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A. PROOF OF THEORETICAL RESULTS

A.1. Proof of Theorem 1 and Theorem 2
We will present the proof of Theorem 2 first and then that of Theorem 1, because the former is more

general than the latter. The proof of Theorem 2 is based on the following two lemmas, whose proof will
be provided later in the supplementary material. 15

Let Gi = (1, FTi )T and Bj = (dj , A
T
j )T , then mij = GTi Bj . Define Mr = {M =

(mij)1≤i≤N,1≤j≤J : mij = GTi Bj : Gi, Bj ∈ Rr, ‖Gi‖ ≤ C, ‖Bj‖ ≤ C for all 1 ≤ i ≤ N, 1 ≤ j ≤
N}, then M∗ ∈MK∗+1. Let r∗ = K∗ + 1 under Assumption 2. Also, let l(M,Y,Ω) denote the
log-likelihood function where Ω = (ωij)1≤i≤N,1≤j≤J .

LEMMA 1. For all M ∈Mr, 20

φ{l(M,Y,Ω)− l(M∗, Y,Ω)}
≤(r + r∗)1/2

{
‖Z ◦ Ω‖2 + 2δC2C2‖Q‖2

}
‖M −M∗‖F − δC2pmin‖M −M∗‖2F

(S.A.1)

where Z = (zij)1≤i≤N,1≤j≤J , zij = yij − b′(m∗ij), and ‘◦’ denotes the matrix Hadamard product.

LEMMA 2. There is a universal constant c > 0 such that

Pr
(
‖Ω− P‖2 ≥ 4(max

i
n∗i·)

1/2 ∨ (max
j
n∗·j)

1/2 + c log1/2(N + J)
)
≤ (N + J)−1. (S.A.2)

LEMMA 3. Let V = (vij)1≤i≤N,1≤j≤J be a random matrix with independent and centered entries.
In addition, assume vijs are sub-exponential random variables with parameters ν, α > 0. That is,
E(eλvij ) ≤ eλ2ν2/2 for all |λ| < 1/α. Then, there exists a universal constant c > 0 such that with prob- 25

ability at least 1− (N + J)−1 − (n∗)−1,

‖V ◦ Ω‖2 ≤ 4 max
ij
{E(z2ij)}1/2(max

i
n∗i·)

1/2 ∨ (max
j
n∗·j)

1/2 + c(α ∨ ν) log n∗ log1/2(N + J)

(S.A.3)
for all N ≥ 1, J ≥ 1, and n∗ ≥ 6. In particular, under Assumptions 1 and 2, zij = yij − b′(m∗ij) is sub-
exponential with parameters ν2 = φκ2C2 = φ sup|x|≤2C2 b′′(x) and α = φ/C2, and there is a universal
constant c > 0 such that with probability at least 1− (N + J)−1 − (n∗)−1,

‖Z ◦ Ω‖2 ≤ 4(φκ2C2)1/2(max
i
n∗i·)

1/2 ∨ (max
j
n∗·j)

1/2 + c{(φ/C2) ∨ (φκ2C2)1/2} log n∗ log1/2(N + J)

(S.A.4)

C© 2020 Biometrika Trust



2 Y. CHEN AND X. LI

for all N ≥ 1, J ≥ 1, and n∗ ≥ 6.30

Remark 1. The constant 4 in the first term of the right-hand side of (S.A.3) can be improved to 2
√

2 + ε
for any ε > 0 with the constant c replaced by an ε-dependent constant cε. The logarithm term can be
improved if Z is further assumed sub-Gaussian or bounded. We keep the current form which is sharp
enough for our problem.

Proof of Theorem 2. By the definition of M̂ (K) and K ≥ K∗, we have φ{l(M̂ (K), Y,Ω)−35

l(M∗, Y,Ω)} ≥ 0. Apply Lemma 1 with M = M̂ (K), r = K + 1 and combine it with
φ{l(M̂ (K), Y,Ω)− l(M∗, Y,Ω)} ≥ 0. We obtain that for every K ≥ K∗,

‖M̂ (K) −M∗‖F ≤ p−1min(K +K∗ + 2)1/2
{
δ−1C2‖Z ◦ Ω‖2 + 2C2‖Q‖2

}
. (S.A.5)

Thus,

max
K∗≤K≤Kmax

(
‖M̂ (K) −M∗‖F

)
≤ 2p−1minK

1/2
max

{
δ−1C2‖Z ◦ Ω‖2 + 2C2‖Q‖2

}
, (S.A.6)

where we used the fact that K +K∗ + 2 ≤ 2(Kmax + 1) ≤ 4Kmax for Kmax ≥ 1. Apply Lemma 2 and
Lemma 3 to obtain an upper bound of the right-hand side of the above inequality and simplify it. We arrive40

at

max
K∗≤K≤Kmax

(
‖M̂ (K) −M∗‖F

)
≤2p−1min(Kmax)1/2

[
{4δ−1C2 (φκ2C2)1/2 + 8C2}(max

i
n∗i·)

1/2 ∨ (max
j
n∗·j)

1/2

+ c{(φ/C2) ∨ (φκ2C2)1/2 log n∗ + 2C2} log1/2(N + J)
]

=p−1min(Kmax)1/2{κ1,b,C,φ(max
i
n∗i·)

1/2 ∨ (max
j
n∗·j)

1/2 + 2c(κ2,b,C,φ log n∗ + 2C2) log1/2(N + J)}

(S.A.7)

where we recall that κ1,b,C,φ = 8δ−1C2 (φκ2C2)1/2 + 16C2 and κ2,bC,φ = (φ/C2) ∨ (φκ2C2)1/2. This
completes our proof. �

Proof of Theorem 1. Note that maxi n
∗
i· ≤ pmaxJ and maxj n

∗
·j ≤ pmaxN . Thus, (7) is simplified to

max
K∗≤K≤Kmax

(
‖M̂ (K) −M∗‖F

)
≤ κ(Kmax)1/2{p−1/2min (N ∨ J)1/2 + p−1min log n∗ log1/2(N + J)}

(S.A.8)
for some κ depending on C, b, φ and pmax/pmin. Because pmin = (pmin/pmax)pmax ≥45

(pmin/pmax)n∗/(NJ), the above inequality implies

max
K∗≤K≤Kmax

(
‖M̂ (K) −M∗‖F

)
≤κ(Kmax)1/2{(n∗/(NJ))−1/2(N ∨ J)1/2 + (n∗/(NJ))−1 log(n∗) log1/2(N + J)}

(S.A.9)

with a possibly different κ that also depends on C, b, and φ. Multiplying both sides by (NJ)−1/2 and
simplifying it, we arrive at

max
K∗≤K≤Kmax

{
(NJ)−1/2‖M̂ (K) −M∗‖F

}
≤κK1/2

max

[{
(N ∨ J)/n∗

}1/2
+ {(NJ)1/2 log1/2(N + J)}(n∗)−1 log n∗

]
.

(S.A.10)

Note that for n∗/(log n∗)2 ≥ (N ∧ J) log(N + J),
{

(N ∨ J)/n∗
}1/2 ≥ {(NJ)1/2 log1/2(N +

J)}(n∗)−1 log n∗, and the above inequality is simplified as50

max
K∗≤K≤Kmax

{
(NJ)−1/2‖M̂ (K) −M∗‖F

}
≤ 2κ

{
Kmax(N ∨ J)/n∗

}1/2
. (S.A.11)

This completes the proof. �
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A.2. Proof of Theorem 3, Theorem 4, and Corollary 2
The proofs of Theorem 3 and Theorem 4 are based on the following three supporting lemmas, whose

proofs are given in the supplementary material. We start by recalling u(n,N, J,K) = v(n,N, J,K)−
v(n,N, J,K − 1) and defining R = 4(pminδC2)−1

{
‖Z ◦ Ω‖2 + 2δC2C2‖Q‖2

}2
. 55

LEMMA 4. If u(·) satisfies

lim
N,J→∞

Pr
(
u(n,N, J,K∗ + 1) > 2φ−1(K∗ + 1)R

)
= 1 (S.A.12)

and

lim
N,J→∞

Pr
(

inf
K∗+2≤K≤Kmax

u(n,N, J,K) > 2φ−1R
)

= 1, (S.A.13)

then

lim
N,J→∞

Pr(K̂ > K∗) = 0, (S.A.14)

for Kmax ≥ K∗ ≥ 1.

LEMMA 5. If 60

lim
N,J→∞

Pr
(

4(δC2pmin)−1K∗R ≤ σ2
K∗+1(M∗)

)
= 1, (S.A.15)

and u(·) satisfies

lim
N,J→∞

Pr
(
u(n,N, J,K) < φ−1δC2pminσ

2
K+1(M∗) for all 1 ≤ K ≤ K∗

)
= 1 (S.A.16)

then limN,J→∞ Pr(K̂ < K∗) = 0 for K∗ ≥ 1.

LEMMA 6. Under the asymptotic regime (10), R = Op(pmax/pmin(N ∨ J)).

In the rest of the section, we provide the proof of Theorem 4 first and then the proof of Theorem 3 because
the former is more general than the latter. 65

Proof of Theorem 4. We will verify that conditions of Theorem 4 ensure conditions in Lemma 4 and
Lemma 5. We start with verifying conditions in Lemma 4. According to the second line of (11),

lim
N,J→∞

Pr
(
u(n,N, J,K∗ + 1) > 2φ−1(K∗ + 1)R

)
≥ lim inf
N,J→∞

Pr
(
ξN,J(K∗ + 1)(pmax/pmin)(N ∨ J) > 2φ−1(K∗ + 1)R

)
≥ lim inf
N,J→∞

Pr
(
ξN,J(pmax/pmin)(N ∨ J) > 2φ−1R

)
=1,

(S.A.17)

where the last line is obtained according to Lemma 6 and that ξN,J →∞ in probability. Similarly,

lim
N,J→∞

Pr
(

inf
K∗+2≤K≤Kmax

u(n,N, J,K) > 2φ−1R
)
≥ lim inf
N,J→∞

Pr
(
ξN,J

(pmax

pmin

)
(N ∨ J) > 2φ−1R

)
=1.

