n−1/2).
Now the proof of Theorem 1 can be presented:390

Proof of Theorem 1. From Assumption A2 and Lemma 4 we have (P>K−1
0 P )−1 is

almost surely well-defined. In the proof of Proposition 1 we saw that

eH(k0)(w; {x(i)}ni=1)2 = w>K0w

and

(I(f)− ISECF(f))2 ≤ |f |2k0,F w
>K0w
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Plugging in the expression for w = K−1
0 P (P>K−1

0 P )−1e1 in (15), we obtain 395

eH(k0)(w; {x(i)}ni=1)2 = [(P>K−1
0 P )−1]1,1 (S22)

and

(I(f)− ISECF(f))2 ≤ |f |2k0,F [(P>K−1
0 P )−1]1,1.

It therefore suffices to consider the stochastic fluctuations of [(P>K−1
0 P )−1]11 as n→∞.

To this end, let [Ψ]i,j := Lφj(x(i)) and consider the block matrix

P>K−1
0 P

1>K−1
0 1

=

 1
1>K−1

0 Ψ

1>K−1
0 1

Ψ>K−1
0 1

1>K−1
0 1

Ψ>K−1
0 Ψ

1>K−1
0 1

.

 (S23) 400

From the block matrix inversion formula we have(P>K−1
0 P

1>K−1
0 1

)−1


1,1

=

[
1− 1>K−1

0 Ψ(Ψ>K−1
0 Ψ)−1Ψ>K−1

0 1

1>K−1
0 1

]−1

=

[
1− 〈1,Π1〉n

〈1,1〉n

]−1

. (S24)

Since Π = Ψ(Ψ>K−1
0 Ψ)−1Ψ>K−1

0 and

‖Π1‖2n = 1>Π>K−1
0 Π1 405

= 1>K−1
0 Ψ(Ψ>K−1

0 Ψ)−1Ψ>K−1
0 Ψ(Ψ>K−1

0 Ψ)−1Ψ>K−1
0 1

= 1>K−1
0 Ψ(Ψ>K−1

0 Ψ)−1Ψ>K−1
0 1

= 1>K−1
0 Π1

= 〈1,Π1〉n,

our Assumption A3 implies that (S24) is almost surely asymptotically bounded, say by
a constant C ∈ [0,∞). In other words, it almost surely holds that

[(P>K−1
0 P )−1]1,1 ≤ C(1>K−1

0 1)−1

for all sufficiently large n. 410

To complete the proof we evoke Corollary S1, noting that the weights w̄ defined in
Corollary S1 satisfy eH(k0)(w̄; {x(i)}ni=1) = (1>K−1

0 1)−1/2, which follows from (S22) with
P = 1. Thus from Corollary S1 we conclude

[(1>K−1
0 1)−1]

1/2
1,1 = eH(k0)(w̄; {x(i)}ni=1) ≤ eH(k0)(w̃; {x(i)}ni=1) = OP (n−1/2),

as required.
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