(S.A.18)

Thus, conditions of Lemma 4 are verified and we obtain

lim
N,J→∞

Pr(K̂ > K∗) = 0. (S.A.19)
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Next, we verify conditions of Lemma 5. According to Lemma 6 and the assumption p−2minpmaxK
∗(N ∨70

J) = o(σ2
K∗+1(M∗)), we have

4(δC2pmin)−1K∗R = Op
(
p−2minpmaxK

∗(N ∨ J)
)

= op
(
σ2
K∗(M

∗)
)
. (S.A.20)

Thus,

lim
N,J→∞

Pr
(

4(δC2pmin)−1K∗R ≤ σ2
K∗(M

∗)
)

= 1. (S.A.21)

In addition, according to the first line of (11),

lim
N,J→∞

Pr
(
u(n,N, J,K) < φ−1δC2pminσ

2
K+1(M∗) for 1 ≤ K ≤ K∗

)
≥ lim inf
N,J→∞

Pr
(
ξ−1N,Jpminσ

2
K∗+1(M∗) < φ−1δC2pminσ

2
K+1(M∗) for all K

≥ lim inf
N,J→∞

Pr
(
ξ−1N,J < φ−1δC2

)
=1.

(S.A.22)

From (S.A.21) and (S.A.22), conditions of Lemma 5 are verified and thus

lim
N,J→∞

Pr(K̂ < K∗) = 0. (S.A.23)

We complete the proof by combining (S.A.19) and (S.A.23). �75

Proof of Theorem 3. First note that the existence of u satisfying (9) implies N ∨ J = o(σ2
K∗+1(M∗)),

which further implies p−2minpmaxK
∗(N ∨ J) = o(σ2

K∗+1(M∗)) under the asymptotic regime p−1min =
O(1), K∗ = O(1). Thus, the assumption about the singular value of M∗ in Theorem 4 is verified. Also,
p−1min = O(1) implies that (N ∧ J) log(N + J) = o(n∗/(log n∗)2). Thus, (10) is verified.

We proceed to verify that u satisfies (11) in Theorem 4. We note that p−1min = O(1), K∗ = O(1) and u80

satisfies (9) implies that there exists ξN,J →∞ satisfying

u(n,N, J,K) ≤ ξ−1N,Jpminσ
2
K∗+1(M∗) for all K, (S.A.24)

u(n,N, J,K) ≥ ξN,J(pmax/pmin)(N ∨ J) for all K, (S.A.25)

and

u(n,N, J,K∗ + 1) ≥ ξN,J(K∗ + 1)(pmax/pmin)(N ∨ J). (S.A.26)

Note that σ2
K+1(M∗) ≥ σ2

K∗+1(M∗) for K ≤ K∗. Thus, (S.A.24) implies the first line of (11); (S.A.26)
implies the second line of (11); (S.A.25) implies the last line of (11). It verifies (11) and completes the85

proof. �

Proof of Corollary 2. Under the asymptotic regime (8) and N ∨ J = o(σ2
K∗+1(M∗)), (10) and

p−2minpmaxK
∗(N ∨ J) = o(σ2

K∗+1(M∗)) are verified in the proof of Theorem 3. We now verify (11).
From the conditions on h(n,N, J), there exists a sequence ξN,J (possibly depending on h(n,N, J))

such that ξN,J →∞ in probability and90

ξN,J < h(n,N, J)(pmin/pmax)(K∗ + 1)−1 and ξN,J ≤ (h(n,N, J))−1(N ∨ J)−1pminσ
2
K∗+1(M∗).

(S.A.27)
Also, note that u(n,N, J,K) = v(n,N, J,K)− v(n,N, J,K − 1) = (N ∨ J)h(n,N, J). It is not hard
to verify (S.A.27) implies (11), and, thus Theorem 4 applies.

We proceed to the proof of the ‘in particular’ part. Note that by definition E(n) = n∗ and V ar(n) =∑
i

∑
j pij(1− pij) ≤

∑
i

∑
j pij = n∗, which implies limN,J→∞ Pr(n > 2n∗ or n < n∗/2) = 0 and

further implies

lim
N,J→∞

Pr
(
n/(N ∨ J) ≥ 2n∗/(N ∨ J) or n/(N ∨ J) ≤ n∗/{2(N ∨ J)}

)
= 0.
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Note that in this part, h(n,N, J) = log(n/(N ∨ J)). Also, log(n∗/{2(N ∨ J)})→∞.
Thus, h(n,N, J)→∞ in probability. In addition, on the event n/(N ∨ J) ≤ 2n∗/(N ∨ J),
(h(n,N, J))−1(N ∨ J)−1σ2

K∗+1(M∗) ≥ log
(
2n∗/(N ∨ J)

)
(N ∨ J)−1σ2

K∗+1(M∗). The right- 95

hand-side of this inequality tend to infinity under the assumptions of the Corollary. This implies
(h(n,N, J))−1(N ∨ J)−1σ2

K∗+1(M∗)→∞ in probability. �

B. PROOF OF SUPPORTING LEMMAS

Proof of Lemma 1. By definition,

φ{l(M,Y,Ω)− l(M∗, Y,Ω)}

=
∑
ij

ωij
{
yijmij − b(mij)− yijm∗ij + b(m∗ij)

}
=
∑
i,j

(yij − b′(m∗ij))(mij −m∗ij)ωij −
∑
ij

{
b(mij)− b(m∗ij)− b′(m∗ij)(mij −m∗ij)

}
ωij .

(S.B.1)

In the rest of the proof, we derive upper bounds for each term on the right-hand-side of the above display. 100

For the first term
∑
i,j(yij − b′(m∗ij))(mij −m∗ij)ωij , we write it as∑

i,j

(yij − b′(m∗ij))(mij −m∗ij)ωij = 〈Z ◦ Ω,M −M∗〉, (S.B.2)

where 〈A,B〉 = tr(ATB) denotes the matrix inner product. Recall the following inequality in linear
algebra: |〈A,B〉| ≤ ‖A‖2‖B‖∗ ≤

√
rank(B)‖A‖2‖B‖F for any two matrices A and B. Applying this

fact to the above display, we obtain∣∣∑
i,j

(yij − b′(m∗ij))(mij −m∗ij)ωij
∣∣ ≤{rank(M −M∗)}1/2‖Z ◦ Ω‖2‖M −M∗‖F . (S.B.3)

Notice that rank(M −M∗) ≤ r + r∗ for M ∈Mr. Thus, the above inequality implies 105∣∣∑
i,j

(yij − b′(m∗ij))(mij −m∗ij)ωij
∣∣ ≤(r + r∗)1/2‖Z ◦ Ω‖2‖M −M∗‖F . (S.B.4)

We proceed to the analysis of the second term
∑
ij

{
b(mij)− b(m∗ij)− b′(m∗ij)(mij −m∗ij)

}
ωij . Note

that for M ∈Mr, |mij | ≤ ‖Bi‖‖Gj‖ ≤ C2. Similarly, |m∗ij | ≤ C2. Thus, for any m̃ij = tm∗ij + (1−
t)mij and t ∈ (0, 1), |m̃ij | ≤ C2. Recall the definition of δC2 = inf |x|≤C2 b′′(x). Then, 1

2b
′′(m̃ij) ≥ δC2 .

This implies ∑
ij

{
b(mij)− b(m∗ij)− b′(m∗ij)(mij −m∗ij)

}
ωij

=
∑
ij

1

2
b′′(m̃ij)(mij −m∗ij)2ωij

≥δC2

∑
ij

(mij −m∗ij)2ωij .

(S.B.5)

Note that 110∑
ij

(mij −m∗ij)2ωij

=
∑
ij

(mij −m∗ij)2(ωij − pij) +
∑
ij

pij(mij −m∗ij)2

≥〈(M −M∗) ◦ (M −M∗), Q〉+ pmin‖M −M∗‖2F
≥− ‖(M −M∗) ◦ (M −M∗)‖∗‖Q‖2 + pmin‖M −M∗‖2F .

(S.B.6)
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where we defineQ = Ω− P and P = (pij)1≤i≤N,1≤j≤J . The next lemma is helpful for bounding matrix
norms involving Hadamard products, whose proof is given later this section.

LEMMA 7. For M ∈Mr, ‖(M −M∗) ◦ (M −M∗)‖∗ ≤ 2C2(r + r∗)1/2‖M −M∗‖F .

Remark 2. The proof of Lemma 7 utilizes the property that mij = BTi Gj with ‖Bi‖, ‖Gj‖ ≤ C and
combine it with a result in Horn (1995). This improves the estimate in Chen et al. (2020) where |mij | ≤115

C2 is directly used to derive an upper bound 2C2(r + r∗)‖M −M∗‖F . Comparing with this bound, the
above lemma provide a sharper bound in the order of r + r∗.

Applying Lemma 7 to (S.B.6) and combine it with (S.B.5), we obtain∑
ij

{
b(mij)− b(m∗ij)− b′(m∗ij)(mij −m∗ij)

}
ωij

≥δC2

{
pmin‖M −M∗‖2F − 2C2(r + r∗)1/2‖M −M∗‖F ‖Q‖2

}
.

(S.B.7)

We complete the proof by combining the above display with (S.B.1) and (S.B.4). �

Proof of Lemma 7. Let B̃i = (BTi ,−(B∗i )T )T and G̃j = (GTj ,−(G∗j )
T )T . Then, B̃i, G̃j ∈ Rr+r∗ ,120

‖B̃i‖, ‖G̃j‖ ≤
√

2C, and mij −m∗ij = B̃Ti G̃j for all i, j.
On the other hand, Theorem 2 in Horn (1995) states that, for anym× nmatricesA = (aij), B = (bij),

if aij = gTj fi for vectors gj and fis. Then,

k∑
i=1

σi(A ◦B) ≤
k∑
i=1

‖f[i]‖‖g[i]‖σi(B) for k = 1, · · · ,m ∧ n, (S.B.8)

where σi(·) denotes the ith largest singular value of a matrix, ‖f[1]‖ ≥ ‖f[2]‖ ≥ · · · ≥ ‖f[m]‖ and ‖g[1]‖ ≥
· · · ≥ ‖g[n]‖ denote the order statistics of {‖fi‖}mi=1 and {‖g‖j}nj=1. Now, we let k = N ∧ J , A = M −125

M∗, B = A, fi = B̃i, gj = G̃j in the above result and note that ‖f[i]‖, ‖g[j]‖ ≤
√

2C in this case, we
obtain

N∧J∑
i=1

σi((M −M∗) ◦ (M −M∗)) ≤
N∧J∑
i=1

2C2σi(M −M∗) = 2C2‖M −M∗‖∗. (S.B.9)

Noting the left-hand side of the above display equals ‖(M −M∗) ◦ (M −M∗)‖∗. Thus,

‖(M −M∗) ◦ (M −M∗)‖∗ ≤ 2C2‖M −M∗‖∗ ≤ 2C2(r + r∗)1/2‖M −M∗‖F . (S.B.10)

The proofs of Lemmas 2 and 3 are based on the next lemma that provides an upper tail bound for the
spectral norm of a large class of random matrices. Its proof mainly combines standard symmetrization130

and truncation arguments with a recent result by Bandeira & Van Handel (2016) on the spectral norm of
symmetric random matrices with independent, centered and symmetric entries.

LEMMA 8. LetX = (xij)1≤i≤N,1≤j≤J be anN × J matrix with E(xij) = 0 and E(x2ij) <∞. Then,
there is a universal constant c > 0 such that for all t, λ ≥ 0

Pr
(
‖X‖2 ≥ 4(σ1 ∨ σ2) + t

)
≤ (N + J)e−t

2/(cλ2) +

N∑
i=1

J∑
j=1

Pr
(
|xij − x′ij | > λ

)
, (S.B.11)

where we define σ1 = max1≤i≤N{
∑J
j=1E(x2ij)}1/2, σ2 = max1≤j≤J{

∑N
i=1E(x2ij)}1/2, and x′ij is an135

independent copy of xij .

Proof of Lemma 8. Let X ′ = (x′ij) which is an independent copy of X and let X̃ = (x̃ij) = X −X ′.

Then, x̃ijs have symmetric distribution and are independent. Let Z = (zij) =

(
0 X̃

X̃T 0

)
. Z is a symmet-

ric (N + J)× (N + J) random matrix whose entries are independent and symmetric random variables.
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Define a random matrix Z(λ) as the truncated Z, 140

Z(λ) = (zij(λ))1≤i≤N,1≤j≤J = (zijI(|zij | ≤ λ))1≤i≤N,1≤j≤J . (S.B.12)

Then, entries of Z(λ) are independent, symmetric random variables and are bounded by λ. Apply Corol-
lary 3.12 in Bandeira & Van Handel (2016) to Z(λ), then there exists a universal constant c > 0 such
that

Pr
(
‖Z(λ)‖2 ≥ 23/2 max

1≤i≤(N+J)

[N+J∑
j=1

E{z2ij(λ)}
]1/2

+ t
)
≤ (N + J)e−t

2/(cλ2) (S.B.13)

Note that

max
1≤i≤(N+J)

[N+J∑
j=1

E{z2ij(λ)}
]1/2 ≤ max

1≤i≤(N+J)

{N+J∑
j=1

E(z2ij)
}1/2

= max
[

max
1≤i≤N

{
J∑
j=1

E(x̃2ij)}1/2, max
1≤j≤J

{
N∑
i=1

E(x̃2ij)}1/2
]

=
√

2(σ1 ∨ σ2).

(S.B.14)

Thus, 145

Pr
(
‖Z(λ)‖2 ≥ 4(σ1 ∨ σ2) + t

)
≤ (N + J)e−t

2/(cλ2). (S.B.15)

On the other hand,

Pr
(
‖Z‖2 ≥ 4(σ1 ∨ σ2) + t

)
≤ Pr

(
‖Z(λ)‖2 ≥ 4(σ1 ∨ σ2) + t

)
+ Pr

(
max

1≤i,j≤N+J
|zij | > λ

)
.

(S.B.16)

The above two inequalities together imply

Pr
(
‖Z‖2 ≥ 4(σ1 ∨ σ2) + t

)
≤ (N + J)e−t

2/(cλ2) + Pr( max
1≤i,j≤N+J

|zij | > λ). (S.B.17)

Note that ‖Z‖2 = ‖X̃‖2 and max1≤i,j≤N+J |zij | = max1≤i≤N,1≤j≤J |x̃ij |. From the above inequality,
we obtain

Pr
(
‖X̃‖2 ≥ 4(σ1 ∨ σ2) + t

)
≤ (N + J)e−t

2/(cλ2) + Pr( max
1≤i≤N,1≤j≤J

|x̃ij | > λ). (S.B.18)

With a union bound, we further get 150

Pr(‖X̃‖2 ≥ 4(σ1 ∨ σ2) + t) ≤ (N + J)e−t
2/(cλ2) +

∑
1≤i≤N,1≤j≤J

Pr(|x̃ij | > λ). (S.B.19)

Recall X̃ = X −X ′ and the function I(‖X −X ′‖2 ≥ 4(σ1 ∨ σ2) + t) is convex in X ′. Thus, by
Jensen’s inequality,

Pr(‖X‖2 ≥ 4(σ1 ∨ σ2) + t) ≤ Pr(‖X −X ′‖2 ≥ 4(σ1 ∨ σ2) + t) = Pr(‖X̃‖2 ≥ 4(σ1 ∨ σ2) + t).
(S.B.20)

This, together with (S.B.19) completes the proof. �

Proof of Lemma 2. Let ω′ij be an independent copy of ωij , then |ω′ij − pij − (ωij − pij)| ≤ 1. In ad-
dition, E(ωij − pij)2 = pij(1− pij) ≤ pij . Thus, maxi{

∑
j E(ωij − pij)2}1/2 ≤ maxi(

∑
j pij)

1/2 = 155

(maxi n
∗
i·)

1/2 and maxj{
∑
iE(ωij − pij)2}1/2 ≤ (maxj n

∗
·j)

1/2.
Choose λ = 1 and apply Lemma 8 to Ω− P , we obtain that for all t ≥ 0,

Pr
(
‖Ω− P‖2 ≥ 4(max

i
n∗i· ∨max

j
n∗·j)

1/2 + t
)
≤ (N + J)e−t

2/c. (S.B.21)
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Let t = (2c log(N + J))1/2 in the above inequality, we obtain

Pr
(
‖Ω− P‖2 ≥ 4(max

i
n∗i· ∨max

j
n∗·j)

1/2 + (2c log(N + J))1/2
)
≤ (N + J)−1. (S.B.22)

We complete the proof by noting that (2c)1/2 is still a universal constant. �

Proof of Lemma 3. Apply Lemma 8 to V ◦ Ω, we obtain that for all t, λ ≥ 0,160

Pr
(
‖V ◦ Ω‖2 ≥ 4(σ1 ∨ σ2) + t

)
≤ (N + J)e−t

2/(cλ2) +
∑
ij

Pr(|vijωij − v′ijω′ij | ≥ λ), (S.B.23)

where (v′ij , ω
′
ij) is an independent copy of (vij , ωij), σ1 = maxi{

∑
j E(v2ijω

2
ij)}1/2 and σ2 =

maxj{
∑
iE(v2ijω

2
ij)}1/2. We proceed to a detailed analysis of σ1, σ2 and the probability Pr(|vijωij −

v′ijω
′
ij | ≥ λ). First, a direct calculation gives

σ1 = max
i

{∑
j

pijE(v2ij)
}1/2 ≤ (max

i
n∗i·)

1/2 max
ij
{E(v2ij)}1/2. (S.B.24)

Similarly, σ2 ≤ (maxj n
∗
·j)

1/2 maxij{E(v2ij)}1/2. Now we find an upper bound of Pr(|vijωij −
v′ijω

′
ij | ≥ λ). Note that165

Pr(|vijωij − v′ijω′ij | ≥ λ)

=p2ij Pr(|vij − v′ij | ≥ λ) + 2pij(1− pij) Pr(|vij | ≥ λ)

≤3pij Pr(|vij − v′ij | ≥ λ) ∨ Pr(|vij | ≥ λ).

(S.B.25)

For Pr(|vij | ≥ λ), we use a tail bound for sub-exponential variables

Pr(|vij | ≥ λ) ≤ 2e−λ
2/(2ν2) ∨ e−λ/(2α). (S.B.26)

Similarly, noting that vij − v′ij is also sub-exponential with parameters 2ν2, α, we have

Pr(|vij − v′ij | ≥ λ) ≤ 2e−λ
2/(4ν2) ∨ e−λ/(2α). (S.B.27)

Combining the above two inequalities with (S.B.25), we have

Pr(|vijωij − v′ijω′ij | ≥ λ) ≤ 6pije
−λ2/(4ν2) ∨ e−λ/(2α). (S.B.28)

Combining the above inequality with (S.B.23), we arrive at

Pr
(
‖V ◦ Ω‖2 ≥ 4 max

ij
{E(v2ij)}1/2(max

i
n∗i·)

1/2 ∨ (max
j
n∗·j)

1/2 + t
)

≤(N + J)e−t
2/(cλ2) + 6e−λ

2/(4ν2) ∨ e−λ/(2α)n∗.
(S.B.29)

Let λ = 4(α ∨ ν) log n∗. It is not hard to verify that 6e−λ
2/(4ν2) ∨ e−λ/(2α)n∗ ≤ (n∗)−1 for n∗ ≥ 6. Let170

t = λ{2c log(N + J)}1/2, we obtain (N + J)e−t
2/(cλ2) ≤ (N + J)−1. Combining the above inequali-

ties with (S.B.29), we obtain that with probability at least 1− (N + J)−1 − (n∗)−1,

‖V ◦ Ω‖2
≤4 max

ij
{E(v2ij)}1/2(max

i
n∗i·)

1/2 ∨ (max
j
n∗·j)

1/2 + 4
√

2c1/2(α ∨ ν) log n∗ log1/2(N + J).
(S.B.30)

This completes the proof of inequality (S.A.3) (note that 4
√

2c1/2 is also a universal constant). We
proceed to prove the ‘in particular’ part of the lemma. For each zij = yij − b′(m∗ij), its second
moment is E(z2ij) = φb′′(m∗ij) ≤ φκ2C2 . In addition, its moment generating function is E(eλzij ) =175

exp[φ−1{b(m∗ij + λφ)− b(m∗ij)} − λb′(m∗ij)] = exp{φb′′(m∗ij + λ̃φ)λ2/2} for some |λ̃| ≤ |λ|. Since
|m∗ij | ≤ C2 by assumption, we can see that for |λ| ≤ C2/φ, |m∗ij + λ̃φ| ≤ 2C2 and thus E(eλzij ) ≤
exp{κ2C2φλ2/2} for all |λ| ≤ C2/φ. This implies that zij is sub-exponential with the parameters
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ν2 = φκ2C2 and α = φ/C2. We complete the proof by applying (S.A.3) with the above parameters for
Z. � 180

Proof of Lemma 4. For each K∗ + 1 ≤ K ≤ Kmax, we first derive an upper bound for
φ{l(M̂ (K), Y,Ω)− l(M̂ (K∗), Y,Ω)} − (v(n,N, J,K)− v(n,N, J,K∗)). According to Lemma 1,

φ{l(M̂ (K), Y,Ω)− l(M∗, Y,Ω)}
≤(K +K∗ + 2)1/2

(
‖Z ◦ Ω‖2 + 2δC2C2‖Q‖2

)
‖M̂ (K) −M∗‖F

≤2K1/2
(
‖Z ◦ Ω‖2 + 2δC2C2‖Q‖2

)
‖M̂ (K) −M∗‖F .

(S.B.31)

Combining this with (S.A.5) gives

φ{l(M̂ (K), Y,Ω)− l(M∗, Y,Ω)} ≤ 4p−1minK
{
‖Z ◦ Ω‖2 + 2δC2C2‖Q‖2

}2
= KR. (S.B.32)

Thus, the penalized log-likelihood satisfies

max
K∗+1≤K≤Kmax

[
− 2l(M̂ (K), Y,Ω) + v(n,N, J,K)− {−2l(M∗, Y,Ω) + v(n,N, J,K∗)}

]
≥ max
K∗+1≤K≤Kmax

[
− 2φ−1KR+

K∑
l=K∗+1

u(n,N, J,K)
]

(S.B.33)

It is easy to see that, if the events u(n,N, J,K∗ + 1) > 2φ−1(K∗ + 1)R and u(n,N, J, l) > 2φ−1R 185

happen at the same time for all K∗ + 2 ≤ l ≤ Kmax, then the right-hand side of the above inequality is
strictly greater than zero. Thus,

Pr
(
K̂ ≤ K∗

)
≥Pr

(
max

K∗+1≤K≤Kmax

[
− 2l(M̂ (K), Y,Ω) + v(n,N, J,K)− {−2l(M∗, Y,Ω) + v(n,N, J,K∗)}

]
> 0
)

≥Pr
(
u(n,N, J,K∗ + 1) > 2φ−1(K∗ + 1)R, and inf

K∗+2≤l≤Kmax

u(n,N, J,K) > 2φ−1R
)
.

(S.B.34)

We complete the proof by noting the right-hand side of the above inequality tend to one under the assump-
tions of the lemma. �

The proof of Lemma 5 requires the next lemma. 190

LEMMA 9. If 4(δC2pmin)−1K∗R ≤ σ2
K∗+1(M∗), then

φ{l(M̂ (K), Y,Ω)− l(M̂ (K∗), Y,Ω)} ≤ −1

2
δC2pmin

{ K∗+1∑
l=K+2

σ2
l (M∗)

}
(S.B.35)

for 0 ≤ K ≤ K∗ − 1.

Proof of Lemma 9. First, according to Lemma 1, M̂ (K) ∈MK+1 and K + 1 ≤ K∗, we have

φ{l(M̂ (K), Y,Ω)− l(M∗, Y,Ω)}
≤(K +K∗ + 2)1/2

{
‖Z ◦ Ω‖2 + 2δC2C2‖Q‖2

}
‖M̂ (K) −M∗‖F − δC2pmin‖M̂ (K) −M∗‖2F

≤ sup
M∈MK+1

[
2(K∗)1/2

{
‖Z ◦ Ω‖2 + 2δC2C2‖Q‖2

}
‖M −M∗‖F − δC2pmin‖M −M∗‖2F

]
.

(S.B.36)
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Note that the expression inside ‘sup’ is a quadratic function in ‖M −M∗‖F . Let d(M∗,MK+1) =
infM∈MK+1

‖M −M∗‖F . From properties of a quadratic function, if d(M∗,MK+1) ≥ 2(δC2pmin)−1 ·195

2(K∗)1/2
{
‖Z ◦ Ω‖2 + 2δC2C2‖Q‖2

}
φ{l(M̂ (K), Y,Ω)− l(M∗, Y,Ω)}
≤(2K∗)1/2

{
‖Z ◦ Ω‖2 + 2δC2C2‖Q‖2

}
d(M∗,K+1 )− δC2pmind

2(M∗,K+1 )

≤− 1

2
δC2pmind

2(M∗,MK+1).

(S.B.37)

Note that φ{l(M̂ (K∗), Y,Ω)− l(M∗, Y,Ω)} ≥ 0. Thus, the above inequality implies that on the event
d(M∗,MK) ≥ 4(δC2pmin)−1(K∗)1/2

{
‖Z ◦ Ω‖2 + 2δC2C2‖Q‖2

}
,

φ{l(M̂ (K), Y,Ω)− l(M̂ (K∗), Y,Ω)} ≤ −1

2
δC2pmind

2(M∗,MK). (S.B.38)

Now we proceed to a lower bound for d(M∗,MK+1). Recall the well-known fact that
inf

M has a rankK+1
‖M∗ −M‖2F =

∑K∗+1
l=K+2 σ

2
l (M∗) where σ1(M∗) ≥ · · · ≥ σK∗+1(M∗) denotes the non-200

zero singular values of M∗. Thus, d(M∗,MK+1) ≥ {
∑K∗+1
l=K+2 σ

2
l (M∗)}1/2 ≥ σK∗+1(M∗). Combine

this with (S.B.38), we have

φ{l(M̂ (K), Y,Ω)− l(M̂ (K∗), Y,Ω)} ≤ −1

2
δC2pmin

{ K∗+1∑
l=K+2

σ2
l (M∗)

}
, (S.B.39)

if 4(δC2pmin)−1(K∗)1/2
{
‖Z ◦ Ω‖2 + 2δC2C2‖Q‖2

}
≤ σK∗+1(M∗) and K ≤ K∗ − 1. We complete

the proof by noting that 4(δC2pmin)−1(K∗)1/2
{
‖Z ◦ Ω‖2 + 2δC2C2‖Q‖2

}
≤ σK∗+1(M∗) is equivalent

to 4(δC2pmin)−1K∗R ≤ σ2
K∗+1(M∗). �205

Proof of Lemma 5. According to Lemma 9, for each 0 ≤ K ≤ K∗ − 1,

− 2l(M̂ (K), Y,Ω) + v(n,N, J,K)−
{
− 2l(M̂ (K∗), Y,Ω) + v(n,N, J,K∗)

}
≥φ−1δC2pmin

{ K∗+1∑
l=K+2

σ2
l (M∗)

}
−

K∗∑
l=K+1

u(n,N, J, l),
(S.B.40)

if 4(δC2pmin)−1K∗R ≤ σ2
K∗(M

∗). Clearly, right-hand-side of the above inequality is strictly greater than
zero if u(n,N, J, l) < φ−1δC2pminσ

2
l+1(M∗) for all 1 ≤ l ≤ K∗. Thus,

Pr
(
K̂ ≥ K∗

)
≥Pr

(
max

1≤K≤K∗

[
− 2l(M̂ (K), Y,Ω) + v(n,N, J,K)−

{
− 2l(M̂ (K∗), Y,Ω) + v(n,N, J,K∗)

}]
> 0
)

≥Pr
(
4(δC2pmin)−1K∗R ≤ σ2

K∗+1(M∗) and u(n,N, J,K) < φ−1δC2pminσ
2
K+1(M∗) for all 1 ≤ K ≤ K∗

)
(S.B.41)

The right-hand-side of the above inequality tend to one under the assumptions of the Lemma. This com-
pletes the proof. �210

Proof of Lemma 6. According to Lemma 3, there is a universal constant c such that with probability
least 1− (N + J)−1 − (n∗)−1,

‖Z ◦ Ω‖2 ≤ 4(φκ2C2)1/2(max
i
n∗i·)

1/2 ∨ (max
j
n∗·j)

1/2 + c{(φ/C2) ∨ (φκ2C2)1/2} log n∗ log1/2(N + J).

(S.B.42)
Under the asymptotic regime (10), we have 4(φκ2C2)1/2 = O(1), maxi n

∗
i· = O(pmaxJ),

maxj n
∗
·j = O(pmaxN), c{(φ/C2) ∨ (φκ2C2)1/2} = O(1), and log n∗ log1/2(N + J) = O

(
(N ∧
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J)−1/2(n∗)1/2
)

= O
(
{pmax(N ∨ J)}1/2

)
. Thus, the right-hand-side of (S.B.42) is of the order 215

O({pmax(N ∨ J)}1/2) and

‖Z ◦ Ω‖2 = Op({pmax(N ∨ J)}1/2) (S.B.43)

as N, J →∞. Similarly, according to Lemma 2,

‖Q‖2 ≤ 4(max
i
n∗i·)

1/2 ∨ (max
j
n∗·j)

1/2 + c log1/2(N + J) (S.B.44)

with probability at least 1− (N + J)−1. Under the the asymptotic regime (10), the right-hand-side of the
above inequality is of the order O({pmax(N ∨ J)}1/2), and thus

‖Q‖2 = Op({pmax(N ∨ J)}1/2). (S.B.45)

We complete the proof by combining (S.B.43), (S.B.45), and the definition of R. � 220

C. PROOF OF PROPOSITION 1

Without loss of generality, assume J ≥ N , N/K∗ is an integer, and φ = 1. The proof can be easily
extended to the other cases.

To prove the lower bound for the minimax risk, we use a local Fano’s method, which is a standard
tool for proving lower error bounds (Tsybakov, 2008). Throughout the proof we use the notation F = 225

(F1, · · · , FN )T , d = (d1, · · · , dJ)T and A = (A1, · · · , AJ)T .
We start with constructing a local packing of as follows. First, let F (0) = C(IK∗ , · · · , IK∗)T . Note that

here we used the assumption thatN/K∗ is an integer. Also, let d(0) = (0, · · · , 0)T . Next, according to the
(Gilbert-Varshanmov bound) (Gilbert, 1952), there exists a set B = {B(l) : l = 1, · · ·L} ⊂ {1,−1}J×K∗

satisfying L ≥ exp(JK∗/8) and 230

J∑
j=1

K∗∑
k=1

I(bjk 6= b′jk) ≥ JK∗/4 (S.C.1)

for any B,B′ ∈ B and B 6= B′. Then, we construct a set A = {A = γB : B ∈ B} for some γ specified
in the sequel. Now define

M∗ = {M = (mij) : mij = dj + FTi Aj for all i and j where d = d(0), F = F (0) and A ∈ A}
= {M = F (0)AT : A ∈ A}

(S.C.2)

The setM∗ defined above has the following properties.

(a) |M∗| = L ≥ exp(JK∗/8).
(b) The Kullback-Leibler divergence maxM,M ′∈M∗ KL(PM‖PM ′) ≤ κn∗γ2 for some constant κ, where 235

PM denotes the probability measure for (Yij , ωij)1≤i≤N,1≤j≤J when the true parameter is M .
(c) ‖M −M ′‖2F ≥ C2NJγ2 for M,M ′ ∈M∗ and M 6= M ′.

Property (a) holds obviously. Property (b) holds because of the following inequalities

KL(PM‖PM ′) =
∑
i

∑
j

pij{b′(mij)(mij −m′ij)− (b(mij)− b(m′ij)}

≤ pmax

∑
i

∑
j

{b′(mij)(mij −m′ij)− (b(mij)− b(m′ij)}

≤ κn∗/(NJ)‖M −M ′‖2F
= κC2n∗/(NJ) · (N/K∗)

∑
j

∑
k

(ajk − a′jk)2,

(S.C.3)
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where we used the construction M = F (0)AT in the last equation. Note that |ajk| = |γbjk| = γ for
A ∈ A. Thus, (ajk − a′jk)2 ≤ 4γ2, which leads to property (b) of the set M∗ for a possibly different240

κ. Property (c) holds for the following reasons. By construction, for M,M ′ ∈M∗ and M 6= M ′

‖M −M ′‖2F = C2N/K∗ ·
∑
j

∑
k

(ajk − a′jk)2

= C2(N/K∗)γ2
∑
j

∑
k

(bjk − b′jk)2

= C2(N/K∗)γ2 · 4
∑
j

∑
k

I(bjk 6= b′jk)

≥ C2(N/K∗)γ2JK∗,

(S.C.4)

where the last inequality is due to (S.C.1). Thus, property (c) holds.
Now, for an arbitrary estimator M̄ , define a new estimator ˜̄M = arg minW∈M∗ ‖W − M̄‖F . It is easy

to see that for M ∈M∗,‖ ˜̄M −M‖F ≤ 2‖M̄ −M‖F . By a version of Fano’s inequality, we have

max
M∗∈M∗

PM∗
(

˜̄M 6= M∗
)
≥ 1− κn∗γ2 + 1

log |M∗|
≥ 1− κn∗γ2 + 1

JK/8
. (S.C.5)

Choose γ = κ−1(JK/n∗)1/2 for a possibly different κ, then for JK ≥ 64, we have245

max
M∗∈WM

PM∗
(

˜̄M 6= M∗
)
≥ 1

2
. (S.C.6)

Furthermore, we have

max
M∗∈M∗

PM∗
(
‖M̄ −M∗‖F ≥ (1/2) · C(NJ)1/2γ

)
≥ max
M∗∈M∗

PM∗
(
‖ ˜̄M −M∗‖F ≥ C(NJ)1/2γ

)
≥ max
M∗∈M∗

PM∗
(

˜̄M 6= M∗
)

≥1

2
.

(S.C.7)

Simplifying the term (1/2) · C(NJ)1/2γ, we arrive at

max
M∗∈M∗

PM∗
(

(NJ)−1/2‖M̄ −M∗‖F ≥ 2−1κ−1 · (JK/n∗)1/2
)
≥ 1

2
. (S.C.8)

Note that for A ∈ A, ‖Aj‖ ≤ γ
√
K∗ = κ−1(J(K∗)2/n∗)1/2. Thus, for a possibly larger constant κ, we

have ‖Aj‖ ≤ C under the assumption (K∗)2(J +N) ≤ n∗. Thus,M∗ is a subset of the parameter space
of interest. That is,250

M∗ ⊂ G := {M = (mij) : mij = dj + FTi Aj , and (‖Fi‖2 + 1)
1
2 ≤ C, ((dj)2 + ‖Aj‖2)

1
2 ≤ C, for all i}

(S.C.9)
This further implies

max
M∗∈G

PM∗

(
1√
NJ
‖M̄ −M∗‖F ≥ 2−1κ−1 · (JK∗/n∗)1/2

)
≥ 1

2
. (S.C.10)

This completes our proof.

D. ON OPTIMIZATION FOR JOINT LIKELIHOOD

We provide some discussions on the optimization problem (3) for the constrained joint maximum like-
lihood estimator. The two reasons below explain why the solution given by an alternating maximization
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algorithm typically performs well, even though (3) is a non-convex optimization problem. First, according
to the proofs of Theorems 1 through 4, Theorems 1 and 2 hold as long as the estimates satisfy

lK(F̂1, ..., F̂N , Â1, d̂1, ..., ÂJ , d̂J) ≥ lK∗(F ∗1 , ..., F ∗N , A∗1, d∗1, ..., A∗J , d∗J)

when K ≥ K∗. In addition, for Theorems 3 and 4 to hold, we only need

lK∗(F̂1, ..., F̂N , Â1, d̂1, ..., ÂJ , d̂J) ≥ lK∗(F ∗1 , ..., F ∗N , A∗1, d∗1, ..., A∗J , d∗J). (S.D.1)

It means that the number of factors can be consistently selected even if our estimate is not a global solution 255

to (3) as long as (S.D.1) holds.
Second, we use good starting points when solving the optimization (3). Specifically, under the logistic

factor model for binary data, a singular-value-decomposition-based algorithm is proposed by Zhang et al.
(2020) that is guaranteed to give a consistent estimator of the model parameters. Although this estimator
is statistically less efficient than the joint-likelihood-based estimator (thus cannot be directly plugged into 260

the likelihood to construct an information criterion), it can serve as a good starting point when solving
the optimization (3). For other models, similar singular-value-decomposition-based algorithms can also
be developed.

We also discuss the choice of constraint constant C which needs to be specified when computing the
constrained joint maximum likelihood estimator. First of all, we point out that it is standard to impose 265

such a constraint for low-rank matrix estimation under nonlinear models. For example, in the work of Cai
& Zhou (2013) on 1-bit matrix completion, it is required that the max norm (i.e., the maximum value
of the absolute values of entries) of underlying low-rank matrix is smaller than a constant, which plays
essentially the same role as the constant C in the current work. Second, according to our simulation study,
the estimation of the model parameters and the performance of the proposed information criteria are not 270

sensitive to the choice of C, as long as it is set to be sufficiently large. Given a specific dataset, we suggest
to run the estimator under different values of C to check its sensitivity. In practice, we suggest to start
with a sufficiently large C, followed by a sensitivity analysis to check whether the estimator is sensitive
to the current choice of C.

E. INFORMATION CRITERIA BASED ON MARGINAL LIKELIHOOD275

We provide some discussion on the behavior of the maximum marginal likelihood when both N and
J grow to infinity. To simplify the discussion, we assume there is no missing value and the dispersion
parameter is 1, but this discussion can be generalized to the case when there are missing data and the
dispersion parameter needs to be estimated. Consider a model with K factors. The marginal likelihood
approach assumes that the factors F1, ..., FN are i.i.d. samples from a known distribution h. Then the
marginal likelihood function takes the form

mK(A,D) =

N∑
i=1

log(

∫
exp (li(x,A,D))h(x)dx),

where li(x,A,D) =
∑J
j=1 log g(yij |Aj , dj , x, 1), A = (Aj : j = 1, ..., J), D = (dj : j = 1, ..., J),

and x ∈ RK . Let (Â, D̂) be the estimator based on the marginal likelihood, i.e., (Â, D̂) ∈
arg maxmK(A,D). Furthermore, let

F̂i = arg max
x

li(x, Â, D̂) log(h(x)).
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Then by the Laplace approximation (Huber et al., 2004) and under suitable regularity conditions, we
should be able to establish

mK(Â, D̂) =

N∑
i=1

J∑
j=1

log g(yij |Âj , d̂j , F̂i, 1) +

N∑
i=1

log(h(F̂i))

+
NK

2
log(2π/J)− 1

2

N∑
i=1

log
(
det(H(F̂i, Â, D̂))

)
+RN,J ,

(S.E.1)

whereH(F̂i, Â, D̂) is the Hessian matrix ofLi(x) = li(x, Â, D̂) evaluated at F̂i and theRN,J term comes
from the remainder term of Laplace approximation. Note that the first term in (S.E.1) is the dominant term
that takes the same form as the joint likelihood, though Âj , d̂j , and F̂i are obtained from the marginal280

likelihood. The remainder RN,J is a term with a smaller asymptotic order. Moreover, we believe that
the error bound established in Theorem 1 can be extended to M̂K = (d̂j + F̂Ti Âj)N×J when K∗ ≤ K ≤
Kmax. Therefore, the development in this article will also be useful when developing marginal-likelihood-
based information criteria for generalized latent factor models under a high-dimensional setting.

F. COMPARISON WITH SOME RELATED WORKS285

As discussed in Remark 2, the error bound (5) improves several recent results on low-rank matrix es-
timation and completion. We now summarize the comparison in Remark 2 using Table F.1 below. This
comparison focuses on the error bound (5) when Kmax = K∗ and data entries are binary and are uni-
formly missing.

Key setting on M K∗ Error bound

Current Rank(M) ≤ K∗ Can diverge Op

[{
K∗(N∨J)

n∗

}1/2]
Chen et al. (2020) Rank(M) ≤ K∗ Fixed Op

[{
(N∨J)

n∗ + NJ

(n∗)3/2

}1/2]
Bhaskar & Javanmard (2015) Rank(M) ≤ K∗ Can diverge Op

[
K∗(N∨J)1/2

(n∗)1/2
+

(N∨J)3(N∧J)1/2(K∗)3/2

(n∗)2

]
Ni & Gu (2016) Rank(M) ≤ K∗ Can diverge Op

[{
K∗(N∨J) log(N+J)

n∗

}1/2]
Cai & Zhou (2013) ‖M‖∗ ≤ α

√
K∗NJ Can diverge Op

[{
K∗(N∨J)

n∗

}1/4]
Davenport et al. (2014) ‖M‖∗ ≤ α

√
K∗NJ Can diverge Op

[{
K∗(N∨J)

n∗

}1/4]
Table F.1: Comparison with existing results on the recovery of M . Here, ‖ · ‖∗ denotes the matrix nuclear
norm and α is a positive constant.

We further compare the current development with Chen et al. (2019) and Chen et al. (2020) that also290

concern likelihood-based analysis of generalized latent factor models. We discuss the similarities and
differences below.

1. Model: Chen et al. (2020) and the current work consider the same generalized latent factor model (1)
and Chen et al. (2019) consider the special case for binary data as given in Example 1.

2. Estimation versus selection: The current work establishes results on both the estimation of generalized295

latent factor model and information criteria for the selection of factors. In contrast, Chen et al. (2019)
and Chen et al. (2020) focus on the estimation problem.

3. Confirmatory versus exploratory setting: Chen et al. (2019) and the current work consider an ex-
ploratory factor analysis setting, for which no prior knowledge is assumed on the factor structure.
Chen et al. (2020) focus on a confirmatory factor analysis setting though its results are also generally300

applicable under an exploratory setting.
4. Setting on missingness: The current work considers a flexible setting for the missingness of data entries

that allows the entries to be non-uniformly missing. In contrast, Chen et al. (2019) and Chen et al.
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N = J N = 5J
S1 S2 S1 S2

Average time M1 M2 M3 M1 M2 M3 M1 M2 M3 M1 M2 M3
J = 100 6 9 11 5 9 11 36 48 73 33 44 67
J = 200 21 25 37 17 22 36 217 195 314 201 175 296
J = 300 53 58 86 46 49 78 509 522 785 483 486 714
J = 400 106 108 161 92 97 142 966 1144 1423 869 1131 1329

Table G.1: The average computation time (in seconds) for running one independent replication for each
of the 48 simulation settings.

(2020) consider a uniformly missing setting which can be viewed as a special case of the current
setting.305

5. Optimality: Both the current work and Chen et al. (2020) establish minimax optimality results on the
estimation of generalized latent factor models. The current optimality result, which is established under
a more general setting, can be viewed as an extension of that of Chen et al. (2020). Minimax optimality
is not considered in Chen et al. (2019).

In summary, the new contribution of the current paper is of twofold. First, we propose information cri- 310

teria for selecting the number of factors in high-dimensional generalized latent factor models and establish
conditions under which selection consistency is guaranteed. Second, we substantially extend the results
on the estimation of generalized latent factor models under a general setting where the data entries can be
non-uniformly missing and the number of factors can also grow to infinity.

G. ADDITIONAL SIMULATION RESULTS 315

G.1. Additional Results for Simulation in Section 4.1

The average running time for one independent replication for each of the 48 simulation settings is given
in Table G.1, where the computation is run on a computer with an Intel(R) Xeon(R) CPU 2.30GHz. The
computation code for our simulations can be found on the author’s Github page: https://github.
com/yunxiaochen/JML_IC. 320

G.2. Simulation under Poisson Factor Model

We further provide a simulation study under the Poisson factor model as given in Example 2. Similar
to the simulation study in Section 4.1, we consider the same factor strength settings S1 and S2, and the
same missing data settings M1-M3. Again, we consider two relationships between N and J , including
N = J and N = 5J . We consider J = 100, 200, 300, 400. Again, we let K∗ = 3 and the true model 325

parameters be generated the similarly as the simulation study in Section 4.1. More precisely, under the
setting S1, the true parameters d∗j , a∗j1, ..., a∗j3 are generated by sampling independently from the uniform
distribution over the interval [−1, 1] and the true factor values are generated f∗i1, ..., f∗i3 are generated
by sampling independently from the uniform distribution over the interval [−1, 1]. Under the setting S2,
f∗i3 is generated from the uniform distribution over the interval [−0.4, 0.4] and the rest of the parameters 330

are generated the same as those in S1. We use the proposed JIC to select K from the candidate set
{1, 2, 3, 4, 5} and the constraint constant C in (3) is set to be 3. The true model parameters satisfy this
constraint. There are 48 simulation settings in total and 100 independent replications are run for each
setting. Figure G.1 below shows the value of max3≤K≤5{(NJ)−1/2‖M̂ (K) −M∗‖F } under different
settings. Table G.2 shows the accuracy on determining the number of factors. Finally, Table G.3 gives the 335

average average running time for one independent replication for each of the 48 simulation settings.
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Fig. G.1: The loss max3≤K≤5{(NJ)−1/2‖M̂ (K) −M∗‖F } for the recovery of the low-rank matrix M∗,
where each point is the mean loss calculated by averaging over 100 independent replications. Panels (a)
and (b) show the results under the two different factor strength settings, S1 and S2, respectively.

N = J N = 5J
S1 S2 S1 S2

Under-selection M1 M2 M3 M1 M2 M3 M1 M2 M3 M1 M2 M3
J = 100 0 0 0 58 40 33 0 0 0 100 100 100
J = 200 0 0 0 3 47 49 0 0 0 12 100 100
J = 300 0 0 0 0 2 3 0 0 0 0 87 83
J = 400 0 0 0 0 0 0 0 0 0 0 2 2

Over-selection
J = 100 0 19 13 0 19 9 0 0 0 0 0 0
J = 200 0 0 0 0 0 0 0 0 0 0 0 0
J = 300 0 0 0 0 0 0 0 0 0 0 0 0
J = 400 0 0 0 0 0 0 0 0 0 0 0 0

Table G.2: The number of times that the true number of factors is under- or over-selected selected among
100 independent replications under each of the 48 simulation settings.

N = J N = 5J
S1 S2 S1 S2

Average time M1 M2 M3 M1 M2 M3 M1 M2 M3 M1 M2 M3
J = 100 1 1 1 1 1 1 12 6 7 11 6 7
J = 200 10 5 5 9 5 5 79 40 43 73 35 39
J = 300 28 14 16 25 13 14 249 122 125 222 107 110
J = 400 60 30 32 53 28 29 536 267 278 475 229 242

Table G.3: The average computation time (in seconds) for running one independent replication for each
of the 48 simulation settings.

G.3. A Scree Plot Example

Scree plots are a widely used tool for selecting the number of factors in factor analysis (Cattell, 1966).
A scree plot displays the eigenvalues of the covariance matrix of data in a downward curve, ordering the
eigenvalues from largest to smallest. The number of factors is then determined by finding the “elbow” of 340

the graph. The “elbow” is the eigenvalue where the eigenvalues seem to level off and the number of factors
is determined by the number of eigenvalues that are greater than the elbow. This approach typically works
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well for data following a linear factor model. This is because, under a linear factor model, the covariance
matrix of data is approximately a low-rank matrix plus a diagonal matrix, where the low-rank part drives
the “elbow” phenomenon. When data are generated from a nonlinear factor model, such as the logistic345

or Poisson factor models considered in the current work, the factor structure of data cannot be fully
characterized by the covariance matrix. In particular, the covariance matrix cannot be approximated by a
low-rank matrix plus a diagonal matrix. As a result, the elbow of the scree plot may no longer correspond
to the number of factors. We provide a simulated example to illustrate this point. Figure G.2 shows the
scree plot for data generated from a Poisson factor model under a setting when N = J = 200, K∗ = 3, 350

and there are no missing entries. Based on the scree plot, one may tend to choose seven or eight factors,
which is larger than the true number of factors.
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Fig. G.2: The scree plot for data that are generated from a Poisson factor model with three factors

G.4. Comparison with Bai et al. (2018)

We now compare the proposed JIC with the method proposed in Bai et al. (2018) via a simulation study.
In this study, data are generated from a linear factor model, with N = 2J . More specifically, yij follows a 355

normal distribution with mean dj +ATj Fi and variance 1, so that the data follow a spike covariance struc-
ture model assumed in Bai et al. (2018), with the eigenvalues of the covariance matrix of (yi1, ..., yiJ)T

satisfying λK∗ > λK∗+1 = · · · = λJ = 1. Again, we let K∗ = 3 and the true model parameters be gen-
erated under the setting S1 the simulation study in Section 4.1, where the three factors are of the same
strength. More precisely, the true parameters d∗j , a∗j1, ..., a∗j3 are generated by sampling independently 360

from the uniform distribution over the interval [−2, 2] and the true factor values are generated f∗i1, ...,
f∗i3 are generated by sampling independently from the uniform distribution over the interval [−2, 2]. We
consider J = 10, 20, ..., 50 and N = 2J . Note that under this linear factor model with no missing data
and assuming that the variance of yij is known to be 1, then the proposed JIC is the same as the PCp3
criterion proposed in Bai & Ng (2002). 365

We use the proposed JIC to select K from the candidate set {1, 2, 3, 4, 5} and the constraint constant C
in (3) is set to be 5. In addition, we also use the AIC and BIC proposed in Bai et al. (2018) to selectK from
the candidate set {1, 2, 3, 4, 5}. The results are given in Table G.4. As we can see, all three information
criteria become more accurate whenN and J simultaneously grow. Specifically, the proposed JIC and the
BIC in Bai et al. (2018) perform similarly. When J ≥ 20 andN = 2J , both methods correctly identify the370

true number of factors all the time. When J = 10 and N = 20, both the JIC and the BIC are correct 92%
of the times, though the two methods are slightly different in the numbers of over- and under-selections.
Finally, consistent with the observations in Bai et al. (2018), the AIC is less accurate and tends to over-
select.
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Under-selection Over-selection
JIC BIC AIC JIC BIC AIC

J = 10 2 4 2 6 4 31
J = 20 0 0 0 0 0 18
J = 30 0 0 0 0 0 7
J = 40 0 0 0 0 0 3
J = 50 0 0 0 0 0 2

Table G.4: The number of times that the true number of factors is under- or over-selected selected among
100 independent replications under each of the 5 simulation settings, under a linear factor model with a
spike covariance structure.

H. ADDITIONAL RESULTS FOR REAL DATA ANALYSIS375

In what follows, we provide additional results for the real data analysis. In Tables H.1 and H.2, we
show the loading matrix and the sample covariance matrix for the estimated factor scores, after applying
the oblimin rotation. Note that the items have been reordered, with items 1-32, 33-55, and 56-79 designed
to measure the psychoticism, extraversion, and neuroticism traits, respectively. The content of the items
can be found in Eysenck et al. (1985). Note that our data have been pre-processed so that the negatively 380

worded items are reversely scored. As we can see, items 1-32, 33-55, and 56-79 tend to have high loadings
on F2, F1, and F3, respectively. According to Table H.2, the correlations between the three estimated
factors are relatively small, suggesting that the three factors tend to be uncorrelated.

We further provide results for the two- and four-factor models, whose JIC values are also relatively
small. These results may provide us further insights about the latent structure of this personality inven- 385

tory. Tables H.3 and H.5 provide the the loading matrices for the two models, respectively, after applying
the oblimin rotation. Moreover, Tables H.4 and H.6 show the sample covariance matrices for the estimated
factor scores, from the two models, respectively. According to Table H.3, the items that are designed to
measure the extraversion trait tend to have high loadings for the first factor and items designed to mea-
sure neuroticism tend to have high loadings for the second factor, while most items designed to measure 390

psychoticism have small loadings for both factors. These results suggest that the psychoticism factor may
not be captured by the two-factor model.

From the loading structure given in Table H.5, the extracted factors F4, F2, and F3 tend to correspond
to the psychoticism, extraversion, and neuroticism traits, respectively. In addition, most items have small
loadings on F1, except for items 14. “Do you stop to think things over before doing anything?”, 28. “Do 395

you generally ‘look before you leap’?”, 45. “Have people said that you sometimes act too rashly?”, and
48. “Do you often make decisions on the spur of the moment?”, where items 14 and 28 are negatively
worded and thus reversely scored. It seems a minor factor about impulsive decision.

We compare the proposed method with the classical Akaike information criterion (AIC) and Bayesian
information criterion (BIC) calculated based on the marginal likelihood function, where the latent factors 400

are treated as random variables. More specifically, the latent factors are assumed to follow a multivariate
normal distribution, in the calculation of the marginal likelihood. The marginal maximum likelihood esti-
mator is computed using the R package “mirt” (Chalmers, 2012), where the computation for the marginal
maximum likelihood estimator is carried out using an Expectation-Maximization (EM) algorithm. The
EM algorithm is very time-consuming when only involving a moderate number of factors (Reckase, 2009). 405

The AIC and BIC values for the one- through five-factor models are given in Table H.7 below. In calculat-
ing the AIC and BIC values, the number of parameters for aK-factor model is J(K + 1)−K(K − 1)/2,
recalling that J is the number of items. The three-factor model fits best according to the BIC value, which
is consistent with the selection based on the proposed JIC. On the other hand, AIC selects the four-factor
model. Note that under the classical asymptotic regime and the true model is one of the candidate models, 410

the BIC guarantees consistency for model selection, while the AIC tends to over-select (Shao, 1997).
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Item F1 F2 F3
1 0.31 2.33 0.42
2 0.34 1.37 -0.11
3 0.53 1.18 0.49
4 0.27 1.47 0.79
5 0.89 1.37 0.03
6 0.44 1.11 0.23
7 -0.25 1.99 0.04
8 0.35 0.83 -0.23
9 -0.58 1.16 0.50

10 -0.04 1.59 0.71
11 0.22 0.85 -0.10
12 0.03 1.78 0.36
13 0.03 0.45 0.50
14 0.92 0.95 0.27
15 -0.15 1.04 -0.97
16 0.55 1.13 -0.53
17 0.08 0.63 -0.01
18 -0.06 0.93 -0.35
19 0.13 0.58 -0.31
20 0.08 1.78 -0.22
21 -0.50 2.37 -0.63
22 -0.49 2.17 -0.64
23 -0.54 1.55 0.02
24 0.23 1.15 -0.47
25 0.18 0.77 -0.06
26 -0.35 1.15 0.10
27 0.44 1.85 0.13
28 0.95 1.02 0.38
29 -0.16 0.50 0.45
30 0.16 1.31 -0.23
31 -0.08 1.25 -0.05
32 -0.18 0.58 -0.25
33 0.33 -0.17 -0.24
34 2.75 -0.19 0.48
35 3.61 -0.31 -0.08
36 2.05 0.08 -0.10
37 2.08 -0.34 -0.41
38 1.59 0.03 0.03
39 1.97 -0.77 -0.44
40 1.00 0.18 -0.58

Item F1 F2 F3
41 1.84 -0.23 -0.09
42 2.98 0.36 -0.07
43 0.91 -0.07 -0.05
44 2.59 -0.98 0.15
45 1.19 0.96 0.65
46 0.49 -0.02 -0.10
47 0.79 0.36 -0.33
48 0.93 0.59 0.18
49 0.43 -0.02 0.11
50 2.59 -0.01 -0.12
51 1.92 -0.12 0.00
52 3.78 -0.02 0.10
53 3.79 0.54 -0.16
54 1.81 -0.18 -0.01
55 2.73 0.08 -0.08
56 0.34 0.73 2.29
57 0.13 0.41 1.58
58 0.37 -1.10 2.13
59 0.01 0.67 1.64
60 -0.01 -0.18 1.78
61 0.01 0.45 2.10
62 0.39 -0.02 1.68
63 -0.47 0.11 2.10
64 -0.35 -0.54 2.84
65 -0.09 -0.18 1.38
66 -0.23 0.49 1.91
67 0.13 -0.07 0.88
68 0.04 0.34 0.59
69 0.16 0.40 1.25
70 0.04 0.61 1.36
71 0.71 -0.16 1.17
72 -0.11 0.73 0.77
73 -0.28 -0.58 2.25
74 -0.23 0.30 2.02
75 -0.17 0.70 1.55
76 -0.26 -0.42 1.81
77 0.85 0.38 1.48
78 0.31 0.08 1.32
79 0.45 0.53 1.00

Table H.1: Estimated loading matrix for the three-factor model after applying the oblimin rotation.

Finally, we provide the estimation results for the three-factor model from the marginal-likelihood ap-
proach, in comparison with those from the joint-likelihood approach. The results are given in Tables H.8
and H.9. Similar to the analysis above, the results are under the oblimin rotation. As we can see, although
the estimates are slightly different from those given by the joint likelihood, the loading structure is similar 415

and suggests that the three factors correspond to the extraversion, psychoticism, and neuroticism traits,
respectively.
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F1 F2 F3
F1 1.00 -0.03 -0.19
F2 -0.03 1.00 -0.02
F3 -0.19 -0.02 1.00

Table H.2: The sample covariance matrix for the estimated factor scores, under the three-factor model
after applying the oblimin rotation. Note that the model parameters have been rescaled, so that the sample
variance for each factor is one.

Item F1 F2
1 0.59 0.80
2 0.46 0.17
3 0.72 0.78
4 0.48 1.01
5 1.04 0.38
6 0.55 0.39
7 0.16 0.40
8 0.45 0.01
9 -0.36 0.68

10 0.22 0.89
11 0.38 0.11
12 0.45 0.68
13 0.19 0.64
14 0.98 0.48
15 0.11 -0.53
16 0.73 -0.20
17 0.25 0.18
18 0.19 -0.10
19 0.27 -0.11
20 0.32 0.15
21 0.11 0.04
22 0.12 0.02
23 -0.14 0.39
24 0.43 -0.13
25 0.35 0.12
26 -0.11 0.32
27 0.71 0.55
28 1.06 0.63
29 -0.02 0.54
30 0.35 0.09
31 0.14 0.21
32 -0.03 -0.09
33 0.24 -0.28
34 2.56 0.39
35 3.29 -0.14
36 2.12 -0.07
37 1.98 -0.50
38 1.60 0.06
39 1.62 -0.59
40 1.05 -0.48

Item F1 F2
41 1.69 -0.13
42 2.54 -0.01
43 0.85 -0.08
44 2.18 -0.14
45 1.24 0.81
46 0.46 -0.08
47 0.86 -0.22
48 1.04 0.31
49 0.40 0.10
50 2.38 -0.10
51 1.88 -0.02
52 3.51 0.10
53 3.79 0.03
54 1.74 -0.06
55 2.85 -0.05
56 0.43 2.38
57 0.15 1.62
58 -0.09 1.33
59 0.12 1.69
60 -0.14 1.54
61 0.08 2.10
62 0.24 1.46
63 -0.55 1.93
64 -0.54 2.07
65 -0.16 1.17
66 -0.18 1.99
67 0.06 0.79
68 0.10 0.63
69 0.22 1.34
70 0.09 1.44
71 0.53 0.99
72 0.02 0.88
73 -0.48 1.65
74 -0.24 1.97
75 -0.07 1.59
76 -0.40 1.48
77 0.86 1.52
78 0.22 1.26
79 0.51 1.13

Table H.3: Estimated loading matrix for the two-factor model after applying the oblimin rotation.
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F1 F2
F1 1.00 -0.22
F2 -0.22 1.00

Table H.4: The sample covariance matrix for the estimated factor scores, under the two-factor model after
applying the oblimin rotation.

Item F1 F2 F3 F4
1 0.48 0.39 0.48 2.31
2 0.50 0.25 -0.09 1.31
3 0.31 0.56 0.54 1.43
4 0.22 0.34 0.86 1.49
5 0.67 0.74 0.02 1.17
6 0.53 0.25 0.20 0.92
7 -0.19 0.12 0.17 2.68
8 0.06 0.41 -0.20 0.96
9 0.00 -0.45 0.53 1.36

10 0.07 0.08 0.81 1.89
11 0.37 0.08 -0.12 0.73
12 -0.12 0.30 0.46 2.36
13 0.24 -0.01 0.50 0.38
14 4.87 -0.27 -0.08 0.32
15 0.30 -0.26 -1.00 1.03
16 0.98 0.15 -0.67 0.73
17 0.43 -0.07 -0.03 0.53
18 0.24 -0.05 -0.47 1.23
19 -0.06 0.24 -0.27 0.69
20 0.07 0.22 -0.17 2.06
21 -0.47 0.07 -0.44 3.15
22 -0.38 -0.03 -0.51 3.08
23 0.30 -0.52 0.08 1.55
24 0.23 0.21 -0.46 1.18
25 0.12 0.15 -0.06 0.78
26 -0.07 -0.24 0.14 1.35
27 0.84 0.23 0.11 1.51
28 5.39 -0.19 0.11 0.35
29 0.11 -0.13 0.47 0.48
30 0.13 0.25 -0.18 1.52
31 -0.07 0.15 0.04 1.55
32 -0.18 -0.01 -0.20 0.79
33 -0.24 0.46 -0.20 -0.12
34 0.46 2.55 0.45 -0.44
35 0.12 3.67 -0.05 -0.48
36 -0.06 2.19 -0.05 0.13
37 -0.85 2.48 -0.25 0.00
38 -0.07 1.66 0.06 0.04
39 -0.27 2.08 -0.42 -0.71
40 0.71 0.71 -0.71 -0.13

Item F1 F2 F3 F4
41 -0.19 1.97 -0.06 -0.11
42 -0.29 3.96 0.03 0.72
43 -0.20 1.05 0.00 0.00
44 -0.48 2.76 0.22 -0.68
45 2.25 0.60 0.58 0.32
46 0.10 0.48 -0.10 -0.04
47 0.61 0.57 -0.39 0.16
48 5.43 0.32 -0.14 -0.69
49 0.36 0.31 0.09 -0.25
50 -0.32 3.33 -0.05 0.22
51 0.35 1.78 -0.04 -0.30
52 0.49 3.55 0.08 -0.37
53 0.24 3.96 -0.12 0.52
54 -0.26 1.97 0.04 -0.06
55 0.23 2.61 -0.08 -0.02
56 0.84 0.07 2.20 0.33
57 0.57 -0.08 1.50 0.14
58 -0.15 0.47 2.14 -1.22
59 0.53 -0.13 1.65 0.43
60 0.26 -0.08 1.74 -0.41
61 0.42 -0.09 2.05 0.24
62 -0.01 0.44 1.73 -0.05
63 -0.42 -0.26 2.48 0.35
64 -0.65 -0.02 3.18 -0.36
65 -0.27 0.10 1.52 -0.05
66 -0.05 -0.12 2.13 0.60
67 -0.17 0.25 0.94 0.03
68 0.23 -0.02 0.60 0.26
69 0.61 -0.10 1.19 0.17
70 0.56 -0.16 1.32 0.41
71 0.11 0.69 1.16 -0.25
72 0.11 -0.09 0.83 0.72
73 -0.05 -0.29 2.25 -0.63
74 -0.29 -0.01 2.42 0.47
75 0.20 -0.17 1.57 0.63
76 0.32 -0.40 1.80 -0.73
77 0.94 0.46 1.41 -0.07
78 0.57 0.08 1.29 -0.26
79 0.53 0.29 0.99 0.36

Table H.5: Estimated loading matrix for the four-factor model after applying the oblimin rotation.
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F1 F2 F3 F4
F1 1.00 0.22 -0.07 0.07
F2 0.22 1.00 -0.20 -0.03
F3 -0.07 -0.20 1.00 0.01
F4 0.07 -0.03 0.01 1.00

Table H.6: The sample covariance matrix for the estimated factor scores, under the four-factor model after
applying the oblimin rotation.

K 1 2 3 4 5
AIC 66304 63434 61942 61732 61750
BIC 67049 64547 63418 63566 63937

Table H.7: AIC and BIC values based on the marginal likelihood for the one- through five-factor models.
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Item F1 F2 F3
1 0.16 1.57 0.37
2 0.20 1.12 -0.15
3 0.47 1.10 0.57
4 0.14 1.11 0.73
5 0.84 1.08 0.04
6 0.27 0.91 0.15
7 -0.30 1.38 0.02
8 0.22 0.72 -0.24
9 -0.63 0.91 0.48

10 -0.20 1.21 0.59
11 0.17 0.70 -0.07
12 -0.12 1.39 0.30
13 0.00 0.43 0.47
14 0.72 0.77 0.23
15 -0.14 0.85 -0.81
16 0.50 0.94 -0.48
17 0.04 0.54 0.00
18 -0.26 1.13 -0.54
19 0.12 0.48 -0.29
20 0.00 1.22 -0.16
21 -0.39 1.41 -0.42
22 -0.45 1.37 -0.44
23 -0.55 1.15 0.10
24 0.19 0.90 -0.41
25 0.11 0.61 -0.06
26 -0.37 0.91 0.10
27 0.31 1.35 0.11
28 0.74 0.81 0.36
29 -0.19 0.40 0.41
30 0.08 1.04 -0.23
31 -0.14 0.92 -0.06
32 -0.14 0.49 -0.24
33 0.33 -0.14 -0.23
34 1.94 -0.11 0.36
35 2.58 -0.13 -0.10
36 1.59 0.11 -0.11
37 1.75 -0.22 -0.40
38 1.28 0.04 0.04
39 1.55 -0.55 -0.39
40 0.86 0.24 -0.51

Item F1 F2 F3
41 1.41 -0.13 -0.08
42 2.02 0.31 -0.11
43 0.78 -0.05 -0.09
44 2.24 -0.72 0.06
45 0.87 0.76 0.50
46 0.49 0.01 -0.07
47 0.72 0.34 -0.34
48 0.74 0.54 0.13
49 0.39 -0.02 0.10
50 1.85 0.06 -0.14
51 1.50 -0.06 -0.01
52 2.36 0.07 0.06
53 2.45 0.46 -0.15
54 1.44 -0.14 -0.01
55 1.92 0.09 -0.09
56 0.17 0.48 1.76
57 0.01 0.25 1.31
58 0.16 -0.86 1.64
59 -0.09 0.43 1.34
60 -0.10 -0.22 1.45
61 -0.08 0.23 1.64
62 0.24 -0.09 1.35
63 -0.46 -0.02 1.61
64 -0.34 -0.52 1.99
65 -0.08 -0.25 1.17
66 -0.30 0.30 1.54
67 0.09 -0.11 0.78
68 0.01 0.24 0.55
69 0.04 0.28 1.08
70 -0.11 0.42 1.14
71 0.57 -0.18 0.99
72 -0.19 0.56 0.66
73 -0.33 -0.54 1.71
74 -0.28 0.15 1.59
75 -0.25 0.46 1.29
76 -0.29 -0.41 1.46
77 0.62 0.26 1.24
78 0.07 0.13 1.10
79 0.19 0.25 0.93

Table H.8: Estimated loading matrix for the three-factor model based on the marginal likelihood. The
results are obtained after applying the oblimin rotation.

F1 F2 F3
F1 1.00 0.03 -0.16
F2 0.03 1.00 0.06
F3 -0.16 0.06 1.00

Table H.9: The estimated covariance matrix for the latent factors based on the marginal likelihood. The
results are obtained after applying the oblimin rotation.



24 Y. CHEN AND X. LI

REFERENCES

BAI, J. & NG, S. (2002). Determining the number of factors in approximate factor models. Econometrica 70,
191–221. 420

BAI, Z., CHOI, K. P. & FUJIKOSHI, Y. (2018). Consistency of AIC and BIC in estimating the number of significant
components in high-dimensional principal component analysis. Annals of Statistics 46, 1050–1076.

BANDEIRA, A. S. & VAN HANDEL, R. (2016). Sharp nonasymptotic bounds on the norm of random matrices with
independent entries. The Annals of Probability 44, 2479–2506.

BHASKAR, S. A. & JAVANMARD, A. (2015). 1-bit matrix completion under exact low-rank constraint. In 2015 49th 425

Annual Conference on Information Sciences and Systems (CISS). pp. 1–6.
CAI, T. & ZHOU, W.-X. (2013). A max-norm constrained minimization approach to 1-bit matrix completion. The

Journal of Machine Learning Research 14, 3619–3647.
CATTELL, R. B. (1966). The scree test for the number of factors. Multivariate Behavioral Research 1, 245–276.
CHALMERS, R. P. (2012). mirt: A multidimensional item response theory package for the R environment. Journal 430

of Statistical Software 48, 1–29.
CHEN, Y., LI, X. & ZHANG, S. (2019). Joint maximum likelihood estimation for high-dimensional exploratory item

factor analysis. psychometrika 84, 124–146.
CHEN, Y., LI, X. & ZHANG, S. (2020). Structured latent factor analysis for large-scale data: Identifiability, estima-

bility, and their implications. Journal of the American Statistical Association 115, 1756–1770. 435

DAVENPORT, M. A., PLAN, Y., VAN DEN BERG, E. & WOOTTERS, M. (2014). 1-bit matrix completion. Information
and Inference 3, 189–223.

EYSENCK, S. B., EYSENCK, H. J. & BARRETT, P. (1985). A revised version of the psychoticism scale. Personality
and Individual Differences 6, 21–29.

GILBERT, E. N. (1952). A comparison of signalling alphabets. The Bell system technical journal 31, 504–522. 440

HORN, R. A. (1995). Norm bounds for hadamard products and an arithmetic-geometric mean inequality for unitarily
invariant norms. Linear Algebra and Its Applications 223, 355–361.

HUBER, P., RONCHETTI, E. & VICTORIA-FESER, M.-P. (2004). Estimation of generalized linear latent variable
models. Journal of the Royal Statistical Society: Series B (Statistical Methodology) 66, 893–908.

NI, R. & GU, Q. (2016). Optimal statistical and computational rates for one bit matrix completion. In Proceedings 445

of the 19th International Conference on Artificial Intelligence and Statistics. pp. 426–434.
RECKASE, M. (2009). Multidimensional item response theory. New York, NY: Springer.
SHAO, J. (1997). An asymptotic theory for linear model selection. Statistica Sinica 7, 221–242.
TSYBAKOV, A. B. (2008). Introduction to nonparametric estimation. New York, NY: Springer.
ZHANG, H., CHEN, Y. & LI, X. (2020). A note on exploratory item factor analysis by singular value decomposition. 450

Psychometrika 85, 358–372.


